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Abstract 

Background  Liver fibrosis is a widespread chronic liver ailment linked to substantial mortality and limited therapeu-
tic options. An in-depth comprehension of the genetic underpinnings of liver fibrogenesis is crucial for the develop-
ment of effective management and treatment approaches.

Results  Using bioinformatics tools and the DisGeNET database, we pinpointed 105 genes significantly linked to liver 
fibrosis. Subsequently, we conducted functional assessments, incorporating gene ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analysis, and the STRING database, to construct protein–protein 
interaction networks (PPI) for these 105 liver fibrosis-associated genes. These analyses were executed via the WebGe-
stalt 2019 online platform. We employed Cytoscape plugins, MCODE, and CytoHubba, to identify potential biomarker 
genes from these functional networks. Noteworthy hub genes encompassed TGF-β1, MMP2, CTNNB1, FGF2, IL6, LOX, 
CTGF, SMAD3, ALB, and VEGFA. TGF-β1 and MMP-2 exhibited substantial promise as liver fibrosis biomarkers, as denoted 
by their high systemic scores determined through the MCC algorithm in the CytoHubba methodology.

Conclusions  In summary, this study presents a robust genetic biomarker strategy that may prove invaluable 
in the identification of potential liver fibrosis biomarkers.
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Introduction
Liver fibrosis is a prevalent chronic liver disease that 
poses a significant global health challenge [1]. It contrib-
utes to approximately 2 million deaths annually world-
wide, making it a substantial burden on public health 
[2]. The causes of liver fibrosis can vary and include viral 
infections (such as hepatitis B and hepatitis C), autoim-
mune and genetic diseases, alcoholic steatohepatitis, and 
non-alcoholic steatohepatitis. Notably, liver fibrosis plays 
a critical role in the progression of liver diseases, leading 
to liver cirrhosis and hepatocellular carcinoma, which 
currently ranks as the 11th most common cause of death 
globally [2].

Despite numerous research efforts, the development 
of effective and safe anti-fibrotic agents for treating 
liver fibrosis remains a challenge [3, 4]. Liver transplan-
tation has traditionally been the most effective treat-
ment option for end-stage liver fibrosis, but it comes 
with several limitations [5]. An alternative strategy to 
reduce liver fibrosis-related mortality is to impede the 
progression of fibrogenesis [6]. To achieve this, a com-
prehensive understanding of the underlying biomarker 

mechanisms is imperative, as it may offer novel avenues 
for managing and treating liver fibrosis [7].

In this study, we employed a bioinformatic approach 
to identify genetic-driven biomarkers associated with 
liver fibrosis. By integrating multiple genomic data-
bases, we examined genes related to liver fibrosis using 
the DisGeNET database. Furthermore, we conducted 
functional enrichment analysis and protein–protein 
interaction (PPI) network analysis to gain insights into 
the interactions and cooperative behaviors of these 
genes during the development of liver fibrosis. Lever-
aging the CytoHubba plugin within Cytoscape, we uti-
lized MCC algorithm to identify key genes of interest. 
Detailed information on the study workflow is depicted 
in Fig.  1. Previous studies have successfully employed 
the CytoHubba approach to identify potential biomark-
ers in various diseases [8, 9], making it a valuable tool 
for our investigation. By combining these datasets, our 
study aimed to identify novel biomarkers that could aid 
in the diagnosis, management, and treatment of liver 
fibrosis.

Fig. 1  Study workflow of bioinformatics analysis
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Methods
Identified liver fibrosis‑associated genes
DisGeNET, a comprehensive genomic database (http://​
www.​disge​net.​org) [10], was used to find genes associ-
ated with liver fibrosis (accessed on May 16, 2023). The 
selection of genes was based on their correlation with the 
disease/trait attribute of “Liver fibrosis.” DisGeNET pro-
vides a valuable resource for investigating the genetic fac-
tors underlying various diseases, including liver fibrosis, 
by integrating information from multiple sources such 
as scientific literature and public databases. By focusing 
on the disease/trait attribute relevant to liver fibrosis, 
we ensured that our gene selection was targeted toward 
identifying genes directly implicated in the development 
and progression of this particular condition.

Gene ontology enrichment analysis
The 2019 version of the Web-based Gene Set study 
Toolkit (WebGestalt) was used to conduct an enrich-
ment study of gene ontology (accessed on May 16, 2023) 
[10]. The gene ontology (GO) database contains valuable 
annotations that provide insights into the characteristics 
and putative functions of genes and gene products across 
different organisms. By utilizing this database, we aimed 
to identify enriched genes associated with liver fibrosis 
and gain a better understanding of their biological rel-
evance. The gene ontology (GO) classification system 
encompasses three major categories: biological process 
(BP), cellular component (CC), and molecular function 
(MF). The BP category represents a collection of molec-
ular functions that describe diverse biological processes 
occurring within an organism. The CC category describes 
the subcellular structures, locations, and macromolecu-
lar complexes where genes are active. Finally, the MF 
category explains the specific function of a gene or gene 
product [10]. To determine the statistical significance of 
the enriched genes, we set the significance threshold at a 
q-value (false discovery rate, FDR) of less than 0.05. This 
rigorous threshold ensures that the identified enriched 
genes are highly likely to be biologically relevant to liver 
fibrosis, minimizing the chances of false positive results. 
By conducting gene ontology enrichment analysis, we 
aimed to unravel the functional implications of the iden-
tified genes and gain insights into the underlying molecu-
lar mechanisms driving liver fibrosis.

KEGG pathway enrichment analysis
Using the WebGestalt 2019 online database (accessed on 
May 16, 2023), we performed KEGG pathway enrichment 
analysis [10]. This analysis aimed to identify significantly 
altered pathways associated with the candidate genes we 
selected for liver fibrosis. The KEGG database serves as a 
valuable resource for understanding biological pathways 

and their involvement in various diseases and biological 
processes [11]. This analysis provides insights into the 
functional implications and potential molecular mecha-
nisms underlying the development and progression of 
liver fibrosis. The resulting q-values serve as a measure 
of the significance of the pathway enrichment results, 
indicating the likelihood that the observed enrichment 
is not due to chance. Presenting the KEGG enrichment 
results with q-values below 0.05 highlights the pathways 
that exhibited significant enrichment in relation to liver 
fibrosis. These findings provide valuable information for 
understanding the altered biological processes and sign-
aling pathways involved in liver fibrosis and may aid in 
identifying potential therapeutic targets or biomarkers 
associated with the disease.

Discovering biomarker gene of liver fibrosis
Subsequently, we performed a protein–protein interac-
tion (PPI) analysis using the candidate genes and pro-
teins in the STRING database (https://​string-​db.​org/), 
accessed on May 16, 2023. The STRING database is a 
comprehensive resource that catalogs known and pre-
dicted protein–protein interactions, encompassing both 
physical and functional associations [12]. We utilized the 
default settings provided by STRING for this analysis. 
To visualize and analyze the PPI network, we employed 
Cytoscape software version 3.7.2 (Bethesda, MD, USA), 
accessed on May 16, 2023. Cytoscape is a powerful tool 
for visualizing and interpreting complex biological net-
works [13]. To identify important modules within the 
PPI network, we utilized the Cytoscape plugin molecular 
complex detection (MCODE). MCODE applies specific 
scoring and parameter thresholds to screen for densely 
connected regions in the network. In our analysis, we 
used the following MCODE parameters: k score = 2, 
degree cutoff = 2, node score cutoff = 0.2, and maximum 
depth = 100 [14]. This module detection method helps 
uncover significant subnetworks that may represent func-
tional units or protein complexes relevant to liver fibro-
sis. Additionally, we employed the CytoHubba plugin in 
Cytoscape to analyze the network structure of the PPI 
network and identify hub genes. CytoHubba offers eleven 
topological analysis methods, including degree (Deg), 
edge percolated component (EPC), maximum neighbor-
hood component (MNC), density of maximum neigh-
borhood component (DMNC), maximal clique centrality 
(MCC), and six centralities based on shortest paths (Bot-
tleneck, EcCentricity, Closeness, Radiality, Betweenness, 
and Stress). Among these methods, we utilized the MCC 
algorithm, which has been shown to accurately predict 
essential proteins in the yeast PPI network [15]. The 
top-ranked gene obtained from the MCC algorithm was 
considered a potential biomarker gene, as it may play a 

http://www.disgenet.org
http://www.disgenet.org
https://string-db.org/
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critical role in liver fibrosis. By employing these rigorous 
network analysis techniques, we aimed to uncover key 
interactions and hub genes within the PPI network asso-
ciated with liver fibrosis. Identifying potential biomarker 
genes through this approach may contribute to a better 
understanding of the molecular mechanisms underlying 
liver fibrosis and facilitate the development of novel diag-
nostic or therapeutic targets.

Result
Identified liver fibrosis genes
In order to identify genes implicated in liver fibrosis, we 
conducted a query on the DisGeNET database (http://​
www.​disge​net.​org; accessed on May 16, 2023). This com-
prehensive database provided us with a total of 105 genes 
that have been associated with liver fibrosis, offering 
valuable insights into the genetic landscape of this con-
dition (Table  1). To ensure the relevance and reliability 
of the retrieved genetic information from DisGeNET, 
we applied a filtering criterion. Specifically, we selected 
genes with score values higher than 0.3. This criterion 
was implemented to prioritize genes that have stronger 
associations with liver fibrosis based on the available 
evidence within the DisGeNET database. The goal was 
to focus on genes that are more likely to play significant 
roles in the development and progression of liver fibrosis. 
By employing this filtering criterion, we aimed to refine 

the gene set to those with more robust genetic associa-
tions, thereby enhancing the reliability and biological sig-
nificance of the identified genes. This approach allows us 
to prioritize genes that could serve as potential targets for 
further investigation and therapeutic development in the 
context of liver fibrosis.

Gene ontology enrichment analysis of liver fibrosis
GO enrichment analysis was carried out utilizing the 
WebGestalt 2019 online tools in order to examine the 
biological characteristics of the found genes. The analy-
sis encompassed three major categories: BP, CC, and 
MF. The BP analysis unveiled a total of 1134 significantly 
enriched functions. Notably, the top-ranked results 
demonstrated strong associations with “response to 
endogenous stimulus,” “response to oxygen-containing 
compound,” and “response to nitrogen compound.” The 
CC analysis identified 34 significantly enriched functions, 
including “extracellular matrix,” “collagen-containing 
extracellular matrix,” and “endoplasmic reticulum lumen.” 
Furthermore, the MF analysis revealed 50 significantly 
enriched functions, such as “signaling receptor binding,” 
“growth factor binding,” and “extracellular matrix struc-
tural constituent.” To provide a concise overview of the 
enriched functions within each category, Fig.  2 visually 
represents the top 10 significance obtained from the GO 
enrichment analysis (BP, MF, CC). This figure serves as a 
summary, highlighting the key biological processes, cel-
lular components, and molecular functions associated 
with the identified genes. For a more detailed examina-
tion of the GO enrichment analysis results, please refer 
to Supplementary Table  1, which provides comprehen-
sive outcomes.

KEGG pathway enrichment analysis of liver 
fibrosis‑associated genes
In order to gain insights into the potential involvement 
of pathways related to the identified gene candidates, we 
performed KEGG enrichment pathway analysis using 
WebGestalt 2019. This analysis aimed to elucidate the 
functional implications of the identified genes within 
established biological pathways. By applying a q-value 
threshold of less than 0.05, the KEGG analysis revealed 
a total of 25 pathways that exhibited significant changes. 
Among the highly scored pathways, notable categories 
included “AGE-RAGE signaling pathway in diabetic com-
plications,” “Complement and coagulation cascades,” and 
“PI3K-Akt signaling pathway,” as shown in Fig.  3 These 
findings provide evidence of the potential involvement 
of these pathways in the context of liver fibrosis. For a 
detailed overview of the outcomes of the KEGG path-
way enrichment analysis, please refer to Supplementary 
Table 2.

Table 1  Liver fibrosis-associated genes

Liver fibrosis-associated genes

CTNNB1 AGT​ FGF2 MIR764 IGFBP2

ABCB4 KRT18 FGF7 SLC17A2 JUND

TMEM67 REN LOXL1 PEMT KRT8

GLIS3 CCL2 LUM CHRM3 LAMC2

COL1A1 SERPINH1 ARRB1 COL3A1 ARNT

CCN2 F2 PCOLCE COL5A2 MIR215

ANKS6 TGFBR1 PLAU ADRA1A MIR29C

ALB COL1A2 ACTA2 COMMD1 MIR30B

HGF DHCR7 VTN CYBA MIR302C

IL6 LOX MIR942 CYP1A2 MIR376C

LGALS3BP VIM CYP2R1 CYP27A1 NPC1

SMAD3 CNR2 CP A2M NPPA

MMP2 BAMBI GC ALAD ATP7B

NFE2L2 SPARC​ HDAC2 F5 TRPM7

SERPINA1 STAT1 LGALS1 FBN1 SLC30A10

SPP1 CNR1 MIR30C2 FGFR2 MIR503

TGFB1 DNASE2 PLOD2 FLT1 SERPING1

VEGFA AHR THBS1 SLC13A4 C1QB

IFNA1 F2R TAGLN2 HSD11B2 TNFRSF1B

PTEN F3 MIR885 IGFBP1 UNC93B1

SERPINA6 RGN CD9 CD14 SLC22A8

http://www.disgenet.org
http://www.disgenet.org
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Discovering biomarkers of liver fibrosis‑associated genes
We utilized the STRING database to construct a pro-
tein–protein interaction (PPI) network comprising 105 
genes associated with liver fibrosis. Subsequently, we 
employed Cytoscape plugins such as MCODE and Cyto-
Hubba to extract potential biomarker genes from the PPI 
networks. With the MCODE approach, we identified 

gene clusters, which represent possible biomarkers, by 
subclustering the PPI network into four distinct sub-
clusters (Fig.  4). Furthermore, we employed CytoHubba 
to select hub genes from the PPI network. Hub genes 
are highly connected nodes within the network that play 
crucial roles. To assess the significance of each node, we 
employed CytoHubba’s MCC method. Remarkably, the 

Fig. 2  Gene ontology enrichment analysis of liver fibrosis-associated genes using WebGestalt 2019. (A) Top 10 enriched biological processes (BP); 
(B) top 10 enriched cellular components (CC); (C) top 10 enriched molecular functions (MF)



Page 6 of 9Paulina et al. Egyptian Journal of Medical Human Genetics           (2024) 25:58 

top 10 hub genes identified using this method (TGFB1, 
MMP2, CTNNB1, FGF2, IL6, LOX, CTGF, SMAD3, ALB, 
and VEGFA) were also found to be the top 10 potential 
biomarkers (Fig. 5).

Discussion
With the advances in genomics research, the bioinfor-
matics-based approach is one of the potential approaches 
to proposing biomarkers for various diseases. In our 
study, we employed this approach to identify poten-
tial genetic-driven biomarkers for liver fibrosis, mark-
ing the first of its kind in liver fibrosis research. Utilizing 
advanced bioinformatic tools, we delved into the intricate 
molecular mechanisms associated with the disease and 
identified promising biomarker candidates. Herein, we 
utilized DisGeNET as a valuable platform for exploring 
genes and variations associated with human diseases, 
including liver fibrosis [16]. Our study employed Dis-
GeNET, in conjunction with GO enrichment studies, 
KEGG pathway enrichment analyses, and PPI analysis, to 
conduct a comprehensive bioinformatics analysis.

Liver fibrosis is characterized by the excessive accu-
mulation of extracellular matrix (ECM) in the suben-
dothelial compartment. The ECM can be broken down 
by matrix metalloproteinases (MMPs), while tissue 
inhibitor matrix metalloproteinases (TIMPs) promote 
ECM formation and prevent its breakdown [17]. Under 
normal physiological conditions, there is a balanced 
regulation of MMPs and TIMPs to maintain ECM 

homeostasis. However, in liver fibrosis, this balance is 
disrupted [18]. Hepatic stellate cells (HSCs) are the pri-
mary source of ECM in the liver. Normally, HSCs are 
responsible for vitamin A storage, but liver injury trig-
gers their activation [19]. This HSC activation is cru-
cial in the early stages of liver fibrosis. Activated HSCs 
produce collagen-1 (Col-1), a major constituent of the 
ECM. This study identified ten potential biomarkers 
for liver fibrosis: TGF β-1, MMP-2, CTNNB-1, FGF-2, 
IL-6, LOX, CTGF, SMAD-3, ALB, and VEGFA. Among 
these biomarkers, TGF β-1 and MMP-2 stood out due 
to their high systemic scores in the CytoHubba MCC 
algorithm, suggesting their potential as useful biomark-
ers for liver fibrosis [20].

Transforming growth factor beta (TGFβ) plays a cen-
tral role in the development of tissue fibrosis, particularly 
in conjunction with Smad signaling, which leads to the 
activation of myofibroblasts and subsequent extracellu-
lar matrix transformation (ECMT) [21]. TGF-β1, known 
for its profibrogenic and immunosuppressive properties, 
is released during liver injury by Kupffer cells, sinusoidal 
endothelial cells, and other inflammatory cells, contrib-
uting to its activation. This cytokine serves as a mas-
ter profibrogenic agent, activating hepatic stellate cells 
(HSCs) via the TGFβ/Smad3 signaling pathway [22]. 
Consequently, TGF-β1 not only increases HSC activation 
but also influences the expression of MMPs and TIMPs. 
Inhibition of TGF-β1 has been demonstrated to sup-
press HSC activation both in vivo and in vitro [23]. The 
TGF-β1/Smad pathway plays a role in ECM deposition 
by enhancing TIMP1 expression and inhibiting MMP2 
expression. Additionally, serum levels of TGF-β1 have 
been associated with the severity of inflammation and 
stages of liver fibrosis. TGF-β1 shows promise as a serum 
biomarker for the progression of liver inflammation and 
fibrosis, particularly in chronic HCV infection [23–25].

Matrix metalloproteinases (MMPs) are enzymes that 
degrade components of the extracellular matrix (ECM), 
maintaining ECM integrity and composition, while also 
participating in ECM-mediated signaling. MMP-2, also 
known as gelatinase A, is predominantly expressed by 
hepatocytes, particularly hepatic stellate cells (HSCs) and 
Kupffer cells (KCs). It is one of the extensively studied 
enzymes in liver fibrosis and is involved in maintaining 
vascular homeostasis in the liver’s vascular region. Stud-
ies have demonstrated a correlation between MMP-2 
expression and fibrosis progression, irrespective of the 
underlying etiology, suggesting its profibrogenic prop-
erties. Elevated MMP-2 expression has been associated 
with various liver conditions, including chronic hepatitis, 
liver fibrosis, alcoholic cirrhosis, ischemia–reperfusion 
injury (IRI), biliary atresia (BA), and hepatocellular car-
cinoma (HCC) [26]. MMP-2 activity has shown potential 

Fig. 3  Top 10 of KEGG enrichment analysis of liver fibrosis-associated 
genes
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as a serum marker for disease severity in alcoholic liver 
disease [27].

The utilization of DisGeNET and bioinformatic 
approaches enabled the identification of potential 
genetic-driven biomarkers for liver fibrosis. The dysregu-
lation of MMPs and TIMPs, along with the involvement 
of TGF-β1 and MMP-2, underscores their significant 
contributions to the pathophysiology of liver fibrosis. 
TGF-β1 activates hepatic stellate cells (HSCs) and pro-
motes the deposition of extracellular matrix (ECM) 
through the TGFβ/Smad3 signaling pathway, whereas 
MMP-2 plays a role in ECM remodeling. These findings 
offer valuable insights into the underlying genetic mecha-
nisms of liver fibrosis and present potential candidates 
for future clinical investigations and early detection of 
the disease.

However, it is essential to acknowledge certain limita-
tions that require careful consideration. The presented 

results are based on current information obtained from 
DisGeNET, and future updates or new data may influ-
ence these findings. Moreover, the analysis conducted in 
this study is primarily exploratory, and further confirma-
tion through functional studies is necessary to validate 
the results.

Conclusions
In conclusion, this study identifies potential genetic-
driven biomarkers for liver fibrosis through bioinformatic 
analyses. The significant hub genes, including TGFB1, 
MMP2, CTNNB1, FGF2, IL6, LOX, CTGF, SMAD3, ALB, 
and VEGFA, provide valuable insights into the progres-
sion of liver fibrosis. Specifically, TGF-β1 and MMP-2 
stand out as promising biomarker candidates, supported 
by their high systemic scores in the CytoHubba MCC 
algorithm. However, further research is needed to 
fully elucidate the regulatory mechanisms and clinical 

Fig. 4  Depicts the construction of a protein–protein interaction (PPI) network for genes associated with liver fibrosis, using the STRING 
database and Cytoscape software. The resulting PPI network consisted of 95 nodes (genes) and 631 edges (interactions between genes). 
Notably, by applying the MCODE plugin in Cytoscape, we detected four distinct modules within the PPI network. These modules were labeled 
as Cluster 1 (score = 19.636), Cluster 2 (score = 5.333), Cluster 3 (score = 3), and Cluster 4 (score = 3), reflecting their respective levels of significance 
within the network
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implications of TGF-β1 and MMP-2 in liver fibrosis. The 
investigation and validation of these genes as clinical 
indicators for liver fibrosis warrant future studies.
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