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Abstract 

In December 2019, a novel respiratory tract infection, from severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), was detected in China that rapidly spread around the world. This virus possesses spike (S) glycoproteins on the 
surface of mature virions, like other members of coronaviridae. The S glycoprotein is a crucial viral protein for bind-
ing, fusion, and entry into the target cells. Binding the receptor-binding domain (RBD) of S protein to angiotensin-
converting enzyme 2 (ACE 2), a cell-surface receptor, mediates virus entry into cells; thus, understanding the basics of 
ACE2 and S protein, their interactions, and ACE2 targeting could be a potent priority for inhibition of virus infection. 
This review presents current knowledge of the SARS-CoV-2 basics and entry mechanism, structure and organ distribu-
tion of ACE2, and also its function in SARS-CoV-2 entry and pathogenesis. Furthermore, it highlights ACE2 targeting by 
recombinant ACE2 (rACE2), ACE2 activators, ACE inhibitor, and angiotensin II (Ang II) receptor blocker to control the 
SARS-CoV-2 infection.
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Background
In December 2019, a newly emerged coronavirus disease 
2019 (COVID-19) appeared for the first time in Wuhan, 
China [1]. Since then, this devastating global health and 
economic challenge rapidly spread throughout the world 
and the world health organization (WHO) officially 
declared it as a global pandemic [2].Genome sequencing 
analysis of respiratory specimens identified that severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is the cause active pathogen for COVID-19 [3]. Accord-
ing to the WHO statistics, with more than 500,000,000 
confirmed cases of COVID-19 and over 6 million deaths 
by May 2022, SARS-CoV-2 is still the most challenging 

health issue, globally. Similar to other countries, so far, 
Iran has been involved in the pandemic by > 7,200,000 
and 141,000, COVID-19 cases and deaths, respectively.

Coronaviruses (CoVs) belong to the Coronaviri-
dae family with a single-stranded, positive-sense RNA 
(ssRNA) genome inside a large enveloped structure [4, 5]. 
This huge virus family is divided into four genera named 
Alpha, Beta, Gamma, and Delta [6, 7]. The coronavirus 
genus Beta includes highly pathogenic viruses such as 
severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome coronavirus 
(MERS-CoV), and the novel SARS-CoV-2 and low patho-
genic viruses including HCoV-OC43 and HCoV-HKU. 
Highly pathogenic viruses are commonly zoonotic in ori-
gin and cause lower respiratory tract infection while low 
pathogenic viruses are only endemic in humans and often 
lead to common colds [8, 9].
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Furthermore, genome sequencing of SARS-CoV-2 
revealed that this virus has a 29.9 kb genome size which 
shares around 80% and 96% identity with SARS-CoV 
and bat coronavirus at nucleic acid level, respectively, 
suggesting that SARS-CoV-2 has originated from bat 
SARS-like coronavirus [10, 11]. Although highly patho-
genic betacoronaviruses share similarities with each 
other [12], the novel SARS-CoV-2 infection has a pow-
erful human-to-human transmission capacity [10], which 
is highly infectious [13, 14], and also effectively evades 
from immune responses [15] compared to SARS-CoV 
or MERS-CoV. The clinical manifestations of COVID-
19 ranges from mild and common symptoms includ-
ing fever, dry cough, dyspnea, rhinitis, myalgia and/or 
fatigue and typically progresses to severe outcomes such 
as pneumonia, RNAaemia (SARS-CoV-2 RNA in serum), 
heart injury, acute respiratory distress syndrome (ARDS) 
(10–20% of patients), and death (0.1–15.4% of patients) 
[16–18].

The SARS-CoV-2 infection starts by binding of viral 
receptors to angiotensin-converting enzyme 2 (ACE2) 
in the surface of alveolar epithelial cells [19–21]. Mean-
while, it has been shown that binding affinity of SARS-
CoV-2 to ACE2 is about 10–20 times higher than the 
interaction of SARS-CoV to this receptor [22]. In addi-
tion, this cellular receptor plays a very important role in 
the pathogenesis of new SARS-CoV-2 infection [23, 24].

Due to recombination of SARS-CoV-2 RNA sequences 
and involvement of host enzymes in viral RNA editing, 
the SARS-CoV-2 spike protein has undergone many 
mutations that led to emergence of different variants 
including alpha, beta, gamma, delta, omicron, etc., with 
increased reproduction number (R) and transmission 
potential [25–27].

From 95% of mRNA vaccines efficacy like Pfizer-BioN-
Tech to approximately 60% or less effective vaccines 
such as Soberana 02 vaccine, all approved vaccines have 
demonstrated to be effective in reducing the number of 
mortality and morbidity. Since worldwide administration 
of different SARS-CoV-2 vaccine platforms, including 
mRNA, viral vector, inactivated virus, and live attenuated 
virus vaccines, the elevated neutralizing antibodies in 
vaccinated individuals raised hope for reducing the risk 
of infection; however, the appearance of delta and omi-
cron variants has challenged vaccines efficacy [26, 28].

Also, there are no available specific medications with 
Food and Drug Administration (FDA) approvals against 
COVID-19, except some SARS-CoV-2-targeting mono-
clonal antibodies which is just authorized under an emer-
gency use authorization (EUA) and are not approved 
by FDA. So, finding new protective vaccines and antivi-
ral agents for curing this infection is one of the urgent 
mankind’s needs. In this review we addressed the role 

of ACE2 in SARS-CoV-2 infection and pathogenesis. In 
addition, the efficiency of ACE2 analogs for the treat-
ment of COVID-19 is explained in the present context.

SARS‑CoV‑2 and cellular receptors
Coronavirus is named for the crown-like spike pro-
teins (S) outside of the viral envelope (Fig. 1A) [29, 30]. 
Genome analysis studies of CoVs indicated that struc-
tural proteins are encoded by the spike (S), envelope, 
membrane, and nucleocapsid genes (Fig.  1B) [31]. The 
S protein [1273 amino acids], presented on the surface 
of mature CoVs in homotrimer form, is the main viral 
mediator in virus entry into host cells [32]. This viral pro-
tein consists of two functional subunits: (i) the S1 subu-
nit, containing a receptor-binding domain (RBD) which 
mediates virus binding to host cells, and (ii) the S2 subu-
nit that fuses membranes of virus and host cell [33, 34].

It has been shown that the SARS-CoV-2 S protein 
shares around 80% identity in amino acid level with the 
SARS-CoVs protein and these two viruses also show 
nearly similar 3D structure [35]. However, some reports 
confirmed that little but functionally important differ-
ences at residues 331–524 of SARS-CoV-2-RBD, enable 
this virus to bind to cellular receptors with higher affin-
ity than SARS-CoV [8, 36–38]. The transmembrane pro-
tease serine 2 (TMPRSS2) cleaves S protein at the S2´ 
site, located between S1 and S2. This cleavage leads to 
extensive structural changes in S2 protein and actives it 
to fuse with the membrane and completes SARS-CoV-2 
internalization through endocytosis process (Fig. 1C). All 
these data indicate that viral S protein and human ACE2 
play important roles in establishing SARS-CoV-2 infec-
tion and are required for virus entry [10, 39–41]. Fur-
thermore, an in vivo study confirmed that the knockout 
of the ACE2 gene could inhibit SARS-CoV-2 infection 
in murine epithelial cells [40]. Thus, blocking of virus 
attachment to ACE2 receptors can be considered as a 
therapeutic option.

ACE2 structure and function
In 2000, scientists discovered a new homolog of ACE and 
named it ACE2. This homolog is encoded by ACE2 gene, 
placed in chromosome Xp22, and contains 18 exons [42]. 
ACE2 as a cell-surface receptor, like ACE, is a transmem-
brane protein that consists of two domains: (i) N-termi-
nal contains a catalytic site, and (ii) C-terminal possesses 
a transmembrane anchor (Fig. 2A). Structurally, ACE has 
2 active catalytic sites while ACE2 possesses only a single 
active site in the N-terminal domain, and also there is no 
similarity between the C-terminal domain of ACE2 with 
ACE [43, 44]. In ACE2, the protease domain (PD) in the 
N-terminal portion performs all peptidase activities and 
the C-terminal domain, as a strong anchor, connects the 
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C-terminal domain to the cell membrane and regulates 
the amino acid transporters trafficking [45].

Functionally, ACE2 and ACE are carboxypeptidases 
that play axial roles in renin–angiotensin–aldosterone 
system (RAAS) to regulate hemostasis in the human body 
(Fig. 2B) [46]. ACE2 has only one single catalytic site that 
acts as a simple carboxypeptidase while its ACE isoform 
contains two active domains that cleave amino acids, 
located in the carboxyl end of peptides [47]. However, 
these structural and functional differences are important 
in their enzymatic activities. In RAAS, angiotensinogen, 
a precursor peptide secreted from the liver, is cleaved by 
renin and converted to angiotensin I (Ang I) decapeptide, 
then ACE cleaves 2 amino acids from Ang I to produce 
an angiotensin II (Ang II) octapeptide, while ACE2 con-
verts Ang I to angiotensin (1–9) [Ang (1–9)] by cleav-
ing one amino acid of that. ACE catabolizes Ang (1–9) 
into Ang (1–7). ACE2 can also cleave Ang II to form Ang 
(1–7). Ang (1–7) binds to Mas receptors and performs its 
activity (Fig. 2B) [48, 49].

ACE2, as a negative regulator of the RAS, has vasodi-
latory, anti-inflammatory, and anti-fibrotic impacts and 
counter-balances the ACE/AngII/angiotensin recep-
tor 1 (AT1 R) pathway [50, 51]. Apart from ACE2 sys-
temic actions, this enzyme has regulatory effects in the 
heart, kidney, lung, and gastrointestinal tracts. In this 

way, ACE2 controls the metabolism of bradykinin in the 
lungs, orchestrates the amino acid absorption in the kid-
ney and also modulates the insulin secretion from pan-
creatic cells. This enzyme regulates the homeostasis of 
amino acids, the expression of peptides, and local innate 
immune responses in the gut [52]. Furthermore, studying 
the newly emerged SARS-CoV-2 infection has identified 
the ACE2 as a crucial receptor for virus entry [53].

Organ distribution of ACE2
ACE2 proteins are active and extensively expressed in a 
wide range of organs and tissues of the human body. In 
the respiratory tract, ACE2 widely presents in the epithe-
lium of basal and oral mucosa, nasopharynx, and alveo-
lar epithelial cells of lungs and bronchial and also exerts 
protective effects on lung [54]. ACE2 prevents bradykinin 
from binding to its receptor, prohibits releasing pro-
inflammatory cytokines, lung injury, and inflammation 
[55]. Also, it has been shown that acute lung injury and 
inflammatory lesions in the respiratory tract markedly 
increased in the ACE2 knockout mice and these implica-
tions disappeared after injection of recombinant ACE2 
[56]. Furthermore, different organs of the gastrointestinal 
tract including, the stomach, colon, duodenum, jejunum, 
and ileum are strongly capable to express ACE2. Besides, 
the ACE2 localization in the endothelial cells and smooth 

Fig. 1  Schematic representation of SARS-COV-2 structure and life cycle. A structure of SARS-CoV-2; the crown-like spike proteins (S) are placed 
on the outside of the viral envelope. B SARS-CoV-2 genomic structure; SARS-CoV-2 genome consists of the 5′-untranslated region (5′-UTR), 
nonstructural proteins region, structural and accessory proteins region, and the 3′-untranslated region (3′-UTR). C life cycle of SARS-CoV-2 in host 
cells; virus starts its life cycle by binding of S1 protein to the cellular receptor ACE2 and then proteolytic cleavage in the S protein facilitates the 
fusion of viral and cellular membranes by S2 protein. After the release of the viral genome into the cytoplasm, viral RNA replicates, and then viral 
proteins translate from the RNA and then viral proteins and genome are assembled into virions in the endoplasmic reticulum and Golgi. Eventually, 
Virions are transported by vesicles to near the cell membrane and released out of the infected cell by budding from the cytoplasmic membrane
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muscle cells of cardiovascular tissue, the kidney, skin, 
male testis, and female breast are highly positive for this 
aminopeptidase [57–59]. In contrast, ACE2 is not detect-
able in lymphoid tissues and hepatobiliary structures 
including the spleen, thymus, lymph nodes, bone mar-
row, and even immune system cells [60].

ACE2 and SARS‑CoV‑2 pathogenesis
Respiratory tract cells are the first target for starting 
SARS-CoV-2 infection because of high expression level 
of ACE2 [61]. Following infection, virions infect epithelial 
cells, complete their life cycle, and produce progenies by 
destroying the infected cells which results in limited lung 
injury. Then, the local and innate immune cells includ-
ing dendritic cells and macrophages which serve as sen-
tinel cells present the SARS-CoV-2-infected destroyed 
cells to adaptive cells [62]. Asymptomatic or mild stages 
of infection are seen in around 80% of infected individu-
als [63, 64]. Unfortunately, in 20% of patients, the disease 
progresses and causes severe respiratory complications 
including ground-glass opacities, RNAaemia, and ARDS 
[18, 64, 65]. Severe respiratory symptoms are usually seen 
in patients who are elderly and have coexisted chronic 

diseases with weak immune responses and poor respira-
tory tract function [17, 52]. The cytokine storm resulted 
from the increased level of pro-inflammatory cytokines 
such as interleukins (IL-1, IL-6), interferon, and tumor 
necrosis factor (TNF-α), as immune response to virus 
infection, causes severe symptoms in the lung [66–68].

Although SARS-CoV-2 is known as a respiratory tract 
infectious agent, ACE2 distribution in the above-men-
tioned organs introduces it as a multi-organ pathogen 
with systemic and respiratory manifestations (Fig. 3) [61]. 
It has been shown that the presence of ACE2 on the sur-
face of gut cells makes them susceptible to SARS-CoV-2 
infection and causes symptoms including loss of appe-
tite, anorexia, diarrhea, vomiting, and abdominal pain 
[69, 70]. In the cardiovascular system, ACE2 as a part of 
the RAAS system has a protective role, but SARS-CoV-2, 
when binds to this cellular receptor, may facilitate target-
ing of myocardial cells for the viral infection [62]. The 
reported SARS-CoV-2-associated cardiovascular out-
comes include myocardial injury, heart failure, myocardi-
tis, hypertension, diabetes, and arrhythmias [16, 71–73]. 
The mild-to-moderate proteinuria is the most common 
kidney complication in COVID-19 patients while acute 

Fig. 2  ACE2 structure and its function in the renin–angiotensin–aldosterone system (RAAS). A ACE2 structure; N-terminal domain includes single 
peptide, protein cleavage site, and active site and C-terminal domain contain transmembrane alpha-helix. B Schematic overview of ACE2 functions 
in the renin–angiotensin–aldosterone system (RASS)
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kidney injury (AKI) is detectable in the severe form of 
SARS-CoV-2 infection [74]. Also, SARS-CoV-2 can cause 
variable skin lesions in > 20% of patients [75, 76]. How-
ever, it is not well known that these skin abnormalities 
may be primarily caused by viral invasion or secondary 
by induced immune responses and treatments [62]. Also, 
neurological [77], ocular [78, 79], hematological manifes-
tations [80, 81], and endocrine abnormalities [82] were 
seen in the COVID-19 patients. Although these suggest 
that ACE2 may play critical roles in SARS-CoV-2 infec-
tion, new and more data are essentially needed for a pre-
cise understanding of SARS-CoV-2 pulmonary and extra 
pulmonary outcomes.

ACE2 and respiratory infections
The COVID-19 symptoms range from an asymptomatic 
state to mild upper respiratory tract infection and severe 
pneumonia, ARDS, or even multi organ failure. ARDS is 
a syndrome characterized by the acute onset of hypox-
emia ([PaO2/FiO2] B200 mmHg), with bilateral infiltrates 
on chest imaging, but without sign of left atrial hyperten-
sion [83]. The common risk factors associated with ARDS 
include pneumonia (virus, bacteria, fungus), aspiration 
of gastric contents, inhalational injury and sepsis, and 
major trauma that is classified into direct and indirect 
lung injury categories [83]. The treatment is mainly based 
on lung-protective ventilatory strategy and mortality has 
been markedly reduced with supportive treatment. How-
ever, there is no suggested pharmacological treatment 
[84]. An observational study in Wuhan, China, showed 
that 67–85% of COVID-19 patients were admitted to 
the intensive care unit (ICU), indicated severe ARDS, 
and the mortality rate in patients with ARDS was up to 
61.5% [85]. Additionally, the clinical outcomes in patients 

with COVID-19 correlated with the severity of ARDS, 
and the mortality of patients with moderate and severe 
ARDS was higher than mild ARDS. Furthermore, there 
is increasing evidence that chronic obstructive pulmo-
nary disease (COPD) may be a risk factor for more severe 
COVID-19 disease. Seven studies showed that COPD 
patients were also at higher risk of severe COVID-19 
compared to patients without COPD (33.4%) [86].

ACE2 plays a significant role in the progression of 
ARDS. The roles of ACE and ACE2 have been inves-
tigated in an animal model of ARDS. They have shown 
that ACE activity was enhanced in ARDS, whereas ACE2 
activity was reduced. This was correlated with enhanced 
levels of Ang II and reduced levels of Ang-(1–7). Hence, 
treatment with cAng-(1–7) decreased the severity of lung 
damage and improved lung function [87]. However, in 
mice models, ACE2 has been shown to protect animals 
from severe lung damage, caused by aspiration and sep-
sis [56]. Based on studies, ACE2 expression in the human 
airway epithelium was remarkably elevated in COPD 
patients. Interestingly, smoking status was meaningfully 
associated with ACE2 gene expression levels in the air-
way epithelium of COPD patients; for example, current 
smokers significantly had a higher gene expression than 
former and never smokers [88].

While the overexpression of the ACE2 may have a pro-
tective effect against acute lung injury, the upregulation 
of ACE2 might predispose patients to an increased risk 
for infection with the coronavirus, which uses this recep-
tor for entry into target cells. This may partially explain 
the severity of COVID-19 disease in COPD populations 
[20]. It is worth noting that the upregulation of ACE2 
alone does not support increased susceptibility or sever-
ity of the disease. Moreover, relatively low ACE2 expres-
sion levels in the bronchial epithelium are associated 
with more severe lung injury [88, 89].

ACE2 regulation
Evidence suggests that the expression of the ACE2 is 
regulated by various pathways. Enhanced ACE2 expres-
sion can be protective in patients with diabetes, cancer, 
and cardiovascular disease [90]. Notably, ACE2 protein 
expression is significantly upregulated under stress con-
ditions, including hypoxic conditions, treatment with 
IL-1β, and treatment with 5-amino-4-imidazole car-
boxamideriboside (AICAR). The analysis demonstrated 
that AICAR and IL-1β treatment upregulates and down-
regulates ACE2 expression, respectively [90]. The finding 
showed that cardiac ACE2 is increased following treat-
ment by AT1 receptor blockers (ARBs), nevertheless, 
Endothelin-1 (ET-1) significantly reduce myocytes ACE2 
mRNA levels to downregulate ACE2 activity [91].

Fig. 3  The systemic and respiratory manifestations of SARS-COV-2 
infection
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ANG II considerably reduces ACE2 activity and down-
regulates mRNA levels of ACE2 in cardiac myocytes [92]. 
Another study showed that inhibition of Ang II synthesis 
altered ACE2 expression in mRNA levels [93]. Evidence 
suggests that there is a link between Ang II levels and 
the expression of ACE2 [94]. For example, under hypoxia 
conditions ACE2 transcription is reduced, on the other 
hand, hypoxia-induced HIF-1α upregulates ACE expres-
sion which in turn leads to higher concentrations of Ang 
II. Therefore, Ang II mediates the reduction in ACE2 
mRNA and its activity [95]. Furthermore, the in  vivo 
experiments have shown that Ang-(1–7) has antagonis-
tic effects on ACE2 expression. In rat models, cardiac 
and renal ACE2 were decreased in response to Ang-(1–7) 
infusion [96]. Also, it has been shown that the admin-
istration of aldosterone or endothelin-1 significantly 
reduced myocyte ACE2 mRNA levels [91]. The effects 
of all trans-retinoic acid on gene and protein expression 
of ACE2 have been investigated in rats, and a significant 
upregulation of ACE2 expression in mRNA and protein 
levels was observed in the heart and kidney [97]. Plasma 
levels of circulating ACE2 have been reported to be very 
low or even undetectable in healthy individuals; however, 
ACE2 levels were significantly increased in the presence 
of cardiovascular disease. In two distinct cohorts of heart 
failure patients with COVID-19, men had higher plasma 
concentrations of ACE2 than women, hence ACE inhibi-
tors and angiotensin receptor blockers were associated 
with lower plasma concentrations of ACE2, but miner-
alocorticoid receptor antagonists were associated with 
higher concentrations [98].

The sex difference is an important risk factor among 
COVID-19 patients, compared to women, men, infected 
with the SARS-CoV-2, experience more severe disease 
and higher mortality rates [99]. This difference could 
be derived from increased ACE2 expression in male 
that plasma levels of ACE2 were higher in males than 
in females and also this difference could be related to a 
genetic polymorphism in ACE2 [100]. Previous stud-
ies reported that the expression of ACE2 depends on 
age and sex. As observed in rat lungs, ACE2-expression 
in females and younger animals is higher than in males 
and adults. Therefore, it is predictable that higher levels 
of ACE2 are present in the lungs of children and young 
people than in adults and old people. Therefore, it can be 
concluded that there is a direct relationship between the 
overexpression of ACE2 in children, young people, and 
women with the lower pathology and morbidity rate of 
COVID 19. The severity of COVID 19 symptoms can be 
related to ACE2 genetic polymorphisms that are reported 
in different populations worldwide [101, 102].

Other studies have shown that aldosterone and estro-
gens can regulate the expression of ACE2 in cell lines and 

animal models. In a mouse model of SARS-CoV infec-
tion, female mice had lower viral titers and less severe 
disease and cytokine production; the endogenous estra-
diol was an important factor in this protection [103]. 
17β-estradiol-treated cells expressed lower levels of 
ACE2 mRNA compared to controls. They showed that 
sex hormones play critical roles in the regulation of cellu-
lar components required for SARS-CoV-2 infectivity and 
the ability to cause life-threatening disorders [104].

ACE2 targeting for treatment
Recombinant ACE2 (rACE2)
It has been suggested that inhibiting the interaction of 
SARS-CoV-2 with ACE2 might be used as a therapeu-
tic method in the treatment of patients with COVID-
19 [105]. The use of human recombinant soluble ACE2 
(hrsACE2) to neutralize the virus and prevent lung dam-
age is now under clinical investigation [106].

Studies have demonstrated that the early stages of 
SARS-CoV-2 infection can be inhibited by hrsACE2. 
These data demonstrated that hrsACE2 inhibits SARS-
CoV-2 attachment to the host cells. Soluble ACE2 binds 
to spike protein and reduces binding to ACE2 on the 
cell membrane and prevents SARS-COV-2 replication 
(Fig. 4). This inhibitory action of hrsACE2 is dependent 
on the amount of virus, present in the initial inoculums, 
and the dose of hrsACE2 [105].

ACE2 activators
Decrease in pulmonary ACE2 activity is associated with 
pneumonia; in contrast, its activation can inhibit hyper-
oxia-induced lung injury by inhibiting the inflammatory 
response and oxidative stress [107]. Since upregulation 
of ACE2 has a protective role against severe lung injury, 
including ARDS and COPD, the development of an 
ACE2 activator could be a potential therapeutic strategy 
against COVID-19.

Xanthenone (XNT) or diminazeneaceturate (DIZE) 
and resorcinolnaphthalein have the ability to activate 
ACE2 [102]. XNT or DIZE is an anti-parasitic drug for 
treating trypanosomiasis. In macrophages, DIZE down-
regulates the MAPK/ERK and STAT phosphorylation 
(signaling molecules), resulting in the downregulation 
of IL-6, IL-12, and tumor necrosis factor-α (TNF-α) 
which ultimately reduces inflammatory responses. Treat-
ment with DIZE reduces the expression of CD25 (T cell 
marker) in spleens of Trypanosoma infected mice, sug-
gesting that DIZE dampens immune system activation 
[108]. According to experiments, glucocorticoids such as 
hydrocortisone, prednisolone, methylprednisolone, and 
dexamethasone showed the strongest effect on activating 
ACE2 and inhibiting IL-6 [109].
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ACE inhibitor and Ang II receptor blocker
High blood pressure in patients with COVID -2019 is 
one of the symptoms that is associated with worse clini-
cal outcomes. ACE inhibitor (ACEI) and angiotensin II 
receptor blocker (ARB) are widely prescribed for treating 
high blood pressure [110]. Since commonly used anti-
hypertensive medications may upregulate ACE2 recep-
tors, these concerns have been raised that their use may 
result in increased morbidity and mortality rate. Lei Fang 
et al. suggested that patients with cardiac diseases, hyper-
tension, and/or diabetes, who were treated with ACE2 
activating drugs, would be at risk for severe COVID-19 
infection, because treatment with ACEIs and ARBs may 
upregulate ACE2 expression [53]. On the contrary, sev-
eral clinical studies have reported that ACEi/ARB used in 
COVID-19 patients with hypertension does not worsen 
COVID-19 disease severity or mortality. Data from clini-
cal studies suggest that ACEI/ARB administration does 
not increase ACE2 expression and the risk of COVID-
19 complications [111, 112]. Other compounds that may 
increase the expression of the ACE2 receptor include 
Vitamin C, metformin, resveratrol, vitamin B3, and vita-
min D [113].

Conclusion
We summarized the role of ACE2 in the pathogenesis, 
progression, and treatment of COVID-19 infection. 
ACE2 controls the metabolism of bradykinin, regulates 
amino acid transportation, and also modulates insulin 

secretion. This enzyme is the receptor for the SARS-
CoV-2 and has a local protective effect on tissue injury 
and is implicated in the progression and prognosis of 
COVID-19. Sex difference is an important risk fac-
tor, compared to women; men have more severe dis-
ease and higher mortality rates. This difference may be 
derived from increased ACE2 plasma levels expression 
in men than in women, while higher tissue expression 
of this receptor seems to be beneficial for preventing 
exacerbated inflammatory response during infection. 
As well as, based on findings, the severity of COVID 
19 symptoms can be related to ACE2 genetic polymor-
phisms in different populations.

Although the global vaccination program seems 
to be effective in controlling hospitalization rate and 
deaths, caused by SARS-CoV-2, it is unable to prevent 
the development of new variants like delta or omicron, 
which have shown more infectivity or transmissibil-
ity. As new variants have relatively reduced vaccine’s 
potency in increasing neutralizing antibodies, the 
requisite of ACE2 inhibitory drugs, discussed in this 
review, becomes more of interest and can be much 
more effective in curing patients than those which do 
not target ACE2. Prescribing drugs that may affect 
ACE2, such as ACEI, ARB, or ACE2 activators and tar-
geting ACE2 by using hrsACE2 can be a potential ther-
apeutic strategy for COVID-19; however, more clinical 
studies are needed to confirm the effectiveness of these 
methods.

Fig. 4  hrsACE2 inhibits SARS COV-2 replication. A SARS-CoV-2 by spike protein directly binds to the ACE2 receptor and then inter to the host cell by 
endocytosis. B The covering of SARS-CoV-2 spike protein by hrsACE2 lead to the prevention of the interaction between SARS-CoV-2 and ACE2 and 
subsequently prevents SARS COV-2 replication in the host cell
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