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CASE REPORT

Intellectual developmental disorder 
with dysmorphic facies and ptosis caused 
by copy number variation including the BRPF1 
gene in Peruvian patient
Hugo H. Abarca‑Barriga1,2*   , Felix Chavesta Velásquez2 and Renzo Punil Luciano2 

Abstract 

Background:  Intellectual developmental disorder with dysmorphic facies and ptosis (MIM #617333) is a very rare 
condition, characterized by more than 80% by language delay, intellectual disability, gross motor development delay, 
broad nasal bridge, hypertelorism, and hypotonia. This condition exhibits as autosomal dominant inheritance and is 
caused by a heterozygous variant in the BRPF1 gene. Additionally, the copy number variation in the terminal region 
of chromosome 3p (MIM #613792) has been shown to manifest in most patients as intellectual disability, motor delay, 
and hypotonia.

Case presentation:  We present an 18-year-old male patient with facial dysmorphism, intellectual disability, ptosis, 
and congenital heart disease. Using chromosomal microarray analysis, a previously unreported 90 kb deletion involv‑
ing seven genes was found.

Conclusion:  When comparing our findings with 39 previous reports, we found that the common clinical features of 
this syndrome, such as gross motor delay, hypotonia, and congenital spinal cord abnormalities, were not observed 
in this patient. From the seven genes implicated in the deletion, only BRPF1 could be strongly correlated with the 
phenotype, according to its function and haploinsufficiency coefficients.
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Background
Intellectual disability (ID) manifests before the age 
18 years and is defined as a limitation in two areas: intel-
ligence or mental capability, and adaptive behavior in any 
of its three domains (conceptual, social, and practical) 
[1]. The global prevalence of ID is 1–3%, and the copy 
number variations (CNV) are the cause of ID in 36.1% of 
these cases [2]. To date, more than 2000 genes associated 
with ID have been reported (https://​www.​sysid.​dbmr.​

unibe.​ch). Of these, BRPF1 gene (Bromodomain and 
PHD finger -containing 1) has been previously associated 
with an intellectual developmental disorder with dysmor-
phic facies and ptosis, or IDDDFP (MIM #617333), which 
is characterized by neonatal feeding disorder, hypotonia, 
gross and fine motor development delay, language delay, 
intellectual disability, epilepsy, brain abnormalities, flat 
and round face, broad nasal bridge, hypertelorism, small 
palpebral fissures, ptosis, blepharophimosis, joint hyper-
mobility, and spinal anomalies [3]. To date, 39 patients 
with IDDDFP have been reported, most of them diag-
nosed in the USA and Europe with variants in the BRPF1 
gene detected by exome sequencing [3–10].
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The BRPF1 (3p26-p25) has 14 exons and transcribes 
four isoforms. This gene code for a protein is called 
peregrin, which contains 1214 amino acids [11] and 
is a scaffolding subunit of several histone acetyltrans-
ferases, such as MOZ (KAT6A)/MORF(KAT6B) and 
the HBO1(KAT7) complex, having an acetyltransferase 
activity in the H3 histone [3, 12, 13]. Previous research 
suggests that MOZ/MORF, or HBO1 together with per-
egrin, EAF6, and ING5, bind transcription factors like 
Runx and p53, and intervenes in the embryonic develop-
ment of hematopoietic and neuronal cells. Furthermore, 
variants in these molecules have also been related to leu-
kemia, malignant neoplasms, and ID [14].

Here, we present the first Peruvian and Latin-American 
patient with a suspected case of IDDDFP caused by a 
CNV present in chromosome 3. The deletion includes the 
BRPF1 gene, which adds evidence to the studies in animal 
models which show it is a haploinsufficient gene [15]. In 
addition, we highlight the importance of applying genome 
techniques, like CMA, to diagnose neurodevelopmental 
disorders in low- and middle-income countries.

Case presentation
Clinical report
The patient is an 18-year-old male with non-consanguin-
eous parents, without a family history of neurodevelop-
ment disorders, and with an uneventful prenatal history. 
His mother presented with preeclampsia during pregnancy, 
causing the delivery to be carried out by cesarean section 
at 38 weeks of gestation, with a birth weight of 2.7 kg and 
an apparently normal Apgar score. However, the patient’s 
height and head circumference were not recorded. Psycho-
motor development showed that he achieved head control 
at two months, sitting without support at six months, and 
walking at one year of age. Regarding his speech devel-
opment, he said his first words at one year of age, and he 
began to form sentences at five years old, with a social smile 
at two months. The patient has a history of atrial septal 
defect (ASD) and a diagnosis of acquired hypothyroidism 
at ten years of age (under treatment with levothyroxine at 
50  μg/day) with normal values of TSH and free-T4 at the 
last control. He underwent surgery for ASD twice (at 12 and 
14 years of age) and tympanic membrane perforation (at 15 
and 16  years of age). Additionally, he presented hypergly-
cemia and acanthosis nigricans, for which he is still medi-
cated with metformin. In childhood, he was diagnosed with 
hyperactivity, and he reached eleventh grade with low per-
formance. However, there is no family history of neurode-
velopmental disorders or congenital anomalies (Fig. 1A).

Physical examination showed that the patient pre-
sented normal anthropometry, narrow forehead, blepha-
rophimosis, palpebral ptosis, short and deep philtrum, 

thick vermilion of the lips, underdeveloped supraorbital 
ridges, brachydactyly, and limitation of the flexion of the 
fourth finger (Fig.  1B–D). Among the complementary 
evaluations, he had an IQ of 63.

Chromosomal microarray analysis (CMA)
For the molecular analysis and the publication of this article, 
informed consent of the parents was requested. According 
to the manufacturer, the chromosomal microarray analysis 
was performed using genomic DNA, which was amplified, 
labeled, and hybridized based on the GeneChip CytoScan 
750  K Array (Affymetrix, USA ®) instructions. The DNA 
genomic was extracted from a blood sample using the kit 
gSYNC™ DNA Extraction, following the manufacturer’s 
instructions. DNA concentration and purity were meas-
ured with spectrophotometer Nanodrop 2000 (Thermo 
Scientific, USA). Briefly, 250 ng of DNA was digested with 
restriction enzyme Nsp I and was then linked with adapt-
ers for the PCR amplification. The products of the PCR 
were analyzed with electrophoresis with agarose gel 2% 
E-Gel ® EX (Invitrogen, USA), and were posteriorly purified 
using magnetic beads. DNA purified was fragmented using 
DNAsa 1 and analyzed trough electrophoresis with agarose 
gel 4% E-Gel®EX (Invitrogen, USA). Fragmented prod-
ucts were labeled with biotin and hybridized for 18 h at the 
genechip; next, these were washed and colored with fluid 
station Affymetrix 450. The test included 550,000 non-pol-
ymorphic markers and 200,436 single nucleotide polymor-
phisms (SNP) markers. Finally, the gene chips were scanned 
with Affymetrix 3000 GeneChip Scanner and analyzed 
with Chromosome Analysis Suite (ChAS) v.4.2 (Affymetrix, 
USA®). The gains or losses were considered for analysis 
when at least 50/25 markers were compromised, respec-
tively. In addition, the regions of homozygosity (ROH) were 
considered for analysis when the length was at least 5 Mb 
(ver Thermo Fisher Sc Inc, 2017).

The CMA result for the patient was arr[GRCh38] 
3p25.3(9706732_9796589) × 1, with a ROH percentage of 
0,69. The CNV, a 90 kb deletion, contained seven genes: 
CPNE9, BRPF1, OGG1, CAMK1, TADA3, ARPC4, and 
ARPC4-TTLL3. We did not perform another genomic 
test (i.e. whole exome sequencing) because CMA showed 
a variant related to the phenotype.

Discussion
Haploinsufficiency is the mechanism by which a gene in a 
hemizygous state causes a phenotype [16]. A likely cause 
of haploinsufficiency is that some genes that present con-
served sequences during evolution with few functional 
coding variants are more likely to have a dose-sensitive 
effect [17]. The monoallelic expression occurs only when 
one allele needs to be expressed for a given function, and 
around 3000 genes have been established in humans. 
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Fig. 1  A Pedigree indicated a de novo variant (III.7) in this family, paternal and maternal ancestry are from different regions B Palpebral ptosis, 
bilateral epicanthus, blepharophimosis, C Prominent columella, short philtrum, thick vermilion of the lips. D Brachydactyly and decrease in the 
distal interphalangeal crease of the fourth finger. E Normal function of BRPF1 gene (peregrin). F Haploinsufficiency of BRPF1 produces a reduction 
of various processes in the brain. BRPF1 = Bromodomain- and PHD finger- containing protein. ING5 = Inhibitor of Growth 5. MEAF6 = Myst/
Esa1-associated factor 6. KAT6A/B = Lysine acetyltransferase 6A and 6B. KAT7 (HBO1) = Lysine acetyltransferase 7. H3 = histone 3. Source: Own 
elaboration
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Conversely, in the biallelic expression, it is necessary that 
both alleles of a gene function simultaneously, and there-
fore the latter have a lower tolerance to loss in CNVs [18]. 
It has also been observed that in the process of evolution, 
during the complete genome duplication, some genes were 
retained, and others lost; the retained genes are called 
ohnologues, which are known to be involved in the embry-
onic development and are part of protein complexes [19].

A CMA performed on the patient showed the deletion 
of a chromosome fragment that contained seven genes 
were present in a single copy and probably de novo. All 
these genes require both alleles to be present to function 
correctly. Of these, only BRPF1 has been associated with 
a genetic disease (Additional file 1). This gene codes for 
peregrin, a multivalent protein chromatin reader that 
interacts with the histone acetyltransferase and activates 
them (epigenetic regulation), acting in a complex to pro-
mote the acetylation of lysine 23 of histone 3 [3]. Studies 
in mice and zebrafish indicate that BRPF1 is essential for 
the embryo’s survival, hematopoiesis, head pattern, and 
brain development. It is expressed in the neocortex, hip-
pocampus, cerebellum, and olfactory bulb [20–22].

BRPF1 has a haploinsufficiency coefficient of 15.77%, 
and with a loss of function observed/expected upper 
bound fraction coefficient (LOEUF) of 0.176 [23, 24]. In 
mice, it has been observed that BRPF1 haploinsufficiency 
causes reduction of the dendritic complex in hippocam-
pal granulosa cells and the cortical pyramidal neurons, as 
well as reduction in the density and morphology of the 
dendritic column (Fig. 1E, F) [15].

To date, the other genes included in the CNV carried 
by the patient described in this paper (Additional file 1) 
have not been associated with a disease. For example, the 
OGG1 gene (8-oxoguanine DNA glycosilase) encodes 
an enzyme related to transcriptional regulation and the 
maintenance of metabolic homeostasis, and heterozy-
gous somatic variants have been associated with renal 
cell carcinoma (MIM #144700) [25, 26]. Two of the other 
implicated genes could nevertheless be eventually asso-
ciated with the patient’s phenotype: Cpen9 and ARPC4. 
Cpen9 (copine family member 9) has been related to 
calcium turnover, and it can be associated with cogni-
tive performance. However, its probability of being loss-
of-function intolerant (pLI) is very low (0.001), and the 
LOEUF is greater than 0.35 [27]. In this sense, the ARPC4 
has a pLI of 0.938 and a LOEUF of 0.265, and its function 
is to mediate actin polymerization through the stimula-
tion by promoter factor nucleation and inhibition expres-
sion, which significantly attenuates the proliferation, 
migration, and the invasion in bladder cancer [28, 29].

Therefore, we believe that a considerable part of the 
described patient’s phenotype is related to the intellectual 
development disorder with dysmorphic facies and ptosis, 

or IDDDFP (MIM # 617333) [7, 30]. It is characterized by 
microcephaly, short stature, brain abnormalities, seizures, 
strabismus, joint hypermobility, fusion of cervical vertebral 
bodies, camptodactyly, and short metacarpal, among other 
symptoms [7]. To date, 39 IDDDFP patients with 18 basic 
clinical characteristics have been described. The most 
common pathogenic variants in the BRPF1 gene were sub-
stitution, followed by deletion and intragenic duplication; 
however, no variants with complete deletion of the gene 
have so far been registered (Table 1). The patient described 
in this study presents ten of the 18 clinical characteris-
tics mentioned above. These include palpebral ptosis and 
blepharophimosis which was the main leading clinical 
features to suspect the presence of this disorder; however, 
according to the reported cases, blepharophimosis and 
ptosis are observed in 63.6% and 56.8% cases, respectively, 
while other nonspecific characteristics, such as language 
delay or intellectual disability, are the most frequently 
described characteristics. Therefore, it is difficult to estab-
lish a gestalt phenotype based on the cases reported so far. 
This highlights the importance of genomic diagnosis tools 
that allow the description of pathogenic variants.

From the CNV perspective, 31 patients with intersti-
tial and terminal deletions in chromosome 3p have been 
previously described with phenotypic characteristics like 
those presented by this patient. The characteristics of 
the 3p deletion syndrome (MIM #613792) are ID, motor 
delay, microcephaly, micrognathia, ptosis, long philtrum, 
polydactyly, hypotonia; heart, renal, and gastrointestinal 
anomalies; hypothyroidism, epilepsy, short stature, and 
risk of tumors [7, 31–33]. However, as it is a contiguous 
gene syndrome, the clinical characteristics will be vari-
able and depend on the number of genes involved. Out of 
the ten most important characteristics of the 3p deletion 
syndrome, our patient has only four (Additional file  1): 
ID, broad nose, palpebral ptosis, and heart anomalies.

Considering all the available information and results, 
we believe that our patient’s diagnosis is more similar to 
IDDDFP de novo than the 3p deletion syndrome, primar-
ily because the CNV found involves only one gene that 
could be related to the clinical manifestations, either by 
function, its pLI, or the haploinsufficiency coefficient. 
Nevertheless, studies on issues such as RNA or pro-
teins expression of the other six genes contained in the 
deletion (CPNE9, OGG1, CAMK1, TADA3, ARPC4, 
and ARPC4-TTLL3) should be carried out to know spe-
cifically how haploinsufficiency in these genes affect the 
phenotype of the patient.

Although parental consanguinity was not declared and 
the maternal and paternal grandparents come from dif-
ferent regions of Peru, the ROH was 0.69%, correspond-
ing to a parental consanguinity relationship of the fifth 
degree.
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Conclusions
To summarize, we suggest that dysmorphic features such 
as ptosis or blepharophimosis, if present from early years, 
could be considered as sufficient signs for the search for 
DNA pathogenic variants. Furthermore, our approach 
shows how imperative it is to use the molecular diagnosis 
in patients with these clinical features and how necessary 
it is to make these technologies more accessible. These 
tests can assist for determine of both the etiology and the 
prognosis, as well as the risk of recurrence.
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Table 1  Clinical characteristics observed in patients with pathogenic variants in the BRPF1 gene.  Source: Own elaboration

*  Excluded to not described patients

Summary of the relevant clinical characteristics of 
the patients with variants in BRPF1

N = 39 Present case 
Abarca et al. 
2021Positive Not described Negative %*

Global development delay or intellectual disability 38 1 0 100.0  + 

Gross motor delay 28 10 1 96.6 −
Delayed language 27 9 3 90.0  + 

Hypotonia 22 14 3 88.0 −
Fine motor delay 16 18 5 76.2  + 

Round face 8 27 4 66.7  + 

Blepharophimosis 21 6 12 63.6  + 

Congenital spinal cord anomalies 5 31 3 62.5 −
Downslanted palpebral fissures 10 23 6 62.5  + 

Broad nasal bridge 14 16 9 60.9  + 

Joint hypermobility 6 29 4 60.0 −
Ptosis 21 2 16 56.8  + 

Flat face 8 23 8 50.0 −
Hypertelorism 11 16 12 47.8  + 

Neonatal feeding difficulties 10 18 11 47.6 −
Congenital brain anomalies 10 18 11 47.6 −
Epilepsy 11 3 25 30.6 −
Short stature 5 19 15 25.0 −
Variants in the BRPF1 gene

Substitution 18 0 21 46.2 −
Partial deletion 13 0 26 33.3 −
Duplication 5 0 34 12.8 −
Total deletion 0 0 39 0.0  + 
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