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Abstract 

Background: MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They 
can affect longevity positively and negatively through different aging pathways.

Main text: MiRNAs are a group of short non‑coding RNAs that regulate gene expressions at post‑transcriptional lev‑
els. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA‑protein com‑
plexes can affect the regulation of normal post‑transcriptional gene process, which may lead to aging, age‑related 
diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age‑related 
diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. There‑
fore, the expression and function of miRNAs should be studied more accurately with new applicable and validated 
experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence 
and some age‑related diseases.

Conclusion: Despite several research indicating the key roles of miRNAs in aging and longevity, further investiga‑
tions are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, 
death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify 
new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the 
aging process.
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MicroRNAs (miRNAs)
MicroRNAs (miRNAs) are a large class of small non-
coding RNAs functioning as the important regulators 
of a wide range of cellular processes [1] that have been 
identified firstly in C. elegans in 1993 [2–4]. They act as 
mediators that can regulate post-transcriptional gene 
expressions [5–7]; therefore, they are able to control 
cellular behavior, balance in biological processes, devel-
opment, and diseases [7, 8] by modulating gene expres-
sion [1]. The post-transcriptional gene effect of miRNAs 
happens by base-pair binding on their related mRNAs 
targeting untranslated regions (UTRs) of genes and mul-
tiple sites within a single UTR [9]. Each miRNA can tar-
get multiple mRNAs, and one mRNA can be regulated by 

multiple miRNAs [10, 11]. MiRNAs have been found in 
plants, animals, bacteria and some viruses [12] by their 
gene expression profiling. In animal models, miRNAs 
contribute into genetic networks and metabolic path-
ways. It seems that miRNAs play critical roles in the 
occurrence of pathological conditions like neurodegener-
ation and cancer following the alterations in the expres-
sion of specific miRNAs in the brain and/or homeostasis 
in the body [6, 9].

Besides, some miRNAs are related to the regulation of 
senescence in a variety of human cells [8]. As it is shown 
in Table 1, cancer, cognition, and senescence can be asso-
ciated with miRNAs [2, 6, 13–17]. Until now, more than 
950 miRNAs in humans have been found [18]. It has been 
indicated that some of miRNAs are tissue- or cell-specific 
and some of them are house-keeping molecules. How-
ever, a relatively small number of miRNAs have probably 
key functions in order to regulate the human genome and 
affect post-transcriptional physiological process. It seems 
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that they can influence differentiation and tumor sup-
pression in cells, which may relate to some pathological 

processes such as carcinogenesis or senescence [10]. 
Thus, miRNAs have been suggested to be used as bio-
markers to evaluate many diseases and aging [9], even 
though it is difficult to estimate miRNAs quantification 
due to their small size, low copy number, interference 
from other small RNAs, and contamination by degrada-
tion products of mRNAs or other RNA species [2].

Despite the presence of miRNAs in tissue cells, they 
can also be found in the body fluids and extracellular 
environments such as plasma, serum, urine, saliva, semi-
nal fluid, ascites, pleural effusions, and cerebrospinal fluid 
[4, 19]. They are injected to the circulation in different 
ways. It can happen through a passive leakage following 
apoptosis, necrosis, inflammation, or an active secretion 
by exosomes/microvesicles, lipoproteins, and RNA–pro-
tein complex. Circulating miRNAs following packing 
into exosomes have been found specific to a tissue or a 
disease, which can indicate degree of tumor progression 
and stage of cancer. Several studies have also shown that 
the abnormality of specific circulating miRNAs can be 
associated with the manifestation, development, inva-
sion, and metastasis of cancer [19]. However, miRNAs-
related studies will increase our understanding regarding 
age-related gene regulation and improve miRNA-based 
biomarker development for an advance in RNA-based 
diagnosis and therapies [9]. Thus, the aging process and 
age-related problems and conditions can be better moni-
tored. In addition, further studies will help to better iden-
tify specific miRNAs and their changes related to caloric 
restriction, aging and age-related diseases pathways.

Biogenesis of miRNA in animals
MiRNAs are a group of small non-coding RNA [8, 14, 20, 
21] with approximately 21–24 nucleotide (nt) in length 
[3] that are widespread and probably regulate > 50% of 
the human genome [22]. They are produced from precur-
sor molecules (pri-miRNAs), which are made through 
transcription by RNA polymerase II from independent 
genes or derived from introns after splicing. Pri-miRNAs 
are subsequently converted to pre-miRNAs by Drosha 
enzyme and exported to the cytoplasm. Dicer enzyme 
cleaves them to the mature approximately 20-bp miRNA 
5p/3p pairs. One strand of this duplex will incorporate 
into the miRNA-inducing silencing complex (miRISC) [3, 
23–25]. The process is summarized in Fig. 1.

The transcription of DNA coding for miRNAs and the 
related protein-coding genes occurs in a similar way. The 
mature miRNA directly interacts with a member of the 
Argonaute protein family, which results in the formation 
of the RNA-induced silencing complex (RISC). As a com-
ponent of RISC, miRNAs direct the post-transcriptional 
repression. Thus, miRNAs show regulatory functions 

Table 1 Showing the correlation of miRNAs with cancer, 
cognitive function and senescence

√ presence of correlation
?? there are not studies obviously indicating the correlation

MiRNAs Cancer Neurodegeneration 
and cognition

Senescence

1 miR‑1 √ √ √

2 Let‑7 √ √ √

3 Let‑7b?? √ √ √

4 MiR‑9 √ √ √

5 miR‑17 √ √ √

6 MiR‑21 √ √ √

7 MiR‑26b √ √ √

8 MiR‑29a √ √ √

9 MiR‑29b √ √ √

10 miR‑30a √ √ √

11 MiR‑31 √ √ √

12 MiR‑34 √ √ √

13 miR‑34a √ √ √

14 miR‑71 ?? ?? √

15 miR‑100 √ √ √

16 MiR‑107 √ √ √

17 MiR‑124 √ √ √

18 MiR‑125b √ √ √

19 MiR‑132 √ √ ??

20 MiR‑137 √ √ √

21 MiR‑146 √ √ √

22 MiR‑146a √ √ √

23 MiR‑155 √ √ √

24 miR‑199a √ √ √

25 Mir‑206 √ √ √

26 MiR‑210 √ √ √

27 miR‑211‐5p √ √ √

28 MiR‑212 √ √ √

29 MiR‑217 √ ?? √

30 MiR‑221 √ √ √

31 MiR‑222 √ √ √

32 miR‑320 √ √ √

33 MiR‑340‐3p √ ?? √

34 MiR‑371‑3 √ ?? ??

35 MiR‑374a‐5p √ √ √

36 MiR‑376c‐3p √ √ √

37 miR‑483 √ ?? √

38 MiR‑484 √ √ √

39 MiR‑567 √ √ ??

41 MiR‑1225‐3p √ ?? √

42 MiR‑5095 √ ?? √
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regarding gene expression and can play a central role in 
several cellular processes including cell growth, differen-
tiation, proliferation, and apoptosis [18].

MiRNAs are potent negative regulators of gene expres-
sions [8]. They regulate their target genes through either 
translational repression or mRNA degradation. Such 
functions happen via binding to the complementary 
regions of messenger transcripts [14] and targeting spe-
cific messenger RNAs (mRNAs) [21]. Each miRNA can 
target up to hundreds of mRNAs [8, 18, 26] and they are 
able to regulate the expression of more than 60% of pro-
tein-coding genes of the human genome [27]. The effect 
of miRNAs on the regulation of many human genes [28–
30] indicates their critical roles in a variety of biological 
processes [8, 21].

MiRNAs are important epigenetic regulators [14] and 
many of them are also self-regulated epigenetically [8]. 
For instance, epigenetically transcriptional repression by 
miRNAs can be through DNA methylation and histone 
modifications in which to affect subsequently mostly 
CpG islands located in the promoter regions of genes 
and result in silencing of genes [31]. Moreover, miRNAs 
can also down-regulate mRNAs [26] by declining target 
mRNAs or the levels of translation into proteins [32]. The 
silence of target mRNAs is based on base-pairing recog-
nition sites [8] and the interaction of miRNAs with the 

3’ UTR of target mRNAs. Thus, mRNA degradation and/
or translational repression result in gene silencing [4, 29, 
33, 34].

However, miRNAs are known as major elements that 
can contribute into complex functional pathways, con-
trol cellular processes [35], and the regulation of biologi-
cal functions [36] such as differentiation, proliferation, 
apoptosis, replicative senescence [21], development, and 
stress responses [35] in plants and animals (Table 2).

MiRNAs are in both intracellular and extracellular 
regions of the body [61]. Extracellular miRNAs can be 
used as biomarkers in which to evaluate a variety of dis-
eases such as liver fibrosis and hepatocellular carcinoma. 
Besides, miRNAs play important roles in intercellular 
communication. Such miRNAs can be delivered to target 
cells, where they have hormone-like activities and may 
act as autocrine, paracrine, and/or endocrine regulators. 
It can modulate cellular activities [4] by changing the 
expression of proteins following the specific inhibition of 
mRNA targets in cell-free miRNAs, which may originate 
from one cell type and acquired by another cells or other 
cell types [11]. In addition, miRNAs, gene expression pat-
terns, physiology, and homeostasis in cells are related to 
the effects of different factors such as stress [135].

Fig. 1 Gene silencing procedure by miRNA
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Stress
Stress is caused by different stressors and is divided into 
acute, chronic and several forms. It can play an important 
role in daily life in which to threat an individual’s homeo-
stasis, well-being, health, and/or survival. Stress is with 
a systemic physiological response such as inflammatory 
and cellular reactions, metabolic processes, and epige-
netic regulation [18]. The occurrence of stress in cells 
may happen due to sudden or frequent changes in envi-
ronmental factors. Stress can damage existing macromol-
ecules in living cells such as proteins, mRNAs, DNA, and 
lipids, which in turn can increase the risk of death, meta-
bolic imbalances [136], and chronic diseases [20] such as 
cognitive decline and cancer with advancing age [2].

The severity and duration of stress can affect cellular 
homeostasis in which to return to stable state or modify 
to a new state. However, responses to stress in the body 
can occur through several mechanisms [136] includ-
ing induction of molecular chaperones [137, 138], rapid 
clearance of damaged macromolecules [139], activation 
of specific gene expressions, growth arrest [140], and cell 
death [20].

MiRNAs play critical roles in main cellular processes. 
Their identifying helps to understand the cellular stress 
responses and the occurrence of senescence associated 
with environmental changes [20]. Nowadays, there is a 
better understanding regarding the miRNAs involving in 
physiological reactions and reaction pathways as well as 
their regulatory roles. For instance, the alteration of miR-
NAs concentration such as miR-21 has been detected in 
some stress-related pathological conditions and diseases 
such as psychiatric diseases [18]. MiRNAs have shown 
regulatory role in the control of specific mRNA transla-
tion. It leads to a gene-specific control over protein trans-
lation, which reversibly and rapidly can regulate cellular 
landscape and also enables survival during periods of 
extreme stress with efficient utilization of ATP turno-
ver [12]. Responses of cells to stresses are in the form of 
restoring or reprogramming of gene expression patterns 
mediated by miRNA functions, the amounts of miRNAs, 
the amount of mRNA targets, and the activity of miRNA-
protein complexes. The levels of cells reactions can deter-
mine specificity, time, and concentration of genes related 
to products expressed at each stress situation [20].

Several studies indicate that miRNAs can have a major 
regulatory influence over a number of cellular processes 
in which to play essential roles in prolonged environmen-
tal stress survival [12]. For instance, several miRNAs are 
involved in the regulation of psychological stress effects 
on the genesis and maintenance of many diseases [18]. 
In addition, stress regulates both transcription and the 
biogenesis of miRNAs, which results in the accumulation 
of pre-miRNAs, the reduction of mature miRNAs, or 

facilitating the processing of some miRNAs. Such regula-
tory effect happens by mediating of some important fac-
tors such as SMADs, p53 and breast cancer 1 (BRCA1) 
protein [24]. Besides, psychological stress results in 
oxidative stress by induction of the sympathetic-adre-
nal-medullary (SAM) and later the hypothalamic–pitui-
tary–adrenal (HPA) axis, which in turn can cause protein 
damages and induce specific cellular stress response 
pathways [18].

Such connections between several miRNAs and path-
ways in the body can probably explain the effect of stress 
on aging and age-related changes. For example, there is 
an association between the expression of some miR-
NAs (miR-217, miR-100, miR-34a, miR-199a, and miR-
132) and different factors of sirtuin 1 (SIRT1) protein, 
chemokine production, and hypoxia-inducible factor-1 
alpha (HIF-1α). It seems that such relation can affect 
hemostasis, normal growth, and maintenance of cells in 
the body [2]. The effect of miRNAs happens through rec-
ognizing partly complementary sequences in their own 
mRNA targets and inhibition of their expression by trans-
lational repression or degradation of the target mRNAs. 
As follows, it results in controlling protein synthesis in 
cells, which in turn plays an important role in regulating 
cell proliferation, development, and aging [135].

Aging
Aging is due to the accumulation of genetically and envi-
ronmentally damages [8, 141, 142] accompanied with the 
unregulated repair systems of DNA [8]. The accumula-
tions of cellular and molecular damages can cause aging 
and the functional decline of organs, which results in the 
increased risk of susceptibility to diseases and mortality 
[21, 143].

The nine hallmarks indicating aging are genomic insta-
bility, telomere reduction, epigenetic alterations, loss of 
proteostasis, deregulated nutrient sensing, mitochondrial 
dysfunction, cellular senescence, stem cell exhaustion, 
and altered intercellular communication. Besides, further 
studies show the presence of other hallmarks such as dys-
regulation of the extracellular matrix in aging, for exam-
ple aging lung [144].

The senescent cell phenotype is under the combination 
effects of cell changes in morphology, behavior, structure, 
and functions. These changes occur due to alterations 
probably happening in gene expressions [145], protein 
secretions [146], and inducibility of apoptosis, which may 
increase in senescent fibroblasts [147] and decrease in 
endothelial cells [148].

The harmful altered senescent cells functions may 
accelerate senescence and/or loss of cells within tissues, 
resulting in the age-associated decline of body function 
and the increased rate of age-associated diseases [8]. 
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It has been indicated that tissue micro-environment 
changes happening due to the age-related accumulation 
of senescent cells can promote age-related phenotypes, 
cancer [149–151], and neurological disorders [8]. How-
ever, changes in patterns of gene expression in cells 
following the effects of non-coding RNAs, particularly 
miRNAs can lead to different functions in senescent 
cells [8].

As it has been noted, miRNAs play key roles in the 
regulation of development, apoptosis and metabolism 
in the body; therefore, they regulate aging and pro-
cesses responsible for life span determination in ver-
tebrates [152]. Studies on aging in animal models have 
supported the major roles of miRNAs in modulating 
life span and the aging process [2]. Age‐related diseases 
can also be associated with changes in the expression 
of circulating miRNAs in the body fluids including 
serum and plasma. Such miRNAs are released during 
tissue injury or shed from the plasma membranes of 
various cell types. They are remarkably stable as well 
as resistant to heat, pH changes, long time storage, and 
repeated freeze and thaw cycles. Despite these findings, 
exact molecular pathways underlying aging are not yet 
well understood [8] and also little is known about the 
role of circulating miRNAs related to aging in humans 
[21].

Some of factors and pathways involved in the aging 
process are insulin/insulin-like growth factor (IGF)-1, 
phosphoinositide 3-kinase (PI3K), target of rapamy-
cin (TOR), mitogen-activated protein kinase (MAPK), 
AMP-dependent protein kinase (AMPK), protein kinase 
C signaling pathway (PKC), nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-ĸb), transform-
ing growth factor beta (TGF-β), WNT signaling pathway 
(wingless-related integration site), Notch signaling path-
way, receptor tyrosine kinase (c-Kit), and H2A histone 
family member X (H2AX). It seems that miRNAs affect 
the aging process by targeting these mentioned pathways 
including insulin/IGF-1 pathway [2, 153]. For example, 
miR-100, miR-30a, and miR-34a contribute into TOR 
pathway (miR-100, miR-30a) and aging signaling pathway 
(miR-34a) as the common pathways affecting life span 
and aging. It has also been found that changes in miR-
NAs expression with age are opposite to mRNAs expres-
sion [2]. However, miRNAs have roles in the regulating 
aging and age-related specific phenotypes of tissue and 
cell type with up-regulation, down-regulation and tar-
geting the genes involved in aging pathways during cel-
lular senescence. Various miRNAs expressions involved 
in aging process can be associated with specificity of tis-
sue and the tissue-specific functions of aging signaling 
pathways. Despite the up-regulation of some of miRNAs, 
such as miR-34 and miR-71 with aging, the vast majority 

of C. elegans miRNAs expression is down-regulated with 
aging. Such differences in their expression can be due to 
the globality or specificity of those miRNAs related to a 
tissue or differences found among plants, animals and 
viruses. Thus, it is important to find various factors that 
can actively affect up- or down-regulation of miRNAs 
with aging [153].

Recent studies have shown miRNAs effects on aging 
and age-related diseases. For instance, miRNAs can regu-
late all related aspects of cutaneous biogenesis, function-
ality, and aging. It has been found that some miRNAs, 
such as let-7, miR-17, and miR-34, were down-regulated 
in long-lived individuals. Such conserved miRNAs in 
humans, known as longevity-related miRNAs, presum-
ably promote life span prolongation. Conversely, miRNA 
let-7, miR-17, and miR-34 are up-regulated in some age-
related diseases such as cancers [48] and cardiovascu-
lar diseases [154]. Therefore, further investigations are 
needed to elucidate the relation between miRNAs and 
healthy aging.

Longevity
The solution of longevity and how to have a healthy aging 
is one of the principal challenges in biology and medicine. 
The improvement of lifestyle and reduction of environ-
mental hazards can prevent diseases and increase health 
in general population. Besides, the genetic assessment of 
exceptional individuals can provide important biological 
insights regarding the basis of healthy aging and human 
longevity [155]. However, genetics in aging is investigated 
in which to evaluate life span, longevity, exceptional lon-
gevity, and healthy aging. Longevity is defined as a spe-
cific advanced age or older, which is often considered 
100 years or above. Besides, healthy aging states a com-
bination of old age and health. It indicates the absence 
of certain diseases, disabilities, and health problems 
such as cognitive impairment and mobility disorders 
in older people. It is probably because such people live 
much healthier [155]. Several studies indicated that life 
span can be associated with miRNAs expression changes 
[21]; therefore, the identification of miRNAs roles in the 
induction and maintenance of senescence [20] will clarify 
the mechanisms associated with age-related diseases [8]. 
Thus, miRNAs can be good biomarkers used in order to 
facilitate predicting individuals’ longevity [21] or treat 
premature aging and age-related diseases such as cogni-
tive function in the future [156].

Different investigations have shown that changes in 
the expression of some miRNAs such as let-7, miR-17, 
and miR-34 have been involved in life span prolonga-
tion among long-lived individuals as well as age-related 
diseases such as cancers [48] and cardiovascular diseases 
[154]. Further studies suggested the expression profiles 
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of miRNAs miR-211‐5p, miR-374a‐5p, miR-340‐3p, miR-
376c‐3p, miR-5095, miR-1225‐3p [129], miR-146a, miR-
21, and miR-483 can be used as useful biomarkers for 
predicting and evaluating aging and age-related diseases. 
It has been suggested that miRNAs with the decreased 
production of melatonin, the increased levels of inflam-
matory and ROS markers [51], and their association with 
mRNA and epigenetic factors can affect aging and age-
related diseases [154] like neurodegenerative and cogni-
tive disorders [157].

Cognition
Neurodegenerative diseases are progressive disorders of 
the nervous system [6]. There are many cognitive disor-
ders such as Alzheimer, Parkinson, Schizophrenia, Hun-
tington’s diseases, and Autism spectrum disorders [157]. 
Their pathogenesis is complex and involves the altera-
tions of multiple basic cellular pathways and non-coding 
RNAs [6]. Non-coding RNAs like miRNAs [6] play key 
roles in a wide range of physiological processes in the 
body [158, 159]. For example, miRNAs can regulate the 
neuronal activity, which contributes into neurogenesis, 
neurodegeneration, and cognition [6, 160, 161]. Several 
studies showed that the genetic deletion of dicer and the 
disruption of miRNAs expressions can affect develop-
ment, differentiation, morphogenesis, and signaling in 
neurons [158, 159].

Alzheimer disease is one of neurodegenerative diseases 
that is the most common cause of dementia. It is mostly 
related to the aging process [162]. Many cases of demen-
tia have been progressed from mild cognitive impair-
ment (MCI), which is a transitional phase between the 
cognitive changes of normal aging and senile dementia. It 
presents with memory or cognitive impairment without 
significant effect on daily living. The conversion rate of 
MCI to dementia is approximately 10–15% each year. As 
many people suffer from dementia; therefore, early and 
effective diagnosis and intervention of MCI can have a 
great effect to reduce or delay the progression of demen-
tia [163, 164].

MiRNAs are one of the main regulators of homeosta-
sis in neurons. Their dysregulation can result in patho-
logical conditions in the brain; therefore, their regulatory 
functions may have great impact on neurodegenerative 
diseases [128]. Thus, using miRNAs especially multiple 
miRNAs and serum-based miRNA assays suggested as a 
method with a high sensitivity and specificity can be used 
in which to diagnose cognitive impairment [163]. For 
instance, miR-206 and miR-567 (hsa-mir-567) have been 
introduced as good biomarkers that can be used to evalu-
ate MCI and the earliest stages of dementia due to their 
effects on the involved genes in the biological processes 
in neuronal cells and their crucial roles in the neuronal 

differentiation and brain development [128]. Many of 
miRNAs are specific for cells and tissues [165–168]. For 
example, axons, dendrites and synapses have their own 
miRNAs and various expressions of miRNAs in neurons 
in neurodegenerative diseases such as Alzheimer disease 
(AD) [14] are probably associated with dendritogenesis 
and axonal path [169].

AD damages are started in the hippocampus and spread 
progressively throughout the brain. Although patho-
logical hallmarks of AD are intracellular neurofibrillary 
tangles, the abnormal deposition of tau protein, and the 
accumulation of extracellular plaques of β-Amyloid (Aβ) 
peptides [6], miRNAs network (Fig. 2), and changes such 
as alterations in miRNAs targeting APP (miR-29a, miR-
29b) can also affect the process of this disease [54].

Deregulation of miRNAs can lead to the 
Aβ-accumulation, which occurs probably due to the 
activation of several pathogenic cascades. MiRNAs play 
important roles in homeostasis and pathogenesis of dis-
eases in the brain by targeting 3’-UTRs mRNA that are 
related to several important proteins such as amyloid-
beta precursor protein (APP), transforming growth 
factor-beta-induced protein (TGFBI), Tripartite Motif 
Containing protein 2 (TRIM2), SIRT1, and BTB domain 
containing protein 3 (BTBD3) [6, 170]. For instance, 
miRNAs let-7 and miR-320 can affect cognition through 
DAF-12 signaling and insulin/IGF signaling (IIS) path-
ways, respectively [2].

Further studies showed that several miRNAs such as 
miR-34, miR-9, miR-124 [171], miR-137 [157], miR-132, 
and miR-212 play important roles in cognition and mem-
ory function. Besides, miRNAs reactions to the higher 
expression of SIRT1 (miR-132 and miR-212) [76], NF-kB 
protein complex (mir-125b and mir-146a), cell cycle pro-
teins (mir-26b, mir-107, mir-125b, mir-107, and mir-34a) 
[53], mitochondrial fission, synaptic function, ATP gen-
eration, presynaptic calcium level (miR-484) [120], and 
the increased production of ROS (mir-210 and mir-146a) 
can lead to a possible explanation regarding the induc-
tion of aging and aging-related diseases. Such correla-
tions may result in releasing factors including IL6, altered 
genes function such as p53 and/or altered Wnt signaling, 
which in turn may affect cell cycle control, apoptosis, 
DNA, and cellular senescence [53]. It is now necessary to 
obtain consistent knowledge about the role of miRNAs 
in the brain for the maintenance of cognitive function or 
the appearance of cognitive deficits. A variety of miRNAs 
and their combinatorial effects may mediate their roles in 
pathological disorders in the brain. Several studies sug-
gest that miRNAs-based therapy can be an alternative in 
the future for diagnosis and treatment of diseases such as 
neurodegenerative diseases [157, 172] and cancers [19].
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Cancer
MiRNAs are key molecular components of cells and play 
important roles in both normal and pathologic states in 
the body [173]; hence, changes in their expression can 
lead to human diseases such as cancers [61, 174, 175]. 
They act as regulators for controlling a wide range of bio-
logical functions including apoptosis, tumor cell prolifer-
ation, differentiation, cell cycle progression, invasion, and 
metastasis [61, 175, 176].

Cancers are a group of age-related diseases. The ini-
tiation and progression of cancers can be related to 

miRNAs deregulation in a cause-effect manner [8] as it 
has been indicated in Table 3. Thus, miRNAs can be good 
biomarkers [8] for diagnosis, prognosis, and prediction 
of tumors. Several investigations have identified spe-
cific miRNAs related to solid tumors and hematological 
malignancies [176, 178] and their actions and effects vary 
among cancers [61]. For instance, let-7 miRNA and miR-
146 act in cancers through their corresponding pathways, 
namely RAS and KIT, respectively [82]. The effects of 
miRNAs on proliferation, invasion and cell survival in 
prostate and pancreatic cancers occur by targeting cyclin 

Fig. 2 Alzheimer’s disease (AD) formation, longevity and miRNA

Table 3 Examples of some miRNAs and indicating their roles in cancer

Reference [177]

Mechanism MiRNAs

1 Growth signals let‑7 family, miR‑21

2 Antigrowth signals miR‑17–92 cluster, miR‑195

3 Apoptosis relation miR‑34a, miR‑185, miR‑15, miR‑16, mir‑125b

4 Angiogenesis miR‑210, miR‑26, miR‑15b, miR‑155

5 Invasion and metastases miR‑10b, miR‑31, miR‑200 family, miR‑21, miR‑15b

6 EVADING IMMUNE DESTRUCTION miR‑124, miR‑155, miR‑17–92

7 TUMOR‑PROMOTING INFLAMMATION miR‑23b, miR‑155, let‑7d

8 GENOMIC INSTABILITY miR‑21, miR‑155, miR‑15b
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D1 (CCND1), Wnt family member 3A (WNT3A), and 
B-cell lymphoma 2 (BCL2). MiRNAs can regulate metab-
olism and energy production in oral cancers by targeting 
NAD-dependent deacetylase SIRT3 (miR-31). Tumor 
formation and metastasis in germ cell tumors and gas-
tric cancer can be promoted by miRNAs, which happens 
through targeting tumor suppressor gene TOB1 (trans-
ducer of ERBB2. 1) (miR-371-3) [61]. More than half of 
miRNAs-related genes in cancers are located in either 
cancer-associated genomic regions leading to amplifica-
tion, loss of heterozygosity, and breakpoints, or fragile 
sites [176, 178]. As shown in Fig. 3, miRNAs play impor-
tant roles in cancers as oncogenes or tumor suppres-
sors [35, 61]. The expressions of tissue-specific miRNAs 
may lead to malignant transformation changes as tumor 
formation and growth by repressing tumor suppressor 
genes or increasing oncogene expressions. Thus, miR-
NAs can be good biomarkers in order to evaluate can-
cers and their classifications [61]. Changes of miRNAs 
function as tumor suppressors may mediate suppression 
of normal cells functions, which may result in initiation 
of malignant transformation in cells. Alterations such as 
mutations, genomic deletions, epigenetic silencing, and 
miRNA processing alterations can change the function 
of miRNAs in the regulation of normal cell proliferations. 
The oncogenic role of miRNAs can also happen by trig-
gering mRNAs, which may encode tumor suppressor 
proteins. Moreover, miRNAs affect the progression of 
tumor by influencing the inflammation system, the com-
ponents of the innate immune system [175, 176], and the 
modulation of apoptosis [5].

MiRNAs abnormal expression and their effects on 
inflammation and cell proliferation [179, 180] in can-
cers [35, 181, 182] can be due to various factors such as 
defect in miRNA biogenesis machinery, activity changes 
in drosha, dicer [183], and transcription factors [184], as 

well as epigenetic changes such as DNA methylation, and 
histone modifications (histone methylation, and histone 
acetylation) [35]; therefore, the controlling mechanism 
of miRNAs expression is almost same to protein-coding 
genes [182]. As miRNAs play important roles in the reg-
ulation of many cancer-related genes, identification of 
specific ones of them may act as powerful tools to aid in 
diagnosis and treatment of tumors [82].

One of miRNAs is MiR-34a that can be used as an 
important diagnostic and therapeutic miRNA in many 
cancers due to its general expression. MiRNAs can also 
be used in order to evaluate chemotherapy resistance in 
cancers such as lung cancer and breast cancer. Despite 
this, miRNAs expression among different cancer types 
varies in a wide range, as it has been shown for miR-155, 
miR-221, and miR-222 expression [61].

It has been noted that miRNAs can be associated with 
the risk of recurrence and the chance of relapse‐free 
survival in cancers. For example, the overexpression of 
miR‐210 in breast cancer is with a higher risk of relaps-
ing and lower chance of survival [22]. On the other hand, 
some miRNAs such as miR-34 and miR-1 contribute into 
several biological processes of tumor cells, including dif-
ferentiation, proliferation, and apoptosis through their 
down-regulation [185]. Besides, miRNAs can affect drug 
resistance of tumor cells, which may happen by targeting 
drug resistance-related genes and/or influencing genes 
that are related to cell proliferation, cell cycle, and apop-
tosis [103]. Thus, further research are required in order 
to understand the exact roles of miRNAs in the develop-
ment [82], diagnosis, prognosis, treatment [5], and sur-
vival [13] of cancers.

Accordingly, gene therapy using miRNAs might be 
used in the future in which to block the progression of 
cancers [175] by inhibiting the overexpression of onco-
genic miRNAs or replacing those that are effective on 

Fig. 3 Correlation of miRNA with tumor formation
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tumor suppressive genes [176]. As present cancer-related 
biomarkers are not specific for tissues and have poor 
early diagnosis and prognostic value; therefore, they 
cannot be used as targeted therapy for cancers. Thus, 
miRNAs sound to be good non-invasive cellular and 
molecular biomarkers that can be replaced in order to 
early diagnosis, prognosis, and treatment of cancers [19]. 
However, further studies are needed for increasing the 
related knowledge in order to cope with challenges such 
as miRNAs stability, delivery drug systems, and the con-
trol of target effects [176] in which to use the miRNA-
based therapeutic approaches in cancers [19]. Despite 
several therapeutic miRNA delivery systems such as 
virus-based delivery, non-viral delivery (lipid-based, 
polymer-based, or chemical structures), and the emerged 
extracellular vesicle (EV)-based delivery, miRNA-based 
therapeutic approach is still one of the great challenges. 
However, it seems that further improvements in tech-
niques such as the targeted-therapeutic miRNA delivery 
in miRNAs-therapy for the treatment of different cancers 
will happen in the future [61].

Limitations
However, there are some limitations that can restrict 
miRNA investigations. Identification of specific miRNAs 
and their own targets in different diseases such as can-
cers and dementia is difficult and it limits the use of the 
miRNA-based therapeutic approaches. MiRNA and the 
related targeted mRNA must express at the same time in 
which to change gene expression, protein and biological 
function. It would be even more complex, when a single 
miRNA can target hundreds of mRNAs and vice versa. 
Therefore, it is crucial to identify and validate miRNA/
mRNA target pairs and verify their interactions. In addi-
tion, technical limitations and delivery problems should 
be considered as extra factors that can confine such 
related studies.

Conclusion
This review highlights some relationships among miR-
NAs, senescence, cancer, and cognitive decline. Different 
investigations have shown that the actions and biological 
roles of miRNAs vary in various biological conditions. As 
noted in the review, further studies are needed to under-
stand better the roles of miRNAs in the development and 
death of cells in aging and age-related diseases. Such new 
investigations can help to identify new targets for alter-
native strategies in order to treat or prevent diseases such 
as cancers and cognitive decline. The discovery of specific 
miRNAs will lead to find new biomarkers for screening 
and diagnosis of diseases as well as exploring of new ther-
apeutic applications in numerous diseases in the future.
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