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Abstract 

Background:  Sepsis reaction is a response to an infection composed of genetic elements. This research aims to bet-
ter understand how sepsis affects the molecular pathways in whole blood samples.

Methods:  Whole blood samples from healthy controls (n = 18), sepsis nonsurvivors (n = 9), and sepsis survivors 
(n = 26) were retrieved from the gene expression omnibus (GEO) collection of the national center for biotechnology 
information (NCBI) (accession number GSE54514). The NCBI’s GEO2R program was used to determine differential 
expression, and the ingenuity pathway analysis (IPA) software was utilized to do a pathway analysis.

Results:  In sepsis patients, 2672 genes were substantially differently expressed (p value 0.05). One thousand three 
hundred four genes were overexpressed, and one thousand three hundred sixty-eight were under-expressed. 
The inhibition of ARE-mediated mRNA degradation pathway and the Pl3K/AKT signaling spliceosomal cycle were 
the most significant canonical pathways identified by ingenuity pathway analysis (IPA). The IPA upstream analysis 
predicted the ESR1, SIRT1, and PTPRR proteins, and the drugs filgrastim and fluticasone were top transcriptional 
regulators.

Conclusions:  The inhibition of ARE-mediated mRNA degradation pathway and the Pl3K/AKT signaling spliceosomal 
cycle were highlighted as essential pathways of inflammation by IPA, indicating widespread cancer owing to sepsis. 
Our data imply that sepsis considerably influences gene pathways in whole blood samples, pointing to possible 
targets for sepsis treatment.
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Background
A dysregulated host response to infection causes sep-
sis, a life-threatening organ failure that affects over 19 
million individuals yearly, killing ~ 11 million persons 
[1–4]. General management measures such as support-
ive care, source control, and antibiotics are still used to 
treat sepsis. Despite numerous clinical trials, there is no 
sepsis-specific drug beneficial in clinical practice [5]. A 
complete list of gene names and their abbreviations are 
delivered in the Additional file 1.

According to two consensus publications, the lack of 
tools to reliably diagnose sepsis at the molecular level and 
significant human heterogeneity in the sepsis syndrome 
are the main reasons for the persistent failure of pro-
posed sepsis therapeutics [5, 6]. Clinical severity ratings 
are used to classify the risk of sepsis blood lactate levels, 
such as Acute Physiology, Age and Chronic Health Evalu-
ation (APACHE) or Sequential Organ Failure Assessment 
(SOFA). These ratings estimate the overall severity of the 
illness, and they are incapable of quantifying the patient’s 
response severity [7].

There are various advantages to having a molecular 
definition of the seriousness of the sepsis host response. 
The clinical outcomes can be improved by improving 
sepsis diagnosis accuracy by better matching resources 
with patients; more accurate diagnosis predictions 

Open Access

Egyptian Journal of Medical
Human Genetics

*Correspondence:  ahmad.alathamneh@uop.edu.jo

5 Department of Nutrition, Faculty of Pharmacy and Medical Sciences, Petra 
University, Amman, Jordan
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1387-1329
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43042-022-00352-3&domain=pdf


Page 2 of 8Elbakkoush et al. Egyptian Journal of Medical Human Genetics          (2022) 23:142 

would allow for more information about the efficiency 
of interventions and patient preferences. Clinical trials 
can be boosted by better molecular phenotyping of sep-
sis patients through enhancing medication, intervention, 
patient selection, and calculating observed-to-expected 
mortality ratios [5, 6, 8]. Since molecular biomarkers are 
a lineal quantitative indicator of the host response dys-
regulations, they may be used to help construct a quanti-
tative diagnosis of sepsis versus non-septic critical illness 
[9, 10]. Overall, a quantitative sepsis test might be valu-
able for doctors if used as a fast assay.

This research aimed to figure out which molecular 
pathways are changed in sepsis. IPA (Ingenuity Pathway 
Analysis) is a web-based software program that identi-
fies new targets within biological systems and is used to 
examine gene expression data from whole blood of sepsis 
patients versus healthy controls.

Methods
Data collection
In the present work, the investigated microarray data-
set was obtained from (NCBI) the National Center for 
Biotechnology Information’s (GEO) Gene expression 
Omnibus repository (accession number GSE54514). 
The dataset included gene expression data of whole 
blood samples collected for five days for healthy controls 
(n = 18), sepsis nonsurvivors (n = 9), and sepsis survivors 
(n = 26) [11]. Sepsis was described as the occurrence of at 
least two of four clinical criteria in addition to a proven 
bacterial infection. These clinical criteria are the change 
in white blood cell count, abnormally rapid breathing 
or if mechanical ventilation is required, abnormal rapid 
heart rate, and the presence of hypothermia or fever [11]. 
Whole blood samples collected from patients were pre-
served in PAXgene tubes, then RNA extraction was car-
ried out in batches. Illumina Sentrix was used to profile 
gene expression for the extracted RNA.

The discovery of genes that are differently expressed
The NCBI’s GEO2R software generated a list of 14,703 
genes that were expressed differently between sepsis and 
non-sepsis blood samples. Microsoft Excel was used to 
sort and process the 14,703 genes. After applying strin-
gent cutoff criteria, the list of differentially expressed 
genes was limited down to 2672 genes after applying 
stringent cutoff criteria (p value 0.05 and absolute fold 
change between − 0.1 and 0.1).

Pathway analysis using IPA
The differentially expressed gene list was entered into IPA 
software (QIAGEN, Hilden, Germany), which employed 
the program’s ’core analysis’ feature to analyze  the data 
regards upstream regulators and canonical pathways.

Results
DE genes (differently expressed genes) and upstream 
regulators by IPA
Figure 1 (A) Graphical summary and (B) Different shapes 
represent the molecular class of the protein. Inhibition 
and activation are shown by blue and orange, respec-
tively. A solid line denotes a direct relationship, a dashed 
line denotes an indirect interaction, and a dotted line 
denotes machine-based learning inferred association. 
Multiple gene IDs in the dataset are represented by a sin-
gle gene or molecule in the Global Molecular Network, 
indicated by an asterisk.

Figure  2 Upstream regulators: filgrastim and the 
estrogen receptor 1 (ESR1). (A) Chemical drug fil-
grastim is predicted to be activated in sepsis with p 
value = 1.36 × 10–7 and Z-score = 4.170. (ESR1 is pre-
dicted to be activated in sepsis with p value = 1.55 × 10–8 
and Z-score = 4.064). Different forms represent the 
molecular class of the protein. Red and green show up-
regulation and down-regulation, respectively. Inhibition 
and activation are indicated by blue and orange, respec-
tively, in predicted relationships. A solid line denotes 
a direct relationship, a dashed line denotes an indirect 
interaction, and a dotted line denotes machine-based 
learning inferred association.

Figure  3 Regulatory effect genes PTPRR and EPO are 
predicted during sepsis. Different forms represent the 
molecular class of the protein. Up-regulation and down-
regulation are shown in red and green, respectively. Inhi-
bition and activation are indicated by blue and orange, 
respectively. A solid line denotes a direct relationship, a 
dashed line denotes an indirect interaction, and a dotted 
line denotes machine-based learning inferred association.

Figure  4 Regulatory effect genes EIF4G2 and NFKB2 
are predicted during sepsis. Different forms represent the 
molecular class of the protein. Up-regulation and down-
regulation are shown in red and green, respectively. Inhi-
bition and activation are indicated by blue and orange, 
respectively. A solid line denotes a direct relationship, a 
dashed line denotes an indirect interaction, and a dotted 
line denotes machine-based learning inferred association.

Upstream regulators
Results showed that (ESR1, SIRT1, and PTPRR) proteins, 
filgrastim, and fluticasone drugs were among the top 20 
regulators predicted by IPA (Table 1). Figure 2 depicts the 
data in Table 1 and emphasizes the major upstream regu-
lators’ anticipated activation state as reported by IPA. 
The ESR1 protein and medication filgrastim are the most 
active upstream regulator in sepsis. As shown in Fig.  2, 
ESR1 is among the essential proteins in IPA’s graphical 
summary results.
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The most significant regulatory effects are networks 
EIF4G2 and NFKB2. They are important regulatory 
underlying factors in sepsis pathogenesis identified by 
IPA. Figures  3, 4, and Table  4 show that the most sig-
nificantly differentially expressed protein-coding genes 
during sepsis exposure were the CLEC1B, PPBP, HBE1, 
SNX10, and H3P6 genes.

Biological pathways that have been enriched by IPA
The inhibition of ARE-Mediated mRNA Degradation 
Pathway and the Pl3K/AKT Signaling Spliceosomal Cycle 
were essential canonical pathways (Table 2).

The relationship between sepsis and other illnesses
The differently expressed genes in sepsis are linked to 
cancer and organ harm, among other illnesses (Table 3).

Discussion
We applied the IPA tool to find important molecular 
pathways and regulatory networks in the context of 
septic disease. Consequently, we carried out upstream 
regulators analysis, revealing that estrogen receptor 1 
(ESR1) and filgrastim drug are the most significant DE 

regulators during sepsis. ESR1 gene was not revealed to 
be associated with sepsis before. Recent studies showed 
that the ESR1 gene was associated with other diseases 
such as osteoporosis [12], coronary artery disease [13], 
Parkinson’s disease [14], ovarian cancer [15], multiple 
myeloma [16], and finally, Alzheimer’s disease [17].

Consequently, we carried out upstream regulators 
analysis that revealed the estrogen receptor 1 (ESR1) 
and filgrastim drug. Filgrastim (NEUPOGEN®) is a 
humanized granulocyte colony-stimulating factor used 
to treat and prevent neutropenia [18]. Filgrastim is the 
best agent for patients with severe sepsis/septic shock 
[19]. A recent report showed that Filgrastim is useful 
in postoperative patients at risk of sepsis. It results in 
improved production and function of neutrophils. 
It also appeared to counter the regulatory process of 
hyperactivation of pro-inflammatory processes [20]. 
Such inflammatory processes might agree with our 
results that filgrastim modulating many inflammatory 
genes, such as IL-10, is a crucial anti-inflammatory 
cytokine that was overexpressed during sepsis and was 
targeted by filgrastim as his upstream regulator discov-
ered by IPA.

Fig. 1  A Graphical summary and B Different shapes represent the molecular class of the protein. Blue and orange indicate inhibition and activation. 
A solid line indicates a direct interaction, a dashed line indicates an indirect interaction, and a dotted line indicates inferred correlation from 
machine-based learning. An asterisk indicates that multiple identifiers in the dataset file map to a single gene or chemical in the Global Molecular 
Network
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Fig. 2  Upstream regulators (A) filgrastim and (B) ESR1. Chemical drug filgrastim is predicted to be activated in sepsis with p-value = 1.36 x 10–7 and 
Z-score 4.170. (BESR1 is predicted to be activated in sepsis with P-value = 1.55 x 10–8 and Z-score = 4.064. Different shapes represent the molecular 
class of the protein. Red and green indicate down-regulation and up-regulation, respectively, while blue and orange indicate inhibition and 
activation, respectively. A solid line indicates a direct interaction, a dashed line indicates an indirect interaction, and a dotted line indicates inferred 
correlation from machine-based learning. An asterisk indicates that multiple identifiers in the dataset file map to a single gene or chemical in the 
Global Molecular Network

Fig. 3  Regulatory effect genes PTPRR and EPO are predicted during sepsis. Different shapes represent the molecular class of the protein. Red and 
green indicate down-regulation and up-regulation, respectively, while blue and orange indicate inhibition and activation, respectively. A solid line 
indicates a direct interaction, a dashed line indicates an indirect interaction, and a dotted line indicates inferred correlation from machine-based 
learning. An asterisk indicates that multiple identifiers in the dataset file map to a single gene or chemical in the global molecular network
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Fig. 4  Regulatory effect genes EIF4G2 and NFKB2 are predicted during sepsis. Different shapes represent the molecular class of the protein. Red 
and green indicate down-regulation and up-regulation, respectively, while blue and orange indicate inhibition and activation, respectively. A solid 
line indicates a direct interaction, a dashed line indicates an indirect interaction, and a dotted line indicates inferred correlation from machine-based 
learning. An asterisk indicates that multiple identifiers in the dataset file map to a single gene or chemical in the global molecular network

Table 1  Ingenuity pathway analysis uncovered the top 20 upstream regulators

Upstream regulator Molecule type Log2 ratio p-value Z score

Filgrastim Biologic drug 1.36 × 10–7 4.170

ESR1 Ligand-dependent nuclear receptor 1.55 × 10–8 4.064

Fluticasone propionate Chemical drug 2.65 × 10–4 3.768

SIRT1 Transcription regulator 0.121 2.22 × 10–3 3.666

PTPRR Phosphatase 0.034 7.07 × 10–3 3.561

Dexamethasone Chemical drug 4.60 × 10–9 3.SOl

5-fluorouracil Chemical drug 3.13 × 10–9 3.481

IL1B Cytokine 0.237 1.77 × 10–2 3.211

Fulvestrant Chemical drug 3.47 × 10–4 3.141

Levodopa Chemical endogenous neurotransmitter 9.64 × 10–4 3.030

JUNB Transcription regulator − 0.066 5.20 × 10–3 3.023

Cdk Group 3.50 × 10–5 2.994

Phenylephrine Chemical drug 1.00 × 100 2.804

CXCL12 Cytokine 0.000 4.02 × 10–2 2.732

Cisplatin Chemical drug 2.14 × 10–5 2.686

NOS2 Enzyme 1.39 × 10–1 2.661

EFNA2 Kinase 0.013 4.82 × 10–1 2.646

TFE3 Transcription regulator − 0.059 1.12 × 10–1 2.621

Cerivastatin Chemical drug 2.63 × 10–1 2.620

TRAP1 Enzyme − 0.101 6.68 × 10–4 2.618
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IL-1RA increased in 10 patients in the previous study 
[20], was increased in our dataset, and targeted by fil-
grastim. Interestingly, some cytokines were associated 
with sepsis; IL-8, IL-6, and IL-10 are practical sepsis 
biomarkers. The same report showed that Filgrastim 
increased the expression of these markers, and authors 
observed deficiency in the IL-23-IL-17 dual genes associ-
ated with sepsis [21].

The most significant regulatory effects are networks 
EIF4G2 and NFKB2. They are important regulatory 
underlying factors in sepsis pathogenesis identified by 
IPA as shown in Fig. 4.

Firstly, Eukaryotic Translation Initiation Factor 4 
Gamma 2 (EIF4G2) was found to be associated with 
sepsis previously when sepsis changed the distribution 
of eukaryotic initiation factor 4E (eIF4E) [22]. Another 
report showed that Eukaryotic Translation Initiation 
Factor 4 Gamma 1 (EIF4G1) is a potential target for 
cancer treatment [23]. The same report showed that 

this gene, EIF4G1, was dominant in multiple cancers, 
for instance, cervical cancer, prostate cancer, Head and 
Neck Cancer, and ovarian cancer [23].

Secondly, Nuclear Factor Kappa B Subunit 2 
(NFKB2), Nuclear factor-kappa B (NF-κB), is a master 
regulator of the inflammatory response and represents 
a key regulatory node in the complex inflammatory 
signaling network [24].

We highlighted that this gene is an essential regulator 
of sepsis-induced genetic expressions. Recent reports 
showed that sepsis provoked cardiac malfunction by 
NF-κB Pathway in animal models [25]. Another report 
signifies the role of this gene in sepsis; toll-like recep-
tors activation provoked the nuclear factor-κB pathway, 
which led to the downregulation of specific sodium 
transporter expression during sepsis [26]. This vital 
gene is involved in acute inflammation [24], respiratory 
diseases [27], and joint diseases such as osteoarthritis 
[28].

We also discovered that the most significantly differen-
tially expressed protein-coding genes during sepsis expo-
sure were the CLEC1B, PPBP, HBE1, SNX10, and H3P6 
genes, as shown in Table 4. The CLEC1B gene, CLEC1B 
lower expression was a prognostic factor indicating the 
poor outcome for hepatic cancer [29]. Another report 
showed that this gene was among the hub genes associ-
ated with hepatocellular carcinoma [30]. Overexpression 
of CLEC1B gene inhibited hepatocellular carcinoma cells’ 
proliferation and migration [31]. PPBP gene translated to 
pro-platelet basic protein was associated with the diagno-
sis and prognosis of sepsis in an animal model; rats [32], 
and other diseases such as chronic, allergic aspergillosis 
[33] and tongue cancer [34]. PPBP gene is a biomarker in 
acute ischemic stroke in Type 2 Diabetes [35].

The current report has limitations. The sample size 
was small, and the patients were not equally distributed, 
which could confound the interpretation of the genetic 
variation. Additionally, several genes in sepsis were 
uncharacterized or unmapped to pathways, meaning 
their effects are not considered in the current analysis.

Conclusion
The current findings signify the importance of inflam-
mation as a significant component of sepsis-induced tis-
sue injury. Most significantly, EIF4G2 and NFKB2 are 
the regulatory effects networks underlying genetic and 
molecular pathway changes coupled with exposure to 
sepsis. Future lines of research should focus on validat-
ing the results of the current study in a larger population 
to ascertain potential therapeutic targets in the context of 
sepsis-induced damage.

Table 2  Ingenuity Pathway Analysis uncovered the top five 
canonical pathways

Pathway p value

Inhibition of ARE-mediated mRNA degradation pathway 2.54 × 10–10

Pl3K/AKT signaling spliceosomal cycle 6.65 × 10–9

TCA cycle 11 (Eukaryotic) B cell receptor signaling 1.40 × 10–8

Inhibition of ARE-mediated mRNA degradation pathway 2.69 × 10–8

Pl3K/AKT signaling spliceosomal cycle 5.99 × 10–8

Table 3  Ingenuity pathway analysis found the top five illnesses

Disease Number of 
molecules

p value

Cancer 2479 9.13 × 10–8–2.62 × 10–126

Organismal injury and abnor-
malities

2504 9.13 × 10–8–2.62 × 10–126

Endocrine system disorders 1997 1.04 × 10–65–4.2 1 × 10–67

Gastrointestinal disease 2191 4.81 × 10–8–1.61 × 10–65

Infectious diseases 557 1.07 × 10–8–4.05 × 10–45

Table 4  The most differentially expressed protein-coding genes 
(most overexpressed)

Pathway Expression 
-value

CLEC1B 0.814

PPBP 0.802

HBE1 0.799

SNX10 0.759

H3P6 0.750
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