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Abstract 

Background:  Worldwide, COVID-19’s death rate is about 2%, considering the incidence and mortality. However, the 
information on its complications in other organs, specifically the liver and its disorders, is limited in mild or severe 
cases. In this study, we aimed to computationally investigate the typical relationships between liver-related diseases 
[i.e., hepatocellular carcinoma (HCC), and chronic hepatitis B (CHB)] and COVID-19, considering the involved signifi-
cant genes and their molecular mechanisms.

Methods:  We investigated two GEO microarray datasets (GSE164805 and GSE58208) to identify differentially 
expressed genes (DEGs) among the generated four datasets for mild/severe COVID-19, HCC, and CHB. Then, the 
overlapping genes among them were identified for GO and KEGG enrichment analyses, protein–protein interaction 
network construction, hub genes determination, and their associations with immune cell infiltration.

Results:  A total of 22 significant genes (i.e., ACTB, ATM, CDC42, DHX15, EPRS, GAPDH, HIF1A, HNRNPA1, HRAS, 
HSP90AB1, HSPA8, IL1B, JUN, POLR2B, PTPRC, RPS27A, SFRS1, SMARCA4, SRC, TNF, UBE2I, and VEGFA) were found to 
play essential roles among mild/severe COVID-19 associated with HCC and CHB. Moreover, the analysis of immune 
cell infiltration revealed that these genes are mostly positively correlated with tumor immune and inflammatory 
responses.

Conclusions:  In summary, the current study demonstrated that 22 identified DEGs might play an essential role in 
understanding the associations between the mild/severe COVID-19 patients with HCC and CHB. So, the HCC and CHB 
patients involved in different types of COVID-19 can benefit from immune-based targets for therapeutic interventions.

Keywords:  COVID-19, Hepatocellular carcinoma, Chronic hepatitis B, Immune cell infiltration, Viral infection, System 
biology analysis, Disease interconnection
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Background
SARS-CoV-2 infection is a kind of coronavirus that 
infects the human respiratory system in China; this type 
of virus first appeared in December 2019. The World 
Health Organization (WHO) designated its related 

disease as a pandemic on March 11, 2020. Over 620 mil-
lion cases and nearly 6.6 million fatalities were recorded 
by October 14, 2022 (i.e., https://​covid​19.​who.​int/). 
Elderly patients with significant health problems, includ-
ing diabetes, obesity, and chronic renal disease, suffer 
from worse disease and higher death rates [1, 2, 3]. There 
is a considerable variation in clinical presentations of 
COVID-19, which may be anything from shortness of 
breath to kidney problems [4, 5].
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Some researchers are very concerned about the effects 
of COVID-19 and those connected to patients with hep-
atitis C or B or both diseases. Such issues often strike 
those with liver problems, especially those with liver 
fibrosis, damage, or cancer [6, 7]. And, as the number 
of SARS-CoV-2 and HBV or HCV coinfected individu-
als increases, so does the risk of creating an outbreak [8, 
9]. To provide better care for the significant population 
of patients at risk for having HCV or HBV, understand-
ing the liver symptoms and conditions of COVID-19 that 
these patients experience is essential.

Two worldwide viral infections need scrutiny: COVID-
19 and HBV. The studies have indicated that hepatitis 
B infection does not seem to increase one’s chance of 
developing SARS-CoV-2. Although there are few con-
flicting results on the effects of chronic hepatitis B (CHB) 
on COVID-19 patients, we know that it may cause cer-
tain complications. COVID-19 had a greater death rate in 
individuals with chronic liver disease, and it needs addi-
tional investigation for confirmation [10, 11].

A recent study reveals that SARS-CoV-2 has a specific 
receptor on host cells, ACE2, and a strong binding capac-
ity to the virus [2, 12, 13]. Higher expression levels in var-
ious organs seem more easily infected by SARS-CoV-2. 
SARS-CoV-2 is highly contagious in cancer patients, and 
their prognosis is bleak [14]. Additionally, patients with 
HCC had a decreased ACE2 expression compared to 
normal samples, which correlated with a poor prognosis 
[14]. Nevertheless, many questions remain about the role 
that the SARS-CoV-2 proteins play in regulating human 
mRNA expression in cancer.

The fact that earlier research has shown that COVID-
19 has a relationship to liver function in people with 
chronic hepatitis B has not deterred researchers from 
investigating its role in people with other liver disorders 
(e.g., CHB). Moreover, researchers published the find-
ings on people with persistent HBV infections who had 
COVID‐19. On the other hand, various biomarker sig-
natures may serve as diagnostic information to enhance 
treatment plans for HCC and COVID-19 in specific per-
sonalized medicine.

Methods
Microarray datasets
Data from the NCBI-Gene Expression Omnibus (GEO) 
database, GSE164805 and GSE58208, were used in 
this study with a total sample size of 42. The 15 sam-
ples from GSE164805 come from five severe COVID-19 
patients, five mild COVID-19 patients, and five healthy 
samples. There were ten individuals with HCC, twelve 
patients with CHB in GSE58208, and five control sam-
ples (i.e., GSE58208 has both CHB and HCC samples 
separately without in-common patients involved). The 

control groups, who were a reference in the datasets, had 
no inflammation, viral genome, or HCC/CHB histories. 
The GSE164805 samples were run on the Agilent-085982 
Arraystar human lncRNA V5 microarray (GPL26963) 
to produce the expression profiling arrays, whereas the 
GSE58208 samples were run on the Affymetrix Human 
Genome U133 Plus 2.0 Array (GPL570).

Identification of DEGs
By comparing patients infected with mild and severe 
SARS-CoV-2, CHB, and HCC and their correspond-
ing control samples, differentially expressed genes 
(DEGs) were identified using the GEO2R tool as well 
as “umap,” “GEOquery,” and “limma” packages [15]. 
Next, we selected the statistically significant DEGs 
(|log2(FoldChange)|≥ 0.5) with a p value of less than 0.05 
and Benjamini & Hochberg (False discovery rate) crite-
rion for p value adjustment. Last, we used the Multiple 
List Comparator free publicly available tool in the Web 
site link (i.e., http://​www.​molbi​otools.​com/) to create 
Venn diagrams that show the overlapped DEGs obtained 
for the diseases mentioned above.

GO and KEGG enrichment analyses
Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathway enrichment analyses were 
performed for the obtained significant DEGs. A major 
Knowledgebase upgrade, DAVID (Database for Anno-
tation, Visualization, and Integrated Discovery) v6.8, 
comprises a complete collection of tools to interpret the 
meaning of genes with powerful annotation capabilities 
useful for scientists [16]. The GO analysis includes a bio-
logical process (BP), molecular functions (MF), and cel-
lular components (CC). Additionally, the KEGG pathway 
analysis was carried out. The threshold of p value < 0.05 
was used for both GO enrichment and KEGG pathway 
analyses.

Protein–protein interaction network construction and hub 
genes identification
The protein–protein interaction (PPI) network was gen-
erated, analyzed, and visualized using the Cytoscape 
3.7.1 through STRING program (with default param-
eters) and included all the known interactions among the 
cell’s proteins [17, 18]. We employed the Cytoscape cyto-
Hubba plugin to investigate the associations between the 
DEGs, including analyzing, clustering, and identifying 
hub genes. Using the plugin, the “Degree” criterion was 
selected for hub genes identification. Finally, the 10 top 
essential genes were picked from the PPI network analy-
sis that can reveal the critical hub genes.

http://www.molbiotools.com/
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Assessment of immune cell infiltration
We utilized the TIMER (Tumour Immune Estimation 
Resource) database available through the R-based Web 
site link as a shiny app to estimate the correlations 
between the mRNA expression data for identified 
DEGs and tumor purity and the quantity of immu-
nological infiltrates, as well as B cells, CD4+ T cells, 
CD8+ T cells, neutrophils, macrophages, and dendritic 
cells. There were almost 10,000 samples from the 
TCGA representing 32 different kinds of cancer in this 
database [19, 20, 21]. All data were analyzed using the 
Spearman correlation technique where the categoriza-
tion correlation criteria are as follows:  low 0.00–0.19; 
moderate 0.20.03–0.39; high 0.40.04–0.59; very high 
0.60.0–1.0.

Results
DEGs identification
In total, 19,336, 21,774, 4294, and 4663 DEGs 
were extracted from the GSE164805, GSE164805, 
GSE58208, and GSE58208 microarray datasets, respec-
tively. And the results indicated that 2328, 2389, 2212, 
and 2487 DEGs were in common among different data-
sets: severe COVID-19 and CHB, mild COVID-19 and 
HCC, mild COVID-19 and CHB, and severe COVID-
19 and HCC, respectively (Additional file 1: Fig S1).

Enrichment analyses of GO and KEGG
The DAVID Web site was used to run the GO and KEGG 
pathway enrichment investigation, from which the illus-
trated outcomes were then shown in terms of -log10 
(p value). The DEGs were grouped according to their 
GO analysis into MF, BP, and CC. According to the BP 
analysis, the shared genes between the four datasets 
were primarily associated with protein transport and 
protein autophosphorylation. In contrast, the shared 
genes between mild COVID-19 and CHB and HCC were 
associated with protein transport, positive regulation of 
transcription DNA-templated, and transcription DNA-
templated. Moreover, the shared genes between severe 
COVID-19 and CHB and HCC were related to protein 
phosphorylation, mRNA splicing via spliceosome, and 
transcription DNA template (Fig.  1). For the CC analy-
sis, the shared DEGs among four datasets were mainly 
enriched in neoplasm, cytoplasm, and membrane, while 
the shared DEGs between mild COVID-19 and CHB as 
well as HCC were located in membrane and neoplasm.

Additionally, the shared genes between severe COVID-
19 and CHB as well as HCC were positioned at the neo-
plasm, nucleus, and membrane (Fig.  2). In the MF, the 
shared gene among four datasets was primarily enriched 
in protein binding and poly(A) RNA binding. At the same 
time, common genes between mild/severe COVID-19 
and CHB as well as HCC were also increased in pro-
tein binding and poly(A) RNA binding (Fig.  3). Genes 

Fig. 1  GO biological process enrichment analysis of overlapping DEGs: a mild COVID-19 versus CHB, b mild COVID-19 versus HCC, c severe 
COVID-19 versus CHB, d severe COVID-19 versus HCC datasets
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frequent in the KEGG signaling pathway analysis were 
also shown to be enriched in the insulin signaling path-
way, endocytosis, RNA transport, carbon metabolism, 
and ubiquitin-mediated proteolysis (Fig. 4).

Hub genes identification
The PPI network of the determined DEGs for severe 
COVID-19 versus HCC (2389 nodes and 25,819 edges), 
severe COVID-19 versus CHB (2264 nodes and 24,656 

Fig. 2  GO cellular component enrichment analysis of overlapping DEGs: a mild COVID-19 versus CHB, b mild COVID-19 versus HCC, c severe 
COVID-19 versus CHB, d severe COVID-19 versus HCC datasets

Fig. 3  GO molecular function enrichment analysis of overlapping DEGs: a mild COVID-19 versus CHB, b mild COVID-19 versus HCC, c severe 
COVID-19 versus CHB, d severe COVID-19 versus HCC datasets
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edges), mild COVID-19 versus HCC (2292 nodes and 
22,386 edges), and mild COVID-19 versus CHB (2139 
nodes and 21,939 edges) was constructed. The top 10 
genes were identified using the 11 techniques provided 
in cytoHubba and ranked using the degree method. The 
identified hub gene sets for severe COVID-19 versus 
HCC, severe COVID-19 versus CHB, mild COVID-19 
versus HCC, and mild COVID-19 versus CHB are shown 
in Fig. 5.

Significant DEGs associated with immune cell infiltration
The statistically significant existence of either negative 
or positive correlations between identified unique DEGs 
from the previous section and immune cell infiltration 
was comprehensively explored based on the TIMER 
database. The results revealed that there was closely a 
positive correlation between the expression of all DEGs 
and the infiltration of B cells, CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells (p < 0.05). 
The JUN, JUN, and GAPDH expressions were not signifi-
cantly correlated for infiltration of B cells, CD8+ T cells, 
and CD4+ T cells, respectively. Moreover, no significant 
correlation was identified between the expression of all 
DEGs and the purity. However, some of the target DEGs 
identified negative (i.e., ACTB, IL1B, PTPRC, SRC, TNF) 
and positive (HNRNPA1, VEGFA) correlations. More 
details are depicted in Additional file 2: Fig S2.

Discussion
About 391 million persons globally are at risk of devel-
oping decompensated liver disease and hepatocellu-
lar cancer due to CHB [22]. Preexisting liver disease 
comorbidity may impact the results of COVID-19 in 
patients with chronic viral hepatitis [20]. Oncologists 
worldwide were affected by the COVID-19 epidemic. 
In this pandemic, CHB may be significant comorbidity 
of preexisting liver illnesses. A study suggests that HCC 
sufferers are more likely to develop severe COVID-19 
because they have both cancer and chronic liver disease 
at the same time; however, there is no available clinical 
evidence [23]. Strengthening one’s immune system via 
regular physical activity is linked to a better response to 
viral infectious illnesses like COVID-19 [24].

Identifying undesirably expressed candidate genes, 
which may provide insight into how a process is regu-
lated in response to a stimulus, may be of consider-
able assistance in determining the appropriate therapy 
targets and preventive measures to take. Accordingly, 
in this work, bioinformatics methods were employed 
to examine two microarray datasets (GSE164805 and 
GSE58208) to find probable drivers. Using the utilized 
criteria, we were able to narrow down the list of can-
didate hub genes to 22 (ACTB, ATM, CDC42, DHX15, 
EPRS, GAPDH, HIF1A, HNRNPA1, HRAS, HSP90AB1, 
HSPA8, IL1B, JUN, POLR2B, PTPRC, RPS27A, SFRS1, 

Fig. 4  KEGG signaling pathways enrichment analysis of overlapping DEGs: a mild COVID-19 versus CHB, b mild COVID-19 versus HCC, c severe 
COVID-19 versus CHB, d severe COVID-19 versus HCC datasets
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SMARCA4, SRC, TNF, UBE2I, VEGFA) that will be dis-
cussed in detail as follows.

For comparisons across species and tissues, the 
researchers used the ACTB gene expression data from 
each of their RNA-seq experiments to normalize the 
expression of ACE2. Most cell types produced the house-
keeping gene ACTB, which was an internal control for 
gene expression measurements. Additionally, all species 
investigated have the ACTB gene [25].

TLR7-ATM deficiency may cause two distinct immu-
nodeficiency phenotypes. The potential that the ATM 
deficit influenced the progression of COVID-19 in the 
TLR7-deficient case cannot be ruled out. Furthermore, 
the death of B cells due to ATM deficiency reduced 
germinal center frequency and size after vaccination. 
Patients with COVID-19 pneumonia who have X-linked 
TLR7 and ATM pathogenic mutations, along with their 
clinical and molecular characterizations, have also been 
studied elsewhere [26].

Various signaling pathways could target CDC42, 
which was downregulated in HCC515 cells with COL-3 
treatment [27]. CDC42 could also be affected by the 

Coronaviridae family neurotropic virus (i.e., porcine 
hemagglutinating encephalomyelitis virus) [28]. Addi-
tionally, CDC42 is one of the many genes downregu-
lated in lung cells when COL-3 functions as a protective 
mechanism. So, such genes (CDC42) are required for a 
chemokine, TNF, and MAPK signaling pathways [27].

It is crucial to note that SARS-CoV-2 is an RNA 
virus that is the source of the current global coronavi-
rus epidemic [29, 30]. SARS-CoV-2 may readily infect 
human intestinal epithelial cells in individuals with 
COVID-19 who have gastrointestinal symptoms and 
fecal RNA excretion of the virus [31, 32]. RNA helicase 
DHX15 may be targeted to regulate SARS-CoV-2 and 
the inflammation of the gastrointestinal tract produced 
by SARS-CoV-2, based on the findings on its involve-
ment in regulating enteric RNA virus-induced intesti-
nal inflammation [33].

The mRNA vaccine vesicles must enter cells and 
hijack the host cell machinery to create a viral protein 
antigen, which will then be processed and presented by 
MHC molecules to stimulate B and T cell responses. All 
are necessary to translate mRNA, the ribosome, trans-
lation initiation factors, aminoacyl-tRNA synthetases, 

Fig. 5  Correlation between the identified DEGs and immune cell infiltration (TIMER); p value < 0.05 represented statistically significant
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and elongation factors. EPRS seems to control pro-
fibrotic protein production [34].

The ACE2 mRNA transcript level was determined to 
be comparable to GAPDH and beta-actin. Overall, the 
data show that the mRNA encoding for the ACE2 gene 
is expressed similarly across patients. Patients with 
COVID-19 will need to be investigated in the future to 
learn more about how SARS-CoV-2 infection affects the 
thyroid [35].

ACE2 expression was lowered by HIF1A knock-
down under hypoxic circumstances, alone or combined 
[36]. Patients with severe COVID-19 may also see an 
increase in the degradation of FOXP3 proteins because 
the hypoxic lung environment activates HIF1A, which is 
involved in aerobic glycolysis [37]. Furthermore, it was 
shown that overexpression of HIF1A in human embry-
onic kidney cells strongly decreases the production of 
ACE2 [38].

HNRNPA1 was downregulated in Calu-3 cells, indi-
cating a human cell’s reaction to inhibit viral replication 
in contrast to the prior instances of upregulated genes. 
Human RNA-binding proteins such as HNRNPA1, which 
was recently identified as the “hub protein” with the most 
significant functional ties to the human SARS-CoV-2 
genome, were shown to have conserved connections to 
the SARS-CoV-2 genome in this research [39, 40].

In addition to playing a significant part in cancer devel-
opment, the signaling of growth factor receptors (GFR) is 
also essential for the progression of some viral infections 
[41–43]. Recent investigations have shown that infec-
tion with SARS-CoV-2 significantly alters the expression 
of numerous genes involved in cellular signaling path-
ways essential in cancer development. One of these is the 
RAS-RAF/MEK/ERK signaling pathway [44]. Those with 
COVID-19 and more severe symptoms have been shown 
to have more significant H-Ras gene overexpression in 
their peripheral blood mononuclear cells (PBMC).

The SARS-CoV-2 infection triggers such overexpres-
sion in immune cells, a molecular process. This finding 
can highlight the importance of the Ras family of genes in 
the host immune response, not just to COVID-19 but to 
other viral infectious diseases as well [45].

Viruses may activate Hsps, particularly Hsp70 and 
Hsp90, which increase viral replication. For example, 
the Hsp90 inhibitor geldanamycin inhibits coronavirus 
replication in cell culture systems [46]. HSP90AB1 over-
expression also suggests that increased inflammation 
triggered extrapulmonary tissue remodeling. The estro-
gen signaling pathway connected with the HSP90AB1 
target was identified as the primary COVID-19 signaling 
mechanism [47].

The HSPA8 protein involved in antigen processing and 
presentation was changed in six COVID-19 individuals 

[48]. HSPA8 was one of the most downregulated COVID-
19 genes [49]. The results demonstrated that HSPA8 
was connected to other genes involved with heat shock 
response and ER stress, suggesting that cellular stress 
response is vital in SARS-CoV2-related coronavirus 
pathogenesis [46]. Also, in SARS-CoV-2-infected NHBE 
cells, many interleukin genes were elevated, includ-
ing IL1B [50]. SARS-CoV-2-infected NHBE cells exhib-
ited a significant increase in lung fibrosis-related genes 
(e.g., IL1B). For COVID-19 individuals suffering from 
an inflammatory storm, an integrated analysis suggested 
that new target genes such as IL-1 may be beneficial [51].

Cardiac myocyte hypertrophy is linked to an increase 
in c-Jun expression level, according to research. As part 
of the activator protein-1 complex, c-Jun regulates cell 
death and survival [52]. Viral infections are connected 
with inflammation, and JUN is crucial in this pro-
cess [40]. In individuals with COVID-19, CD4+ T cells 
expressed significant amounts of inflammatory genes, 
including JUN [53].

A topological study of the gain component was carried 
out, and the POLR2B gene, which was shown to have a 
higher network degree, was discovered [54]. The POLR2B 
gene was shown to be ubiquitinated, and its protein levels 
dropped in other studies [55]

As a critical antigen, T cell activation in atherosclerosis 
relies on PTPRC, previously known as CD45. Vaccination 
may activate nave B cells, as shown by the upregulation of 
many genes (such as PTPRC) implicated in GO pathways 
for B cell activation. Severely affected COVID-19 patients 
have lower levels of the PTPRC gene, indicating that acti-
vation of nave B cells may be hampered in these people 
[56, 57].

The housekeeping Rps27a gene encodes a 40S subunit 
20 of the ribosomes. There are two protein-coding tran-
scripts for the mouse Rps27a gene (named S27a-44 and 
S27a-45). It was discovered that the levels of two of the 
four ribosomal fusion proteins encoded by human ubiq-
uitins, RPS27A and UBA52, were elevated in patients 
with Alzheimer’s disease and COVID-19 with Alzhei-
mer’s disease, respectively [28, 58].

A genome-wide CRISPR investigation has identified 
SMARCA4 as a SARS-CoV-2-specific gene. SMARCA4 
and SMAD3 may be involved in SARS-CoV-2 entrance, 
and virus-induced cell death is possible. The provi-
ral activity of SMARCA4, a protein expressed by the 
SMAD3 gene, has been described by Wei’s group [59].

However, ABL kinases are combined with SRC fam-
ily kinases to enhance vaccinia virus actin-based motil-
ity. Patients infected with SARS-CoV-2 may benefit from 
SRC’s anti-inflammatory and antifibrotic action and 
cytokine inhibition. RPS3 was found to be an essen-
tial player in viral replication, while SRC non-receptor 
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protein kinase was found to be a hub gene in the inflam-
matory response. It has been observed that proteins like 
SRC, which control the cytokine secretion network, were 
crucial in the ACE2-related inflammatory responses to 
the cytokine secretion-associated proteins [60, 61].

In the COVID-19 cohort with Alzheimer’s disease, the 
serine- and arginine-rich splicing factor 1 is encoded by 
the downregulation of SRSF1. SRSF1 activity becomes 
uncontrolled due to neurodegeneration-related hypoxia, 
resulting in increased splicing, which is then detected in 
Alzheimer’s patients [28].

High levels of TNF-α are caused, according to Tsuka-
moto et al. [62], by genetic changes at the TNF-α locus. 
Increased TNF-α production is linked to two biallelic 
polymorphisms in TNF-α, one associated with severe 
infectious diseases [63]. Consequently, anti-TNF medi-
cine is being considered a possible treatment for COVID-
19 [57]. Inflammatory cytokines like TNF and IFNg have 
been linked to low vitamin D levels. In contrast, vitamin 
D has been shown to suppress these cytokines and boost 
anti-inflammatory cytokines generated by macrophages 
[51].

UBE2I is a ubiquitin-conjugating enzyme involved in 
protein breakdown, although it may also promote tran-
scription [64].

Due to the removal of ACE2’s antagonistic effect on 
VEGFA production, SARS-CoV-2 elevates levels of 
VEGFA in the body. Heart problems are also significantly 
linked to the rise in VEGFA expression, which causes 
cardiac hypertrophy to proceed. For example, ACE2 sup-
presses cell invasion and migration in NSCLC cells by 
suppressing VEGFA/VEGFR2/ERK pathway in breast 
cancer. Antagonizing VEGFA has also been caused by 
SARS-CoV-2 downregulation of ACE2, an essential fac-
tor. VEGFA is a crucial gene in COVID-19 cancer high-
risk patients, according to a comprehensive gene–disease 
association analysis [52, 65, 66].

When the livers of COVID-19 patients who had passed 
away were examined histologically, it was discovered 
that there were extensive vascular abnormalities, steato-
sis, and mitochondrial abnormalities. These conditions 
were assumed to be brought on by SARS-CoV-2 [10]. 
According to the findings of several studies, the prog-
nosis for patients with COVID-19 infections was poorer 
when the patients also had an associated chronic liver ill-
ness, which reduced the patients’ liver function [66–68]. 
Extremely high levels of angiotensin-converting enzyme 
2 (ACE2) have been seen in many different kinds of can-
cer cells, including lung adenocarcinoma (LUAD) and 
lung squamous carcinoma (LUSC), suggesting a link 
between COVID-19 and the progression of cancer and 
the mortality rate [70]. It is possible to indicate that the 
likelihood of direct liver damage of the HCC patient by 

SARS-CoV-2 would be unlikely owing to the low expres-
sion of ACE2. Still, HCC patients with obesity are more 
likely to be affected by COVID-19-linked severe patho-
genesis and poor prognosis [71].

Twenty percent of cirrhotic patients with COVID-19 
had acute-on-chronic liver failure or acute decompen-
sation, according to a global study that included cohorts 
from 13 Asian countries [69]. This is a significant result 
because it indicates that persons with cirrhosis are at 
increased risk of experiencing severe liver damage from 
the SARS-CoV-2 virus. Patients infected with COVID-
19 who already have liver disease have a more significant 
risk of severe complications and mortality than healthy 
patients [72]. According to the findings of a research 
that included 15 patients with chronic hepatitis B and 
COVID-19, those patients had a more severe illness and 
a higher death rate when compared to patients who did 
not have HBV infection, which suggests that HBV coin-
fection may increase the development of liver damage, 
which is linked with unfavorable outcomes [73, 74].

Moreover, many researchers have investigated poten-
tial relationships between COVID-19 and chronic liver 
disease. However, the roles of these 22 genes are impor-
tant while being related to the clinical manifestations.

To understand the pathophysiological and clinical fea-
tures of SARS-CoV-2 infection, one may need to have 
an in-depth comprehension on cytokine storm because 
of inappropriate recognition of the pathogen with an 
improper response of the immune system involving dif-
ferent genes and signaling pathways [75]. Furthermore, 
the immune response at the liver may result in immu-
nodeficiency in patients with liver disease by distorting 
the liver architecture and hence disarrange the cellular 
organization and functions resulting in a hepatic inabil-
ity to synthesize proteins. By taking into account that 
inflammatory cytokine signaling in the immune system 
and IL signaling (VEGFA, TNF, SMARCA4, IL1B, JUN, 
HSP90AB1, HIF1A) and B cell/T cell receptor signaling 
pathway (JUN, PTPRC) play important roles through 
the cytokine storm. As, patients with COVID-19 often 
have multi-organ failure, which may include liver damage 
due to the hypoxia and cytokine storm that accompanies 
SARS-CoV-2 infection [75, 76]. As also seen in COVID-
19, cytokine storm has the potential to be engaged in 
disseminated intravascular coagulation (DIC) and throm-
bocytopenia, both of which have the potential to aggra-
vate the effects of DIC [77].

On the other hand, multiple signaling pathways may be 
involved in both diseases such as MAPK (CDC42, HRAS, 
HSP90AB1, HSPA8, RPS27A, SRC), PI3K-Akt-mTOR 
(HRAS, HSP90AB1), hypoxia (ACTB, JUN, VEGFA, 
HIF1A, GAPDH), JAK/STAT (PTPRC, SRC, UBE2I), 
and NF-kB signaling pathways (ATM, HRAS, IL1B, JUN, 
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PTPRC, SFRS1, TNF) that are the key factors in these 
patients with hypercoagulation, infection, and inflamma-
tion [11, 78].

Last but not least, apoptosis pathway (ACTB, ATM, 
HSPA8, SFRS1, TNF, UBE2I), DNA damage and metab-
olism of RNA (CDC42, JUN, POLR2B, SMARCA4, 
DHX15, EPRS, HNRNPA1), and cell cycle process (ATM, 
POLR2B, UBE2I, VEGFA) can play roles in hepatocellu-
lar necrosis and cellular infiltration in the liver organ of 
patients with COVID-19, resulting in liver apoptosis [79].

Gene expression analysis has contributed to personal-
ized medicine advancements in cancer and transplanta-
tion. This has given us a reason to apply similar methods 
to other diseases, such as those related to prototypi-
cal inflammatory autoimmune diseases with unknown 
causes. Increased understanding of disease biology, bet-
ter patient care, and more tailored therapy approaches 
are only some of the potential benefits of gene expression 
profiling’s clinical and translational use. Once a novel 
biomarker or combination of biomarkers has been dis-
covered in fundamental research, it may take some time 
until they are used in clinical practice.

This is due to the time and effort needed to validate 
biomarkers, establish their practical efficacy, develop 
a manufacturing method, and get regulatory approval. 
When taken together, these results highlight gene expres-
sion’s worth as a novel tool with the potential to provide 
unique data to each person [80, 81].

Conclusions
A total of 22 hub genes were identified among HCC, 
CHB, and mild/severe COVID-19 after evaluating two 
GEO datasets utilizing existing methods for GO and 
KEGG enrichment approaches, construction of a PPI 
network for hub gene identification, and immune cell 
infiltration. These genes may have the highest potential 
role in signaling pathways, biological processes, cellular 
components, molecular functions, and immunological 
and inflammatory processes. Considering the outcomes 
obtained from the above-mentioned approach among 
HCC, CHB, and mild/severe COVID-19, it is vital to 
study the disease interconnections in-depth soon. And 
more immune-based therapeutic targets can be devel-
oped to cover the potential gaps specifically in terms of 
their molecular mechanisms among these illnesses.
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