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Abstract 

Background:  The angiotensin-converting enzyme-2 (ACE2) is recognized to be the fundamental receptor of severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV2), responsible for the worldwide Coronavirus Disease-2019 
(COVID-19) epidemic. However, genetic differences between people besides racial considerations and their relation to 
disease susceptibility are still not fully elucidated.

Main body:  To uncover the role of ACE2 in COVID-19 infection, we reviewed the published studies that explore the 
association of COVID-19 with the functional characteristics of ACE2 and its genetic variations. Notably, emerging stud-
ies tried to determine whether the ACE2 variants and/or expression could be associated with SARS-CoV/SARS-CoV2 
have conflicting results. Some researchers investigated the potential of “population-specific” ACE2 genetic variations to 
impact the SARS-CoV2 vulnerability and suggested no ethnicity enrichment for ACE2 polymorphisms that could influ-
ence SARS-CoV2 S-protein binding. At the same time, some studies use data mining to predict several ACE2 variants 
that could enhance or decline susceptibility to SARS-CoV. On the other hand, fewer studies revealed an association of 
ACE2 expression with COVID-19 outcome reporting higher expression levels of ACE2 in East Asians.

Conclusions:  ACE2 gene variants and expression may modify the deleterious consequences of SARS-CoV2 to the 
host cells. It is worth noting that apart from the differences in gene expression and the genetic variations of ACE2, 
many other environmental and/or genetic factors could modify the disease outcome, including the genes for the 
innate and the adaptive immune response.
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Background
More than 24 months have passed since the first discov-
ery of the novel severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV2) cases in Wuhan, Hubei Province, 
China. However, it is still spreading enormously, causing 

a significant health issue in nearly all countries around 
the world, even those who have already confined the dis-
ease spread still worry about having many other waves. 
From the experience of the previous epidemics, under-
standing details of the disease pathophysiology could 
help by a significant way in its handling and control strat-
egies, which we are in dire need to stop world losses from 
this pandemic. Although previous reports characterized 
the elderly age group as a risk factor for COVID-19, in 
particular, if associated with chronic diseases such as 
hypertension, heart disease, and/or diabetes mellitus [1], 
nowadays increasing the number of young cases with 

Open Access

Egyptian Journal of Medical
Human Genetics

*Correspondence:  abdelhamid.faris@vet.usc.edu.eg; 
fatmamohamed548@gmail.com

6 Department of Pathology, Faculty of Veterinary Medicine, University of Sadat 
City, Fifth Zone, Ministries Complex, Sadat City 32511, Menoufia, Egypt
10 Biotechnology/BioMolecular Chemistry, Faculty of Science, Cairo 
University, Giza, Egypt
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1252-8403
http://orcid.org/0000-0002-5423-7228
http://orcid.org/0000-0002-9259-7435
http://orcid.org/0000-0001-7987-8630
http://orcid.org/0000-0001-7440-3820
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43042-022-00309-6&domain=pdf


Page 2 of 14Fawzy et al. Egyptian Journal of Medical Human Genetics           (2022) 23:97 

early complications necessitating ICU and multivisceral 
support becomes devastating which support the poten-
tial contribution of the genetic factors to this risk that 
warranted continuous research [2].

Given the essential roles of the renin-angiotensin sys-
tem (RAS) in maintaining the balance of lung cell pro-
liferation/apoptosis and mediating the intra-pulmonary 
blood pressure, inflammation, and fibrosis, its dysregu-
lation has been linked to several pulmonary diseases, 
including COVID-19 [3, 4]. The angiotensin-converting 
enzyme 2 (ACE2), the homolog of ACE, is a catalytic 
component of RAS that has recently attracted global 
recognition [5]. ACE2 is reported to be the fundamental 
entry point of SARS-CoV [6]. It is required for host cell 
entry and subsequent viral replication after priming by 
the serine protease TMPRSS2 (transmembrane protease, 
serine 2) [7], as detailed in the following sections. Despite 
the spike proteins of SARS-CoV-2 and SARS-CoV are not 
identical, SARS-CoV2 spike protein has a much higher 
binding affinity to human ACE2 [8] and supports intense 
interaction with it [9], which signifies its enhanced 
pathogenicity.

Rather than the pulmonary expression, ACE2 is 
reported to be also distributed in the heart, the renal and 
luminal surface of intestinal epithelial cells, among oth-
ers [10], explaining the SARS-CoV2 entry site in Wuhan 
patients and the multi-organ dysfunction observed in 
infected patients [11]. By using normal lung tissues, Zhao 
et  al. have detected that about 83% of the lung ACE2 
expression is situated in the alveolar epithelial cells type 
II, which may facilitate coronaviral invasion and harbor 
the virus for replication [12].

Accumulating evidence indicates that ACE2 genetic 
polymorphisms among populations and racial considera-
tions may correlate with cellular susceptibility to SARS-
CoV2 infection with controversial findings [13–15]. 
Also, the rationale for the genetic basis of ACE2 or cor-
onavirus-resistant ACE2 mutant receptors is still mostly 
unknown in different populations. In this sense, this 
review aimed to explore some basics related to ACE2-
SARS-CoV2 interaction and cell entry and the relation of 
different ACE2 variants to disease risk, severity, and pro-
gression among different populations worldwide.

Main text
Methods
We screened the following medical electronic data-
bases: PubMed, Web of Science, Scopus, and Cochrane 
CENTRAL for the relevant published data up to Febru-
ary 2022, using the keywords (“COVID-19” OR “SARS-
CoV-2” OR “Coronavirus” OR “severe acute respiratory 
syndrome coronavirus-2” OR “coronavirus SARS-CoV-2” 
OR “2019-nCoV”) AND (“ACE II receptors” OR 

“angiotensin-converting enzyme 2” OR “angiotensin-
converting enzyme-2” OR “ACE2” OR “angiotensin II 
receptor blockers” OR “Angiotensin-converting enzyme 
inhibitors” OR “ACE inhibitors”) AND (“Genetic Vari-
ations” OR “Genetic Diversity” OR “SNP” OR “poly-
morphism” OR “genotype” OR “single nucleotide 
polymorphism”). The identified records evaluated against 
the following inclusion criteria: studies are exploring the 
association of COVID-19 with ACE2 genetic variations, 
all types of studies, and the studies published in both 
peer-reviewed journals and as a preprint.

Different databases were applied to explore the struc-
tural and functional characteristics of the ACE2 gene. 
The data for gene structure and transcript splicing vari-
ant were obtained from Ensembl (www.​ensem​bl.​org). 
Predicted sequence of ACE2 protein and the essential 
structural motifs and the amino acid residues (in particu-
lar the amino acids required for virus binding) with their 
mutation outcomes were obtained by UniProt (https://​
www.​unipr​ot.​org/​unipr​ot/​Q9BYF1/). Protter (http://​
wlab.​ethz.​ch/​prott​er/), a web application to visualize the 
sequence, annotations, and topology of the individual 
proteins, has been applied to visualize the amino acid 
residues of ACE2 and domains [16]. The signaling net-
work of ACE is curated by the SIGNOR (SIGnaling Net-
work  Open  Resource) v.2 [17]. Functional enrichment 
analysis and gene ontology were retrieved from (https://​
toppg​ene.​cchmc.​org/​enric​hment.​jsp), and gene–gene 
interaction was retrieved from GeneMania (https://​
genem​ania.​org/).

COVID‑19 Cell entry
About one-third of the viral genetic content is directed 
to encode four structural proteins, including spike glyco-
protein (S), a small envelope protein (E), matrix protein 
(M), and the nucleocapsid protein (N) [18]. The glycopro-
tein (S) of the virus consists of two subunits named S1 
and S2 [19]. S1 is mainly responsible for the virus-host 
interaction and cellular tropism with the critical func-
tion domain-receptor-binding domain (RBD), and S2 
facilitates virus cell/host cell membrane fusion [20]. The 
infectivity assays on HeLa cells with or without ACE2 
proteins extracted from bats, civets, pigs, mice, and 
humans, revealed that SARS-CoV-2 uses ACE2 to pro-
mote its entry into ACE2-expressing cells, but not from 
mouse species. It cannot enter those cells without ACE2, 
which can be considered specific receptors for this virus 
resembling SARS-CoV [21]. Additionally, the previ-
ous investigators excluded other receptors suspected of 
SARS-CoV-2 cell invasion, like dipeptidyl peptidase 4 
and aminopeptidase N.

Coronavirus spike (S) glycoproteins facilitate viral 
entry and replication into cells through binding to ACE2 

http://www.ensembl.org
https://www.uniprot.org/uniprot/Q9BYF1/
https://www.uniprot.org/uniprot/Q9BYF1/
http://wlab.ethz.ch/protter/
http://wlab.ethz.ch/protter/
https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
https://genemania.org/
https://genemania.org/
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and its priming by the serine protease TMPRSS2 (Fig. 1) 
[22]. Tai and his research team discovered the presence 
of RBD in the SARS-CoV-2 S1 subunit and observed a 
robust binding ability to ACE2; moreover, they showed 
a significantly higher binding affinity than that to SARS-
CoV, which may explain the higher infectious rate of 
SARS-CoV-2 over SARS-CoV [23, 24]. It was also found 
that the temperature-sensitivity for the SARS-CoV-2 
binding affinity is much more than that for SARS-CoV, 
predicting that the SARS-CoV-2 infection rate would 
reduce with increased temperature much quicker than 
SARS-CoV [23]. Also, S glycoproteins give sanctuary to 
a furin cleavage site which enhances cell invasion and is 
considered a unique feature for SARS-CoV2 and could be 
targeted for antibodies [25]. S ectodomain trimer could 
be a beneficial target for designing vaccines and antiviral 
entry inhibitors. It was documented that murine poly-
clonal antibodies against SARS-CoV S effectively dimin-
ished SARS-CoV2 S mediated cell entry; this emphasizes 
the cross-neutralizing antibodies’ role in conserving S 
epitopes upon vaccination [25].

Although SARS-CoV-2 does not group inside SARS 
and SARS-related coronaviruses, structural investigation 
distinguished residues in the SARS-CoV-2 RBD that are 
basic for ACE2 binding; most of them share analogous 
side chain with that in the SARS-CoV RBD. Such struc-
tural similarity and succession unequivocally contend for 

the evolution between the SARS-CoV-2 and SARS-CoV 
RBDs to improve the binding ability to ACE2 receptors 
[26].

Angiotensin‑converting enzyme 2 (ACE2): 
the hottest target of SARS‑CoV‑2 invasion
ACE2 (EC:3.4.17.23) is also termed as angiotensin-con-
verting enzyme homolog (ACAH), ACE-related car-
boxypeptidase, and metalloprotease 15 (MPROT15), 
and was identified as the first reported ACE homolog in 
2000. The protein is related to the ACE family of dipep-
tidyl-carboxypeptidases, which converts angiotensin I to 
angiotensin 1–9, and angiotensin II to angiotensin 1–7, 
which acts as a vasodilator and exerts important modu-
latory effects on the cardiovascular system [30–32] also 
effectively hydrolyzes apelin-13 and dynorphin-13 [32] 
(Fig. 2A). By cleavage, angiotensin II may be an essential 
regulator of heart function and may also have a protective 
role in acute lung injury [30, 31] (Fig. 2B). Furthermore, it 
plays a vital role in amino acid transport by acting as a 
binding partner of amino acid transporter SL6A19 in the 
intestine, regulating trafficking and the expression on the 
cell surface, and its catalytic activity [33].

ACE2 is a metalloproteinase with a total length of 805 
amino acids (Fig. 3A) [34, 35]. It belongs to type I trans-
membrane glycoprotein (integral) and contains a sin-
gle protruding extracellular catalytic domain. Like ACE, 
ACE2 has two domains: an amino-terminal catalytic 
domain and another carboxy-terminal domain. The cat-
alytic domain has an active site called the zinc metallo-
peptidase domain (HEXXH motif ) (Fig. 3B) [36].

Based on a recent study by Yan et al., the RBD Gln 498, 
Thr 500, and Asn 501 of the SARS-CoV-2 configure a 
connecting net of hydrogen bonds with ACE2 structured 
Tyr 41, Gln 42, Lys 3535, and Arg 357, respectively. Fur-
thermore, Lys 417, Tyr 453, and Gln 474 of RBD interact 
with Asp 30, His 34, and Gln 24 of ACE2, respectively. 
Through Vander Waals forces, Phe 486 of RBD interacts 
with Met 82 of ACE2 to ensure binding of the virus to 
the receptor and subsequent internalization (Fig. 3) [36]. 
Interestingly, the TMPRSS2 cleaves the ACE2 residues 
697 to 716 to facilitate the S-protein-driven viral entry 
[37]. The impact of some experimental mutation of one 
or more amino acids on the biological properties of the 
ACE2 protein, in particular, the binding to SARS-CoV 
(by similarity could be SARS-CoV2), is summarized in 
Table 1 [33, 35, 38, 39]. It is worth noting that ACE2 can 
also be trimmed by “a disintegrin and metalloprotein-
ase domain-containing protein 17 (ADAM 17),” which 
releases an extracellular fragment called soluble ACE2 
(sACE2) and is measured as sACE2 plasma activity [40]. 
It has been considered a possible candidate for monitor-
ing the evolution of COVID-19 [41]. The sACE2 retains 

Fig. 1  SARS-CoV-2 cellular entry. The binding between the S-protein 
trimer of SARS-CoV-2 and ACE2 receptor. The figure demonstrated 
the receptor-binding domain (RBD) of the S1 subunit and the 
hydrophobic fusion peptide of the S2 subunit where the S-protein is 
bound to ACE2 and primed with the cellular protease TMPRSS2, and 
the fusion S2 subunit undergoes a conformational rearrangement. 
The affinity between ACE2 and the RBD of SARS-CoV-2 is higher than 
its affinity with the RBD of the SARS virus [27–29]
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an intact SARS-CoV-2 interaction site, suggesting its abil-
ity to bind to SARS-CoV-2. Kornilov and colleagues have 
observed that COVID-19-related regulatory pathways 
may induce ACE2 shedding, and the sACE2 concentra-
tions may correlate with the level of systemic inflam-
mation associated with COVID-19 [42]. Furthermore, 
the calmodulin–calcium signaling pathway which con-
tributes to ACE2 release has been suggested to add new 
insights for clinical/therapeutic applications of ACE2 for 
COVID-19 [43].

Structural and functional analysis of ACE2
Human ACE2 (NCBI_Gene ID:59,272), a protein-coding 
gene, is located along the short arm of the Chromosome 
X (Xp22.2), spanning 41,116 bases long on the reverse 
strand from 15,561,033 to 15,602,148, according to the 
“Human Genome Assembly GRCh38” (Fig. 4A). It com-
prises 18 exons that can be transcribed into five different 
splice variants (ACE2-201 to ACE2-205); only two are 
protein-coding, as depicted in Fig. 4A [44].

A recent study by Fujikura and Uesaka REF has identi-
fied 349 single nucleotide variants (SNVs) in the coding 
regions and splice sites. SNVs were found in multiple 
protein-coding regions, including those in the contact 
residues between SARS-COV2 and human ACE2. There 
were 247 missense SNVs (70.8%) and 94 synonymous 
SNVs (26.9%). The residual 2% of SNVs, stop-gained 
(n = 2), splice site variants (n = 2), start-loss (n = 1), 
and indels (n = 3) were recorded. The majority of these 
SNVs were rare or quite rare, with allele frequency < 1% 
or < 0.001%, respectively. The frequency of deleterious 
SNVs is higher for rare SNVs than for SNVs with a high 
allele frequency [45].

Gene–gene network analysis reveals the implication 
of ACE2 in angiotensin maturation, regulation of sys-
temic arterial blood pressure, peptide hormone metabo-
lism, proteolysis, and regulation of cytokine production, 
among others (Fig. 4B).

There is an expression of this gene in endothelial cells 
in small/large arteries, arterial smooth muscle cells, the 
heart, the alveolar epithelial cells, the small intestine 

Fig. 2  ACE2 signaling network. A ACE2 interacts with several molecules, including S-protein. B The role of ACE2 in lung fibrosis. TGF-β1 is 
an essential mediator of fibrosis by activating downstream “SMAD” signaling, which triggers pro-fibrotic genes overexpression. Smad3 is the 
central canonical mediator for fibrogenesis, while Smad7 negatively regulates the fibrosis process. The RAS also controls the fibrotic process. 
Down-regulation of ACE2 decreases the angiotensin 1–7 level, upregulating the AT1R signaling cascade, which in turn triggers fibrosis (Data source: 
https://​signor.​uniro​ma2.​it/)

https://signor.uniroma2.it/
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enterocytes, Leydig cells, and Sertoli cells [46–50] (Fig. 5). 
Recently, it was discovered to be expressed in the proximal 
renal tubules and the small intestine [51]. According to its 
organ- and cell-specific expression, this gene regulates 

both cardiovascular and renal function, in addition to fer-
tility (https://​www.​ncbi.​nlm.​nih.​gov/​gene/​59272).

Gene ontology (GO) annotations related to 
this gene include  virion attachment to host cell 

Fig. 3  Sequence and aa residues of ACE2. A ACE2 gene encoding a deduced 805-aa protein. The unprocessed ACE2 (1–17) and ACE2 chain 
(18–805). Functional roles are illustrated based on [34] and [35]. (https://​www.​unipr​ot.​org/​unipr​ot/​Q9BYF1/​protv​ista). B ACE2 sequence contains 
an N-terminal signal (1 to 18), a TM domain (740 to 763), and a metalloprotease zinc-binding consensus (374 to 378, HEMGH). Blue aa residues are 
required for RBD interaction with the extracellular catalytic domain of ACE2 [36]. C. 3D structure of the ACE2 protein (https://​www.​unipr​ot.​org/​unipr​
ot/​Q9BYF1/​protv​ista)

https://www.ncbi.nlm.nih.gov/gene/59272
https://www.uniprot.org/uniprot/Q9BYF1/protvista
https://www.uniprot.org/uniprot/Q9BYF1/protvista
https://www.uniprot.org/uniprot/Q9BYF1/protvista
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(receptor-mediated) among others in biological process 
category (Fig. 6A), host cell surface binding, virion bind-
ing, and virus receptor activity in the molecular function 

category (Fig.  6B), membrane region and raft, cell pro-
jection membrane, microvillus, and brush border mem-
brane in the cellular component group (Fig. 6C).

Table 1  Effect of the experimental mutation of one or more amino acid(s) of ACE2 on the biological properties of the protein

Data source: https://​www.​unipr​ot.​org/​unipr​ot/​Q9BYF1

Amino acid(s) position Description

24 – 26 QAK → KAE: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

31 K → D: Abolishes interaction with SARS-CoV spike glycoprotein 1

37 E → A: No effect on interaction with SARS-CoV spike glycoprotein 1

38 D → A: No effect on interaction with SARS-CoV spike glycoprotein 1

41 Y → A: Strongly inhibits interaction with SARS-CoV spike glycoprotein 1

68 K → D: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

82 – 84 MYP → NFS: Inhibits interaction with SARS-CoV spike glycoprotein 1

110 E → P: No effect on interaction with SARS-CoV spike glycoprotein 1

135 – 136 PD → SM: No effect on interaction with SARS-CoV spike glycoprotein 1

160 E → R: No effect on interaction with SARS-CoV spike glycoprotein 1

169 R → Q: About 95% loss of angiotensin I cleavage 2

192 R → D: No effect on interaction with SARS-CoV spike glycoprotein 1

219 R → D: No effect on interaction with SARS-CoV spike glycoprotein 1

239 H → Q: No effect on interaction with SARS-CoV spike glycoprotein 1

271 W → Q: About 95% loss of angiotensin I cleavage 2

273 R → Q: Complete loss of enzyme activity. Does not affect the amino acid transport activity of SLC6A19 3, 4

309 K → D: No effect on interaction with SARS-CoV spike glycoprotein 1

312 E → A: No effect on interaction with SARS-CoV spike glycoprotein 1

324 T → A: No effect on interaction with SARS-CoV spike glycoprotein 1

338 – 340 NVQ → DDR: No effect on interaction with SARS-CoV spike glycoprotein 1

345 H → A: Complete loss of enzyme activity 3

350 D → A: No effect on interaction with SARS-CoV spike glycoprotein 1

353 K → H, A or D: Abolishes interaction with SARS-CoV spike glycoprotein 1

355 D → A: Strongly inhibits interaction with SARS-CoV spike glycoprotein 1

357 R → A: Strongly inhibits interaction with SARS-CoV spike glycoprotein 1

359 L → K or A: No effect on interaction with SARS-CoV spike glycoprotein 1

383 M → A: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

389 P → A: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

393 R → A: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

425 – 427 SPD → PSN: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

465 – 467 KGE → QDK: No effect on interaction with SARS-CoV spike glycoprotein 1

481 K → Q: About 80% loss of angiotensin I cleavage 2

505 H → A: Complete loss of enzyme activity 3

514 R → Q: About 50% loss of angiotensin I cleavage but twofold greater activity with angiotensin II 2

559 R → S: Slightly inhibits interaction with SARS-CoV spike glycoprotein 1

603 F → T: No effect on interaction with SARS-CoV spike glycoprotein 1

(See figure on next page.)
Fig. 4  ACE2 genomic structure and interactions. A The ACE2 gene is mapped to X chromosome Xp22.2. It contains 18 exons and has five 
transcripts; from the top to down: protein-coding transcripts ACE2-202 (3507 bp; 805aa) and ACE-201 (3339 bp; 805aa), in addition to three 
noncoding processed transcripts; ACE2-203/4/5 (998/786/599 bp, respectively). B Gene–gene network analysis for ACE2 gene. (https://​genem​ania.​
org/​search/​homo-​sapie​ns/​ACE2/)

https://www.uniprot.org/uniprot/Q9BYF1
https://genemania.org/search/homo-sapiens/ACE2/
https://genemania.org/search/homo-sapiens/ACE2/
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Fig. 4  (See legend on previous page.)
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Association of ACE2 gene variants with SARS‑CoV2 
infection
Since virus receptors are essential for cellular pathogen 
entry, they can influence the development and/or pro-
gression of viral diseases [52]; previous studies tried to 
determine whether the ACE2 variants and/or expression 
could be associated with SARS-CoV/SARS-CoV2 with 
conflicting results.

Although an earlier report demonstrated no associa-
tion between ACE2 variants and SARS-CoV susceptibil-
ity or outcomes with no difference related to sex [13], 
Gemmati et  al. reported a higher incidence of COVID-
19 infection in males with more severe representations. 
Death rates from SARS-CoV2 infection were 65 percent 
higher in males than in females. Part of the reason for 
these observations is the location of ACE2 on chromo-
some Xp22.22. This X-linked association renders the het-
erozygous females with higher ACE2 expression more 
protected than the hemizygous males [53].

Similarly, through analysis of the “1000 Genomes 
Project,” which contains samples from almost all eth-
nicities, a study has suggested the possibility of “pop-
ulation-specific” ACE2 genetic variations that impact 
the susceptibility to SARS-CoV2 infection [54]. Also, 
the genetic analysis by Cao and co-workers did not find 
any mutation difference in ACE2 that would influence 
SARS-CoV2/ S-protein binding [15]. Cao et  al., how-
ever, were criticized by some researchers for focusing 
merely on a limited population variation data set [52]. 

Using data mining in several data sets and applying 
“structural predictions,” Suryamohan et  al. could pre-
dict several ACE2 variants (i.e., “E23K, S19P, I21V, 
K26R, T27A, N64K, T92I, K26E, H378R, Q102P, and 
M383T”) which have the potential to increase the sen-
sitivity of the host to SARS-CoV. Alternatively, “N33I, 
K31R, D38V, H34R, E35K, E37K, N51S, K68E, Y50F, 
F72V, G326E, G352V, Y83H, D355N and Q388L” vari-
ants were predicted to decrease S-protein-ACE2 bind-
ing affinity with a subsequent decline in infection 
susceptibility [55]. Interestingly, most of the previ-
ously predicted variants were clustered in the N-ter-
minal region (extracellular catalytic domain) of ACE2 
(Fig.  3B) that interacts with the S-protein. However, 
the latter investigators confirmed that the above-iden-
tified variants are present in the general population 
with rare allele frequencies without any significant 
observable frequencies among different populations or 
even when stratified by sex. Another Italian research 
group has explored some ACE2 variants that could 
impact protein stability and SARS-CoV-2 binding. They 
found that c.1517  T > C p. (Val506Ala) had the high-
est disturbance effect, c.631G > A p.(Gly211Arg) and 
c.77A > G p. (Lys26Arg) had a high frequency of allele 
as well as c.1166C > A p.(Pro389His), and c.1051C > G 
p.(Leu351- Val) were predicted to affect the interaction 
of spike protein [14]. Furthermore, through compara-
tive genetic analysis of nearly 81,000 human genomes 
across eight populations, Hou et al. explored 63 poten-
tially deleterious ACE2 variants that could affect the 
genetic susceptibility to COVID-19 [56].

Fig. 5  ACE2 expression in different human tissues. Expression values are shown in transcripts per Million (TPM), calculated from a gene model with 
isoforms collapsed to a single gene. Each box plot represents the median, 25th percentile, and 75th percentile. The points below or above 1.5 times 
the interquartile range are considered outliers. Data Source: GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2) [51]
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Fig. 6  Functional annotation of ACE2. A Biological process, B Molecular functions, and C Cellular components for ACE2 with p-values set at < 0.01 
for (A) and < 0.05 for (B and C). The processes and molecular functions related to coronavirus binding and infection are encircled by red broken line 
rectangles (https://​toppg​ene.​cchmc.​org/)

https://toppgene.cchmc.org/
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ACE2 gene variants and COVID‑19 outcome
The ACE2 gene variants may modify the deleterious con-
sequences of SARS-CoV2 to the host cells [56, 57]. The 
first COVID-19 genome-wide association study iden-
tified the 3p21.31 gene cluster, including “SLC6A20, 
LZTFL1, CCR9, FYCO1, CXCR6, and XCR1” as a genetic 
susceptibility locus in severe patients with COVID-19 
and respiratory failure [58]. Previous genetic studies indi-
cated that ACE2 polymorphisms are related to the rate of 
hypertension progression in different populations [59]. 
ACE 2 variants were also found to be associated with 
cardiovascular and pulmonary conditions through alter-
ing the angiotensinogen-ACE2 interactions [56]. Several 
mutations have been speculated to modify the ACE2 pro-
tein expression level, as reported previously in a murine 
model [60]. Also, ACE2 deletion in the mice model was 
associated with increased tissue/circulation Ang II lev-
els and cardiovascular damage [61, 62]. The mechanisms 
by which ACE2 gene variants could impact the struc-
tural and/or the catalytic activity of the gene product 
could be at the transcriptional (mRNA expression), post-
transcriptional modifications (such as N-glycosylation), 
or ACE2 protein levels that influence the outcome of 
COVID-19 by acting on blood pressure through the RAS 
and possible impact on lung/heart damages through the 
Ang II-triggered oxidative stress [44].

Furthermore, the recent study by Khayat  et al. has 
unraveled at least ten ACE2-related variants in coding, 
noncoding, and regulatory sites that can offer a plausi-
ble biological explanation for the epidemiological dif-
ferences related to COVID-19 [57]. They have identified 
the rs182366225 and rs2097723 variants associated with 
ACE2 upregulation to be more prevalent (30% to 180% 
more frequently) in the East Asian population, whereas 
rs1027571965 and rs889263894 variants were exclu-
sively found in indigenous populations from Amazon. 
In contrast, the later population had higher frequencies 
of “rs2285666 and rs35803318” than other populations. 
Furthermore, Africans were identified to have higher 
rates of three relevant polymorphisms (rs147311723, 
rs142017934, and rs4646140), in which “rs142017934” 
was exclusive to this population and associated with 
gene upregulation. However, Europeans and some Afri-
cans have a higher frequency of an (rs5934250) allele that 
seems to downregulate ACE2 in some tissues [57]. The 
ACE insertion/deletion (I/D) variant, which influences 
enzyme levels with subsequent change in the “ACE/Ang 
II/AT1R axis” function, also showed many correlations 
with SARS-CoV-2 infection and appeared to impact the 
outcome of COVID-19 disease [4]. It has been observed 
that the (II) genotype (that is associated with the least 
ACE plasma levels compared to the ID/DD variants) 
is the most prevalent genotype among asymptomatic 

COVID-19 cases. However, the (DD) genotype is pre-
dominate in COVID-19 patients, particularly in the Euro-
pean elderly population who present with severe disease 
phenotype and could increase the risk of COVID-19-re-
lated mortality [63, 64]. More detailed associations of 
ACE I/D variant with COVID-19 severity and comorbidi-
ties have been covered in the interesting review by Gin-
toni et al. [4].

ACE2 gene expression and COVID‑19 outcome
Higher ACE2  expression was reported in men’s lungs 
more than women, while serum activities appear higher 
in females than males, supporting the hypothesis related 
to the observed gender-related differences in disease 
severity/outcome [65–67]. The putative role of estrogen 
in upregulating the ACE2 expression/plasma activity was 
suggested as a possible cause for relative female protec-
tion against COVID-19 infection compared to males 
[68]. Also, given the site of ACE2 locus on the X chromo-
some, these could explain in part the severe phenotype 
of COVID-19 in males compared to females [69]. More-
over, several differences in the ACE2 expressions have 
been observed between different countries, which cor-
relate with genetic variations[70, 71]. ACE2 expression 
in Asian individuals was reported to be more significant, 
in healthy human lung samples, than in Caucasians and 
African Americans [12, 72].

Similarly, an ACE2 quantitative expression analysis 
study on East Asians, Europeans, Africans, South Asians, 
and mixed Americans reported higher expression levels 
of ACE2 in East Asians [15] that could partly explain the 
variations in disease outcome among different popula-
tions. Osman et al. reported a decrease in the expression 
of circulating ACE2 mRNA and cell surface ACE2 during 
COVID-19, and prolonged viral shedders of COVID-19 
were associated with low sACE2 plasma concentrations 
[41]. As a result, they concluded that ACE2 no longer 
metabolizes Ang II with increased plasma concentrations 
associated with worse outcomes. Furthermore, the solu-
ble forms of ACE2 have recently been shown to inhibit 
SARS-CoV-2 infection [43]. In the context of enhanced 
ACE2 deficiency produced by the viral invasion, the sig-
nificant “ACE2/AT1-7/Mas axis” dysregulation could 
contribute to augmenting the inflammatory/thrombotic 
processes progression [73]. Even the ACE2 expression/
activity has been found to change rapidly in response to 
certain food items [74] and many food components are 
reported to be useful for the treatment of COVID-19, 
and these may act through altering ACE2 expression and/
or its activity as detailed in the recent Sahu et al. review 
article [67].

Wooster et  al. have suggested in their preprint article 
that five ACE2-related variants “rs4240157, rs6632680, 
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rs4830965, rs1476524, and rs2048683” might be associ-
ated with higher ACE2 tissue-specific expression, result-
ing in hospitalization, whereas the “rs1548474” variant 
showed association with low tissue expression and lesser 
severity [75]. Also, the rs2106809 variant has been sug-
gested to be associated with variable circulating ACE2 
levels, whereas CC/CT genotype resulted in greater lev-
els when compared with the TT genotype. Therefore, 
“quantification of soluble ACE2 (sACE2) in body fluids 
was suggested as a protective biomarker for a rapid test 
screening,” as concluded by Chaudhary [40]. Additionally, 
a combined effect of genetic variants in genes respon-
sible for the synthesis of proinflammatory cytokines/
chemokines along with  ACE2  has been suggested to 
be responsible for differences in patients’ response to 
COVID-19 in terms of hypercytokinemia/cytokine 
storm that characterized by excessive proinflammatory 
cytokine production associated with multiple organ fail-
ure [76].

ACE2 role in emerging COVID‑19‑related treatment
In seeking a suitable treatment for COVID-19, recently, 
the RBD of SARS-CoV-2 spike glycoprotein (S-protein) 
was modeled in 242 structural models with variations 
of human ACE2 binding [77]. Several ACE2 variants 
have been speculated in the African and American pop-
ulations, including “p.Met383Thr, p.Pro389His, and 
p.Asp427Tyr,” which may influence the clinical efficacy 
of hydroxychloroquine or chloroquine [56]. This could 
explain why therapeutic use of hydroxychloroquine was 
not significantly associated with differences in “in-hospi-
tal mortality” [78].

Also, one of the proposed strategies for COVID-19 
treatment was the soluble ACE2 and ACE2-Fc fusion 
protein that work as decoy receptors to SARS-CoV2 [79]. 
Using “Clinical-Grade sACE2,” in vitro study showed that 
the human recombinant soluble ACE2 (hrsACE2) could 
significantly block early stages of SARS-CoV-2 infec-
tions  [80]. Also, it has been suggested that designing a 
recombinant non-functioning form of sACE2, which 
carries one or more of the specified variants that show a 
gain of function activity and permit binding to the viral 
RBD more avidly, could have a potential virus neutrali-
zation and COVID-19 treatment [79]. Similarly, by using 
functional models and molecular dynamics simulations, 
Zhang et al. could point to the broad efficacy of an engi-
neered sACE2 decoy (has three amino acid substitutions) 
against SARS-CoV-2 variants in mice by markedly aug-
menting the affinity for the S-protein of several SARS-
CoV-2 variants, supporting its therapeutic potential 
[81]. Recently, Vitiello and Ferrara demonstrated the sig-
nificant pharmacological synergism of the triple therapy 
baricitinib (immunomodulator)/remdesivir (antiviral)/

rhACE2 (a soluble recombinant human form of ACE2) 
for the effective treatment of COVID-19. The “rhACE2” 
could activate the Ang 1–7 and Ang 1–9 biosynthesis 
pathway of the RAS system by decreasing Ang II levels; 
this could be associated with a decline in cytokine proin-
flammatory concentration [82]. Thus, the rhACE2 could 
prove “useful as a trap effect for circulating SARS-CoV2 
and decrease viral load and hinder infection,” as the 
investigators concluded [82].

Interestingly, El-Shennawy et al. reported “an increase 
about 135-fold higher potency in blocking the binding of 
the viral spike protein RBD, and a 60- to 80-fold higher 
efficacy in preventing infections by SARS-CoV-2” for 
their newly identified circulating extracellular vesicles 
that express ACE2 (evACE2) compared to vesicle-free 
rhACE2 [83]. They proved that evACE2 could protect 
the hACE2 transgenic mice from SARS-CoV-2-induced 
lung injury and mortality and proposed its application 
as a treatment modality to existing and/or future coro-
naviruses that use ACE2 receptors. Another therapeu-
tic modality based on the potential use of the intranasal 
“ACE2-overexpressing A549 cell-derived microparticles 
(AO-MPs)” that are taken up by alveolar macrophages, in 
which these particles increase the endosomal pH with a 
decrease in the lysosomal pH in these cells, thus direct-
ing the bound SARS-CoV-2 from phago-endosomes to 
lysosomes for subsequent degradation. In this way, these 
particles could also inhibit the proinflammatory pheno-
type of the alveolar macrophages, increasing the treat-
ment efficacy against the virus in the mice model with 
few (if any) side effects [84].

Another emerging proposal for COVID-19 treatment 
has been assumed by Bakry et al., in which they suggested 
the use of the mesenchymal stem cells that are coated 
with anti-ACE2 antibodies to help in the achievement of 
better cell attachment to SARS-CoV2- infected cells and 
competing with the virus for the same receptor [85]. They 
proposed that the attached antibodies be targeted to the 
metallopeptidase domain (19–611 a.a.) of ACE2 that 
interacts with the S-protein. Additionally, Wang et  al. 
developed an “inhaled microfluidic microsphere” with a 
genetically engineered membrane from ACE2 receptor-
overexpressing cells/macrophages. As this system com-
petes with the virus for ACE2 binding, it can significantly 
reduce the viral infectivity along with the respiratory sys-
tem in vitro and in vivo, as well as can efficiently alleviate 
the proinflammatory cytokine storm [86]. Although all 
the studies mentioned above open a new era in COVID-
19 treatment and management, Hou et al. recommended 
that “further pharmacogenomic studies that integrate 
drug response and genetic data from patients with 
COVID-19 are urgently needed” [56] to help future tar-
geted and personalized therapy applications in clinics.
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Conclusions
It is worth noting that apart from the differences in 
ACE2 genetic variations and gene expression, many 
other genetic and/or environmental factors, including, 
for example, the genes related to the innate and adaptive 
immunity, the viral load, the preventive precautions that 
are taken at the level of the individuals and the countries, 
among others, could influence COVID-19 virulence and 
modify disease outcome. Most of the studies mentioned 
above have limitations, including the non-reproducibility 
of genetic variant studies among different ethnic groups 
[40]. So much is yet to be known.
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