
Al‑kuraishy et al. 
Egyptian Journal of Medical Human Genetics          (2022) 23:140  
https://doi.org/10.1186/s43042-022-00354-1

REVIEW

Dipyridamole and adenosinergic pathway 
in Covid‑19: a juice or holy grail
Hayder M. Al‑kuraishy1, Ali I. Al‑Gareeb1, Engy Elekhnawy2*    and Gaber El‑Saber Batiha3* 

Abstract 

Background:  Coronavirus disease 2019 (Covid-19) is an infectious worldwide pandemic triggered by severe acute 
respiratory coronavirus 2 (SARS-CoV-2). This pandemic disease can lead to pro-inflammatory activation with associ‑
ated acute lung injury and acute respiratory distress syndrome.

Main body of the abstract:  SARS-CoV-2 infection is linked with inhibition of adenosine and activation of phospho‑
diesterase. Dipyridamole (DIP) is a nucleoside transport and phosphodiesterase inhibitor so that it may potentially 
affect SARS-CoV-2 infection and its accompanying inflammations. Therefore, the primary objective of this mini-review 
study was to elucidate the potential beneficial impacts of DIP on the adenosinergic pathway in Covid-19. A systemic 
search was done using online databases with relevant keywords. The findings of the present study illustrated that DIP 
directly or indirectly, through augmentation of adenosine and inhibition of phosphodiesterase, mitigates Covid-19 
outcomes.

Conclusion:  Our study concluded that DIP has a potential therapeutic effect in the management and treatment 
of Covid-19. This could be attained either directly, through anti-SARS-CoV-2, anti-inflammatory, and anti-platelets 
properties, or indirectly, through augmentation of extracellular adenosine, which has anti-inflammatory and immune-
regulatory effects. However, extensive randomized clinical trials, and clinical and prospective research in this area are 
required to demonstrate the safety and therapeutic efficacy of DIP and adenosine modulators in the treatment of 
Covid-19.
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Background
Coronavirus disease 2019 (Covid-19) is a recent world-
wide infection that was recognized for the first time in 
late December 2019 in Wuhan, China [1], triggered by 
severe acute respiratory coronavirus 2 (SARS-CoV-2). 
This disease may lead to critical instabilities systemically, 
including pro-inflammatory activation, cytokine storm, 
and associated damage to various organs [2]. Covid-19 

affects various body systems, predominantly the respira-
tory system. The main presentation of the disease is acute 
lung injury (ALI) and acute respiratory distress syndrome 
(ARDS). Besides, acute kidney, pancreatic, and cardiac 
injury, neurological disorders, and endothelial dysfunc-
tion might occur as extra-pulmonary manifestations [3]. 
These multiple impacts of Covid-19 are attributed to the 
presence of angiotensin-converting enzyme 2 (ACE2), 
a receptor for SARS-CoV-2, on the cells of multiple 
organs, which facilitates its entry into various host cells 
[3, 4]. ACE2 receptor is principally articulated in the lung 
alveolar cells type II and proximal renal tubules. When 
SARS-CoV-2 binds to the ACE2, these defending recep-
tors will be down-regulated. Consequently, the level of 
vasoconstrictors angiotensin II (Ang II) would increase, 
and the vasodilator angiotensin (Ang 1–7) (Ang 1–9) 
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would decrease, accompanied by the production of the 
pro-inflammatory cytokines [5].

Dipyridamole (DIP) is a nucleoside transport and phos-
phodiesterase (PDE) inhibitor that is used as an anti-
platelet agent [6]. The primary mechanisms of DIP are 
inhibition of adenosine reuptake in the red blood cells 
(RBCs), platelets, and endothelial cells, as well as inhibi-
tion of PDE. DIP has diverse clinical effects. It reduces 
pulmonary hypertension, improves coronary blood flow, 
myocardial function and perfusion, mild peripheral vaso-
dilator effect, and endothelial functions by inhibiting the 
discharge of the pro-inflammatory cytokines and pre-
venting the sub-endothelial thrombogenicity.

As well, SARS-CoV-2 infection is usually interrelated 
with inhibition of adenosine (AD) as well as activation 
of PDE [7]. Since Covid-19 is linked with cardiovascular 
complications and coagulopathy, the main target of our 
mini-review study was to elucidate the potential impacts 
of DIP on the adenosinergic pathway in Covid-19.

Adenosinergic pathway and DIP in Covid‑19
It is known that AD is a primary nucleoside for building 
RNA and DNA, and it has different derivatives, including 
adenosine monophosphate (AMP), adenosine diphos-
phate (ADP), and adenosine triphosphate (ATP). These 
derivatives act as signal transductions for the modula-
tion of different physiological processes. AD acts on the 
specific receptors subtypes, including A1, A2A, A2B, and 
A3, broadly found in different tissues. It acts as a cytopro-
tective signal against tissue injury. AD has immunosup-
pressive and anti-inflammatory effects (A2A, A2B) and is 
upregulated during ischemia and tissue hypoxia [8].

Cellular AD concentration is controlled by specific 
regulators, which are adenosine kinase (ADK), adeno-
sine deaminase (ADA), and equilibrative nucleoside 
transporter-1 (ENT-1). ADA metabolizes AD to inosine 
when AD is present at a higher concentration owing 
to its low binding capacity. At the same time, ADK 
metabolizes AD, at baseline concentration, to 5-inosine 
monophosphate due to its higher affinity and capacity 
[9, 10]. In addition, ADA regulates the expression of 
ADA-binding protein (ADA-BP) on CD26 and dipep-
tidyl dipeptidase 4 (DPP-4). Interestingly, besides to 
ACE2 receptor, which has a low expression in the lung, 
ADA-BP of DPP-4/CD26 is considered as a potential 
receptor for binding and entrance of SARS-CoV-2. 
Thus, ADA competes with SARS-CoV-2 for binding to 
ADA-BP. Moreover, ADA activators like pegademase 
ADA or recombinant ADA have been effectively used 
in the management of the human immunodeficiency 
virus (HIV) [11]. It has been proposed that ADA regu-
lates and fine-tunes AD’s immunosuppressive and anti-
inflammatory effects. Besides, the early administration 

of recombinant ADA attenuates the binding of Middle 
East respiratory syndrome coronavirus (MERS-CoV) 
to its entry point, the DPP-4 receptor [12]. Since there 
is a 50% similarity in the genome sequence between 
SARS-CoV-2 and MERS-CoV, the recombinant ADA 
may minimize the severity of Covid-19 by inhibit-
ing the binding between SARS-CoV-2 and DPP-4 [13]. 
Therefore, DPP-4 inhibitors may diminish SARS-CoV-2 
pathogenesis and Covid-19 severity in diabetic people 
via modulation of SARS-CoV-2 entry and the accom-
panied inflammations [14]. Expressions of DPP-4 
receptors are higher in patients with diabetes mellitus, 
nicotine smoking, chronic obstructive pulmonary dis-
ease (COPD), and obesity. This issue might explain the 
susceptibility of Covid-19 patients to the development 
of ALI and ARDS [15].

DIP doesn’t affect ADA activity or expression of ADA-
BP; however, a higher intra-lymphocytic concentration is 
linked with immune suppression in patients with chronic 
kidney diseases. Also, high interferon-gamma (INF-γ) 
activates ADA activity in patients with HIV, thus, both 
INF-γ and ADA are regarded as prognostic and diag-
nostic factors for disease severity [16]. Tan et  al. [17] 
experimental study demonstrated that DIP reduces the 
discharge of the pro-inflammatory cytokines and activa-
tion of T cells via modulation of the AD pathway. Indeed, 
ADA activity is negatively correlated with DPP-4 activity 
[17]. Therefore, AD elevation by DIP may increase ADA 
activity, reducing DPP-4 expression and interaction with 
SARS-CoV-2. However, ADA might be a possible target 
for SARS-CoV-2, causing a significant reduction in the 
cellular concentration of AD and the development of ALI 
and ARDS. Alongside this suggestion, a preclinical study 
proposed that AD protects against ALI and ARDS in a 
mouse model [18].

Augmentation of AD through inhibition of ADA 
and ADK may enhance the clinical results in Covid-19 
patients. This can be attained via its immunosuppres-
sive and anti-inflammatory effects, especially in the late 
phase, to counteract the exaggerated immune response 
that usually occurs in this phase of the disease [19, 20]. 
However, the immunosuppressive effect mediated by 
AD may affect viral clearance and increase viral replica-
tion in the initial phase of infection as ADA controls the 
negative impact of AD on the immune cells and immune 
response [21].

It has been reported that ADA inhibitors like pento-
statin improves ARDS and its associated chronic inflam-
matory reactions [22]. Besides, ADK inhibitors like 
iodotubercidin attenuate ALI and ARDS via inhibition of 
neutrophil migration and improvement of the lung cap-
illary-alveolar barrier. Nevertheless, the preclinical stud-
ies didn’t recommend using ADK inhibitors due to the 
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dangerous adverse effects such as liver toxicity and cer-
ebral hemorrhage [23, 24].

Furthermore, AD, through the A2A receptor, acti-
vates the regulatory T cell (Treg), which regulates the 
immune response to hypoxia through the reduction of 
neutrophil infiltrations, cytokine production, and pro-
tein extravasations in the lung alveoli [25]. Similarly, 
AD, through activation of lung peroxisome proliferator-
activated receptor gamma (PPARγ), attenuates lung 
inflammations and interstitial fluid accumulation with 
the improvement of the alveolar gas exchange [25]. AD, 
through the A2B receptor, constrains the discharge of the 
pro-inflammatory cytokines and chemokines in the lung 
during hypoxia and mechanical ventilation injury [26]. 
Consequently, through its immune-modulating effect, 
AD might be an efficient agent in managing Covid-19-in-
duced ARDS. Falcone et  al. [27] reported a case with 
Covid-19 and ARDS treated using standard therapy and 
oxygen (21%) mixed with AD. They noticed that within 
one month, there was a dramatic improvement in clini-
cal and radiological outcomes of this patient. Likewise, 
a retrospective analysis reported by Correale et  al. [28] 
showed that standard therapy and oxygen (21%) mixed 
with AD could substantially enhance the consequences of 
14 Covid-19 patients suffering from ALI. Furthermore, a 
docking analysis study illustrated that AD has anti-SARS-
CoV-2 by interfering with the main viral protease and 
its inhibition [29, 30]. Therefore, AD has a critical role 
in managing Covid-19 by suppressing SARS-CoV-2 and 
associated lung inflammations.

Of note, Covid-19 complications are linked with coag-
ulopathy and thrombosis owing to endothelial dysfunc-
tion and platelet activation by SARS-CoV-2 as evident 
through the elevated D-dimer serum levels [31]. The 
reduction of AD during SARS-CoV-2 and cytokine storm 
is due to augmentation of the intracellular transport of 
AD through ENT-1. The reduction of AD contributes to 
platelet activation and thrombosis through the reduction 
of cAMP [32]. DIP inhibits ENT-1 and ENT-2, so the 
extracellular AD would be increased through attenuation 
of the intracellular transport. Elevation of the extracel-
lular AD is linked with platelet inhibition via activation 
of cAMP, thus, it will reduce the risk of intravascular 
thrombosis [33, 34]. Previously, it has been shown that 
DIP attenuates ALI in experimental rats through modu-
lation of the lung AD via blocking ENT-1 and ENT-2 
pathways [35].

Besides, DIP, through inhibition of PDE3, may pre-
vent coagulopathy and ALI in Covid-19 patients through 
modulation of platelet function and lung inflammation 
[34]. The interactions between DIP and AD in SARS-
CoV-2 infection might be beneficial, as shown in Fig. 1.

Therefore, DIP, through modulation of the AD/PDE 
axis, has a critical contribution to the management of 
Covid-19. DIP inhibits the pro-inflammatory cytokines 
and lung inflammation during Covid-19. Also, DIP, 
through escalation of AD, leads to potent anti-inflamma-
tory effects which participate in the reduction of cytokine 
storm and the associated ALI [36, 37]. Moreover, the 
important contribution of DIP to Covid-19 is correlated 
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Fig. 1  Adenosinergic pathway and the contribution of DIP in Covid-19. DIP inhibits SARS-CoV-2 replication, platelet activation, PDE, ENT-1, and 
macrophages activation with activation of AD. ADK and ADA metabolize AD. SARS-CoV-2 activates ADA-BP on DPP-4 and inhibits AD
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with its wide-spectrum potential antiviral effects [38]. 
Interestingly, docking studies revealed that DIP blocks 
SARS-CoV-2 main protease (Mpro), leading to attenu-
ation of Covid-19 pneumonia [39, 40]. Liu et  al. [41] 
showed that when DIP was administered in severely ill 
Covid-19 patients, it led to a significant clinical improve-
ment with the reduction of D-dimer. Similarly, DIP 
improves immune recovery and inhibits thrombosis and 
coagulation disorders in cases having Covid-19 [41].

Into the bargain, activation of nod-like receptor pyrin 
3 (NLRP3) inflammasome usually accompanies SARS-
CoV-2 infection. This causes the discharge of interleu-
kins (IL-1β and IL-18) and the development of ALI and 
ARDS. Thus, DIP, by blocking ENT-1 and ENT-2 path-
ways, may reduce NLRP3 inflammasome-mediated ALI 
and ARDS [42]. In addition, DIP down-regulates inflam-
matory signaling pathway such as NF-κB, matrix metal-
loproteinase (MMP1, MMP9), and cyclooxygenase-2 
(COX-2). This can be accomplished by suppressing the 
macrophage-1 gene (Mac-1) [43], which is enormously 
activated in Covid-19 infection. It has been proposed 
that COX-2 inhibitors have a remarkable outcome in the 
management of Covid-19 by reduction of lung inflamma-
tion and IL-6 [44]. Similarly, MMPs inhibitors like apro-
tinin reduce the pro-inflammatory cytokines-mediated 
ALI and ARDS [45, 46].

Renin-angiotensin system (RAS) is highly affected 
in Covid-19 owing to the down-regulation of ACE2 
and interconnected with the progress of ALI, ARDS, 
and injury in multiple organs [47]. It has been reported 
recently that DIP reduces RAS and circulating AngII 
serum levels through an AD-dependent pathway [46, 47] 
or PDE inhibition pathway [48, 49]. Furthermore, DIP 

also mitigates Covid-19-induced complications like acute 
kidney injury [50], acute coronary syndrome [51], acute 
brain injury [52], and cytokine storm-mediated multi-
organ injury [53, 54].

Therefore, this study highlighted that DIP has poten-
tial pleiotropic effects (Fig. 2) that mitigate SARS-CoV-2 
infection and the accompanying extra-pulmonary disor-
ders. Thereby, DIP might be a "Holy Grail" for Covid-19 
patients who are severely ill.

Conclusion
Hence, DIP has a possible therapeutic impact in the 
managing of Covid-19. This effect can be achieved 
either directly, through anti-SARS-CoV-2, anti-inflam-
matory, and anti-platelets consequences, or indirectly, 
through augmentation of the extracellular AD, which has 
immune-regulatory and anti-inflammatory outcomes. 
However, extensive randomized clinical trials and clini-
cal and prospective studies are necessary to declare the 
safety and clinical effectiveness of DIP and AD modula-
tors in the management of Covid-19.
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