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Abstract 

Background  Psychiatric disorders are a major burden on global health. These illnesses manifest as co-morbid condi-
tions, further complicating the treatment. There is a limited understanding of the molecular and regulatory basis of 
psychiatric co-morbidities. The existing research in this regard has largely focused on epigenetic modulators, non-
coding RNAs, and transcription factors. RNA-binding proteins (RBPs) functioning as multi-protein complexes are now 
known to be predominant controllers of multiple gene regulatory processes. However, their involvement in gene 
expression dysregulation in psychiatric co-morbidities is yet to be understood.

Results  Ten RBPs (QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, and MBNL1) were identified 
to be associated with psychiatric disorders such as schizophrenia, major depression, and bipolar disorders. Analysis of 
transcriptomic changes in response to individual depletion of these RBPs showed the potential influence of a large 
number of RBPs driving differential gene expression, suggesting functional cross-talk giving rise to multi-protein 
networks. Subsequent transcriptome analysis of post-mortem human brain samples from diseased and control indi-
viduals also suggested the involvement of ~ 100 RBPs influencing gene expression changes. These RBPs were found 
to regulate various processes including transcript splicing, mRNA transport, localization, stability, and translation. They 
were also found to form an extensive interactive network. Further, hnRNP, SRSF, and PCBP family RBPs, Matrin3, U2AF2, 
KHDRBS1, PTBP1, and also PABPN1 were found to be the hub proteins of the RBP network.

Conclusions  Extensive RBP networks involving a few hub proteins could result in transcriptome-wide dysregulation 
of post-transcriptional modifications, potentially driving multiple psychiatric disorders. Understanding the functional 
involvement of RBP networks in psychiatric disorders would provide insights into the molecular basis of psychiatric 
co-morbidities.

Keywords  RNA-binding proteins, Protein-protein interactions, Psychiatric disorders, Co-morbidities, Molecular 
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Background
Mental illnesses are a major cause of morbidity and mor-
tality across age groups globally [1]. Depression, schizo-
phrenia, and bipolar disorders account for an estimated 
264 million, 20 million, and 45 million cases  of psychi-
atric disorders respectively [2]. Existing treatments for 
these disorders help only a small subset of patients. Thus, 
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there is a need for a better understanding of the biologi-
cal basis of these disorders and identify novel therapeutic 
targets. Notably, psychiatric disorders are known to man-
ifest as co-morbid conditions, indicating a potentially 
shared underlying biology. Patients with schizophrenia 
are known to have higher risk of anxiety and depression, 
substance use disorders, post-traumatic stress disorder, 
as well as obsessive–compulsive disorder [3, 4]. Similarly, 
bipolar disorder, attention-deficit/hyperactivity disorder 
(ADHD) [5], and substance use disorders [6] are known 
to be co-morbid. The molecular basis of these psychiat-
ric disorders and co-morbidities are yet to be understood 
[7]. Recent research has highlighted the importance of 
understanding the biological basis of disease co-morbid-
ities [8]. Thus, delineating the molecular regulation of 
psychiatric co-morbidities would be imperative for more 
efficient treatment strategies.

Several studies have revealed extensive gene expres-
sion dysregulation associated with psychiatric condi-
tions. A number of genes are also known to be commonly 
dysregulated across psychiatric disorders [9, 10]. A bet-
ter understanding of the regulatory mechanisms result-
ing in gene expression dysregulation could provide 
further insights into multiple genes and their networks 
affected by common regulatory factors. In this regard, 
most studies on molecular regulation in mental illnesses 
have focused on transcription factors, microRNAs, long 
non-coding RNAs, alternative splicing, and epigenetic 
modifications [11–14]. However, recent research has 
highlighted the dominant role of RNA-binding proteins 
(RBPs) on gene regulatory processes [15, 16]. Though 
the involvement of RBPs in disorders such as cancers 
[17], genetic diseases [18], cardiovascular diseases [19], 
diabetes [20], and neurodegenerative diseases [21] has 
been established, their potential involvement in mental 
illnesses is only beginning to be understood. A recent 
report has suggested the involvement of dysregulated 
RBP-binding sites in psychiatric conditions [22]. Hence, 
further understanding of the involvement of RBPs in 
gene expression dysregulation in mental illnesses could 
provide new insights into the molecular basis of these 
disorders.

RBPs are known to function as multi-protein com-
plexes. RBP networks composed of multi-protein clus-
ters are known to regulate common targets. Such RBP 
clusters could form master-regulatory modules of cel-
lular processes [23]. The complexity and functional 
implications of these RBP networks are now begin-
ning to be understood [24]. Owing to the progress in 
our understanding of the importance of RBPs in disease 
conditions, therapeutic approaches such as RBP-PRO-
TACs are being developed to manipulate RBP function-
ing [25]. However, since manipulating the functions of 

individual RBPs could potentially affect multiple other 
RBPs and RBP networks, a holistic understanding of 
the RBP networks would be of high scientific and clini-
cal importance.

In light of these research reports, the present study 
focused on identification of RBPs involved in psychiat-
ric disorders, and the analysis of their potential interac-
tions could give rise to RBP networks and combinatorial 
gene regulatory modules. To this end, the RBPs associ-
ated with psychiatric disorders and their potential inter-
actions were identified. Subsequently, publicly available 
transcriptome data were analysed to identify other RBPs 
which could be functionally related. Further, transcrip-
tome data from human post-mortem brain samples were 
retrieved from public repositories and analysed to iden-
tify RBPs implicated in gene expression dysregulation in 
psychiatric conditions (major depression, schizophrenia, 
and bipolar disorder). These analyses suggested a signifi-
cant number of RBPs potentially involved in psychiatric 
disorders. Next, the interactive networks of the identi-
fied RBPs were analysed, which revealed extensive con-
nections among them. Subsequently, hub proteins having 
more pronounced inter-connections were identified, 
which showed hnRNP, PCBP, SRSF family RBPs, Matrin3, 
and PTBP to be among the hub RBPs. Thus, the present 
study identified RBPs and their networks, which could be 
driving transcriptomic dysregulation in multiple psychi-
atric disorders. In future, large-scale human studies to 
understand their functional implications in mental health 
could be of importance, towards a holistic understanding 
of molecular regulation of psychiatric co-morbidities.

Materials and methods
Identification of RBPs associated with psychiatric disorders 
and their potential interactions
In order to identify RBPs associated with psychiatric 
disorders, the genes curated onto PsyGeNET data-
base (v2.0) (http://​www.​psyge​net.​org/​web/​PsyGe​NET/​
menu) [26] were compared with the known RBPs from 
Transite database (v1.2.1) (transite.mit.edu/) [27]. Psy-
GeNET is an expert-curated database of disease-gene 
associations in psychiatric disorders, comprising 1549 
genes and 117 diseases. Transite provides a computa-
tional platform for the analysis of RBP-mediated gene 
expression changes in transcriptomic studies, encom-
passing a database of ~ 150 RBPs from human and 
mouse, with known target motifs. Thus, comparing the 
psychiatric disease-associated genes from PsyGeNET 
with RBPs from Transite yielded the RBPs associated 
with psychiatric disorders. Subsequently, potential 
interactions between these RBPs were analysed via 
STRING (https://​string-​db.​org/) (v11.5).

http://www.psygenet.org/web/PsyGeNET/menu
http://www.psygenet.org/web/PsyGeNET/menu
https://string-db.org/
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Analysis of transcriptome‑wide differential gene 
expression and identification of potential RBPs driving 
gene expression changes
Due to combinatorial functioning, modulating individual 
RBPs could affect a multitude of other RBPs. In order 
to understand such potential interaction networks, the 
transcriptomes of human cell lines subjected to genetic 
manipulation (knock-down/knockout/overexpression) of 
the psychiatric disease-associated RBPs were analysed. 
The transcriptome studies related to the gene expression 
patterns associated with genetic manipulation of the con-
sidered RBPs were identified on GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). The studies on human cell 
lines with at least two replicates per condition (control 
and knock-down/knockout/overexpression) were con-
sidered. Differential gene expression patterns of RNA-seq 
and microarray studies were analysed using OneSto-
pRNAseq (v1.0.0; https://​mccb.​umass​med.​edu/​OneSt​
opRNA​seq/​index.​php) [28] and GEO2R tools (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/), respectively. OneSto-
pRNAseq is a comprehensive platform for the analysis 
of RNA-seq data, including quality check (via FastQC 
v0.11.5 and MultiQC v1.6), alignment (via STARv. 2.7.5a), 
read summarization (via featureCountsv.2.0.0), and dif-
ferential gene expression (via DESeq2v 1.28.1). Human 
genome hg38 (gencode. v34.primary_assembly) was used 
as reference. The differentially expressed genes (DEGs) 
were identified with a false discovery rate (FDR) thresh-
old of 0.05 and minimum log2 fold change threshold of 
0.585. The microarray datasets were analysed through 
GEO2R (using default settings). GEO2R identifies statis-
tically significant DEGs via GEOquery and limma pack-
ages within R framework. The gene expression levels in 
knockout/knock-down/overexpression (experimental) 
groups were compared to those of control datasets. Simi-
larly, transcriptome studies of human post-mortem brain 
samples involving at least two psychiatric disorders were 
identified on GEO database (shown in Table 2), followed 
by differential gene expression analysis as described 
above.

Further, the RBPs having enriched binding sites within 
5’ and 3’ untranslated regions (UTRs) of the DEGs were 
identified using Transite (https://​trans​ite.​mit.​edu/) 
(v1.2.1) [27]. Transite performs global computational 
identification of RBPs involved in post-transcriptional 
regulation (PTGR) of gene expression using RNA-seq or 
microarray data. Transcript Set Motif Analysis (TSMA) 
was employed to identify statistically significant overrep-
resentation of RBP target motifs in the UTRs of DEGs. 
TSMA was performed via k-mer and matrix-based 
approaches. k-mer-based approach identifies RBPs by 
comparing the hexamer/heptamer (k-mer) sequences 
between the foreground (DEGs) and background (all 

genes identified in the transcriptomic study) datasets. 
Matrix-based approach identifies the potential RBP-
binding sites by scoring the sequence positions within the 
foreground and background datasets. Thus, the platform 
identifies statistically significant RBP target motifs poten-
tially contributing to RBP-mediated PTGR.

Analysis of protein–protein interaction network, 
identification of significant modules, and hub proteins
Protein interaction network was obtained using STRING 
database (https://​string-​db.​org/) (v11.5). Experimentally 
deciphered as well as the predicted interactions were 
visualized using default settings, against Homo sapiens 
database. The network from STRING was exported to 
Cytoscape (v3.8) [29]. The significant modules within the 
network were identified using MCODE (v2.0.0) plug-in of 
Cytoscape, using default settings (degree cut-off = 2, node 
score cut-off = 0.2, k-core = 2, maximum depth = 100). 
The hub proteins of the network were identified using 
Cytoscape through the cytoHubba (v0.1) plug-in [30]. 
Top 20 hub proteins were identified and ranked using 
maximal clique centrality (MCC) method.

Analysis of gene ontology and expression levels
The functional aspects affected by the selected RBPs were 
identified by analysing the enriched gene ontology terms 
of biological processes, associated with them. ShinyGO 
(v0.75) web server (http://​bioin​forma​tics.​sdsta​te.​edu/​go/; 
[31]) was used to perform gene ontology analysis, using 
default settings. The gene expression levels in different 
brain regions were obtained using the human protein 
atlas (v.21.0) (https://​www.​prote​inatl​as.​org/).

Results
Identification of RBPs associated with psychiatric disorders 
and analysis of their potential interactions
Comparison of the genes associated with psychiatric dis-
eases (from PsyGeNET database) with human/mouse 
RBPs (from Transite database) yielded ten common 
RBPs: QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, 
SNRNP70, FMR1, DAZAP1, and MBNL1 (Fig.  1a). The 
gene names and associated disorders for each gene are 
provided in Additional file  3: Table  S1. Overall, these 
RBPs were associated with schizophrenia, major depres-
sive disorder, bipolar disorder, and mixed anxiety. The 
analysis of interactions between these RBPs showed 
that they could potentially form an interactive net-
work (Fig. 1b). Thus, it could be inferred that combina-
torial functioning of RBPs could influence psychiatric 
disorders.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://mccb.umassmed.edu/OneStopRNAseq/index.php
https://mccb.umassmed.edu/OneStopRNAseq/index.php
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://transite.mit.edu/
https://string-db.org/
http://bioinformatics.sdstate.edu/go/
https://www.proteinatlas.org/
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Identification of RBPs driving differential gene expression 
in response to in vitro genetic manipulation of psychiatric 
disorder‑associated RBPs
Owing to the combinatorial functioning, modulating 
the activity of individual RBPs could influence other 
RBPs and larger networks. In the present study, tran-
scriptome-wide gene expression changes in response to 
manipulation of individual RBPs were analysed for the 
potential involvement of other RBPs in modulating gene 
expression through 5′ and 3′UTRs of DEGs. For this pur-
pose,  the transcriptomic datasets associated with gene 
expression changes in response to knock-down (KD)/
knockout (KO)/overexpression of RBPs were selected. 
The details of transcriptome datasets considered for this 
study are given in Table 1. These transcriptome datasets 
were analysed to identify DEGs. (The number of DEGs 
found in each dataset is given in Table 1.) Subsequently, 
the RBPs having overrepresented target motifs within the 
5′ and 3′ UTRs of DEGs were identified. A compiled list 
of RBPs with significant overrepresentation (p < 0.05) of 

target motifs, potentially influencing the transcriptome, 
are given in Additional file 1. The number of RBPs having 
enriched binding sites in the UTRs of DEGs in response 
to depletion of the individual RBPs is shown in Fig.  2. 
3′UTRs of the DEGs were found to have a higher num-
ber of RBP target motifs across the datasets (Fig. 2). Also, 
depletion of SRSF3 and DAZAP1 was found to potentially 
cause widespread gene expression changes via 3′UTRs as 
well as 5′UTRs, mediated by multiple other RBPs (Fig. 2).

RBPs influencing gene expression changes in diseased 
post‑mortem human brain samples
Transcriptomic data from diseased post-mortem human 
brain samples (schizophrenia, bipolar, and major depres-
sive disorders; Table  2) were analysed to identify DEGs 
with respect to control individuals. The DEGs were fur-
ther studied to detect overrepresented RBP-binding sites 
within their 5’ and 3’ UTRs, which could influence dif-
ferential gene expression. Thirteen RBPs were found to 
be common in all the three disorders—CPEB3/CPEB4, 
DAZAP1, ELAVL1/ELAVL3, hnRNPC, hnRNPCL1, 
PCBP4/PCBP1/PCBP3, PCBP4/PCBP3, PTBP1/PTBP2/
ROD1, RBMS2/RBMS1, SF3B4, TARDBP, U2AF2, and 
YBX2/CSDA (Fig.  3), indicating their potential involve-
ment in molecular dysregulation of multiple disorders. 
The dataset-wise number of RBPs found to be influencing 
differential gene expression in diseased samples is given 
in Table 2.

RBPs common between in vitro and human brain datasets
In order to get insights into the overall interactive net-
works of the identified RBPs, common RBPs between 
those found to be involved in psychiatric disorders, as 
well as those driving gene expression changes in in vitro 
datasets were identified. This comparison yielded 132 
RBPs (Additional file  2). The functions of these RBPs 
were analysed through gene ontology terms (biological 
processes) significantly associated with them. As shown 
in Fig. 4, the identified RBPs were found to be involved 
in multiple aspects of transcript regulation including 
RNA splicing, stabilization, degradation, transport, as 
well as localization. Thus, it could be inferred that the 
RBP networks potentially involved in dysregulated gene 
expression in diseased conditions could affect multiple 
processes at the post-transcriptional level.

Analysis of interaction network of the identified RBPs, 
significant modules, and identification of hub proteins
The RBPs found to be common between in  vitro and 
human brain datasets were analysed for their poten-
tial interactions, via STRING. This analysis revealed a 
protein interaction network containing 120 nodes and 
1447 edges (Fig. 5a). Further identification of significant 

Fig. 1  Psychiatric disorders-associated RBPs. a Psychiatric 
disease-associated genes from PsyGeNET database (http://​www.​
psyge​net.​org [26]) were compared with RBPs curated onto Transite 
(https://​trans​ite.​mit.​edu/ [27]), to identify RBPs associated with 
psychiatric disorders. This comparison identified ten RBPs to be 
associated with psychiatric disorders. b The identified RBPs were also 
found to form a potential interactive network

http://www.psygenet.org
http://www.psygenet.org
https://transite.mit.edu/
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modules in this network showed the presence of four 
prominent modules of interacting proteins. Module-1 
consisted of 37 nodes and 615 edges, comprising hnRNP 
family proteins, SRSF, and PABP family RBPs among oth-
ers (Fig. 5b). Module-2 consisted of 5 nodes and 8 edges, 
consisting of the RBPs QKI, RBM4, KHDRBS3, PTBP2, 
and RBFOX2 (Fig. 5c). The two other modules consisted 
of 3 nodes and 3 edges each. ESRP2, KHDRBS2, and 
RBM24 constituted module-3, while module-4 consisted 
of CPEB family proteins (Fig. 5d, e). Thus, the identified 
RBPs were found to have potentially extensive inter-con-
nections, with significant modules containing hnRNP, 
CPEB, and RBM family proteins.

Further, the network was analysed to identify top 
twenty hub proteins, which revealed hnRNP and SRSF 
family proteins, PTBP1, PABPN1, PCBP2, MATR3, and 
PCBP1 to be among the hub proteins of the network 
(Fig. 6a and Table 3). Additionally, the expression levels 
of the hub proteins were analysed in different regions 
of human brain. Interestingly, the expression levels 
of hnRNPA1 were found to be relatively high in most 
regions considered, except olfactory bulb and hip-
pocampal formation (Fig. 6b). The expression levels of 
most genes were higher in cerebral cortex, while they 
were substantially low in olfactory bulb. Hypothalamus 

Table 1  Human cell line-based transcriptome datasets considered in the present work

S. No RBP Dataset (GEO ID) Cell line DEGs (up/
down 
regulated)

Experiment (Knock-down/KD or 
knockout/KO)

Reference

1 QKI GSE153803 C25Cl48 (muscular cell line) None siRNA KD, RNA-seq [32]

2 ELAVL2 GSE69092 Primary neural progenitor cells 0/3 shRNA KD, RNA-seq [33]

3 EIF2S1 GSE80933 HepG2 (human liver cancer cell line) 2656/2748 shRNA KD, RNA-seq [34]

GSE80900 K562 (lymphoblasts) 37/25 shRNA KD, RNA-seq

4 SRSF3 GSE98016 MDA-MB231 (epithelial cell line from 
breast cancer tissue)

2909/3394 shRNA KD, RNA-seq [35]

GSE130501 Primary glioma stem-like cells (GSCs) 257/180 CRISPR KO, RNA-seq [36]

GSE177820 K562 (lymphoblasts) 2277/1455 CRISPR KO, RNA-seq [34]

GSE71095 HeLa cells 36/2 siRNA KD, RNA-seq [37]

GSE71745 A2780 (ovarian cancer cell line) None siRNA KD, microarray [37]

5 IGF2BP2 GSE80946 K562 (lymphoblasts) 1144/289 shRNA KD, RNA-seq [34]

GSE80890 HepG2 (human liver cancer cell line) 1709/1926 shRNA KD, RNA-seq

GSE146726 UMUC3 (Bladder carcinoma) 472/631 siRNA KD, RNA-seq [38]

J8 566/511

6 EIF4B GSE177138 HepG2 (human liver cancer cell line) 9/7 CRISPR KO, RNA-seq [34]

GSE80923 K562 (lymphoblasts) 20/43 shRNA KD, RNA-seq

GSE80875 HepG2 (human liver cancer cell line) 2490/2474

7 SNRNP70 GSE88425 HepG2 (human liver cancer cell line) 1960/1877 shRNA KD, RNA-seq

8 FMR1 GSE177341 K562 (lymphoblasts) 1346/1058 shRNA KD, RNA-seq

GSE117248 hiPSC-derived neurons 2788/2864 KO, RNA-seq [39]

9 DAZAP1 GSE88637 K562 (lymphoblasts) 261/51 shRNA KD, RNA-seq [34]

GSE88114 HepG2 (human liver cancer cell line) 531/651

GSE80929 HepG2 (human liver cancer cell line) 1450/1060

GSE153803 C25Cl48 (Muscular cell line) None siRNA KD, RNA-seq [32]

GSE97262 SH-SY5Y (neuroblastoma cell line) 1684/3346 [40]

10 MBNL1 GSE149435 MDA-MB-231 (epithelial breast cancer 
cell line)

673/693 siRNA KD, RNA-seq [41]

GSE114383 PC3 (Prostate cancer cell line) 903/15 Antisense oligonucleotide-mediated KD, 
RNA-seq

[42]

GSE41987 HeLa None MBNL1-overexpression, microarray -

GSE88116 K562 (lymphoblasts) 1467/527 shRNA KD, RNA-seq [34]

GSE76487 MDA-MB-231(breast cancer cell line) 0/6 shRNA KD, RNA-seq [43]

GSE153803 C25Cl48 muscular cell line None siRNA KD, RNA-seq [32]
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was found to have a higher expression of the hnRNP 
family RBPs, except hnRNPH1 and hnRNPDL.

Discussion
Psychiatric conditions such as schizophrenia, major 
depression, and bipolar disorders often manifest as 
co-morbidities [3, 4]. Understanding the genetic and 

regulatory basis of psychiatric co-morbidities could pro-
vide insights into their molecular underpinnings and 
open-up potential therapeutic strategies. The available 
research reports on gene expression dysregulation in psy-
chiatric conditions have focused on microRNA-mediated 
processes, alternative splicing, epigenetics, and non-cod-
ing RNAs [11–14]. Recent studies have established RBPs 

Fig. 2  Effect of the depletion of psychiatric disorder-associated RBPs on global gene expression regulation by RBPs. Transcriptomic changes in 
human cell lines subjected to genetic manipulation (knock-down/knockout) of the selected RBPs were analysed to identify up/downregulated 
genes (differentially expressed genes/DEGs). The untranslated regions (UTRs) of DEGs were screened to identify overrepresented target motifs 
of known RBPs, using Transite (https://​trans​ite.​mit.​edu/) [27]. A number of RBPs with overrepresented binding sites in the UTRs of DEGs (y-axis) 
associated with the selected RBPs (x-axis) are shown. Overall, 3’UTRs were found to be highly enriched for RBP target motifs

Table 2  Differential gene expression and RBP analysis of transcriptome datasets from post-mortem human brain samples

a Prefrontal cortex
b Dorsolateral prefrontal cortex

S. No Dataset [Reference] Disorders Sample size Brain regions No. of DEGs (control 
vs. diseased brain 
samples)

RBPs influencing 
differential 
expression

1 GSE53987 [44] MDD, BD, and SCZ BD:18–19
Control:17–19; 
SCZ:15–18

Hippocampus, PFCa, 
and striatum

MDD and BD: none; 
SCZ: 4835 (hippocam-
pus), 19 (PFC)

NA

2 GSE92538 [45] MDD, BD, and SCZ BD: 12
Control: 56
MDD: 29
SCZ:31

DLPFCb BD: none; SCZ: 681; 
MDD: 1760

MDD: 97
SCZ: 94

3 GSE120340 [46] BD and SCZ BD with psychosis: 6
BD without psycho-
sis: 4
SCZ: 10
Control: 10

DLPFCb None NA

4 GSE35977 [47] BD, depression, and 
SCZ

BD: 45
Control: 50
Depression: 14
SCZ: 51

Parietal cortex BD and depression: 
none; SCZ: 38

NA

5 GSE35974 [48] BD, depression, and 
SCZ

BD: 37
Control: 50
Depression: 13
SCZ: 44

Cerebellum BD: 953; depression: 6; 
SCZ: 373

BD: 15
SCZ: 1

6 GSE12679 [49] BD and SCZ BD: 5
Control: 5–6
SCZ: 11

Endothelial cells/
neurons isolated from 
post-mortem DLPFCb

None NA

https://transite.mit.edu/
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as  a dominant class of regulatory proteins influencing 
multiple aspects of transcript regulation [15]. However, 
their potential involvement in psychiatric disorders is 
only beginning to be understood. RBPs form protein–
protein interaction networks which could act as master 
regulators of gene expression [23, 50]. The present study 
employed computational approaches to identify RBPs 
potentially driving gene expression dysregulation in psy-
chiatric conditions and co-morbidities. As a result, RBP 
network consisting of hub proteins including hnRNP, 
SRSF, PCBP family members, as well as Matrin3, PTBP, 
and PABPN1, was identified to be potentially involved in 
psychiatric co-morbidities.

To begin with, PsyGeNET, a database of genes asso-
ciated with psychiatric disorders [26], was screened to 
find the RBPs implicated in various psychiatric disor-
ders, identifying ten RBPs, viz. QKI, ELAVL2, EIF2S1, 
SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, 
and MBNL1. These RBPs are known to regulate multi-
ple aspects of neural biology, thereby influencing disease 
conditions. The mRNA levels of QKI isoforms QKI5, 6, 
and 7 have been reported to be strongly perturbed in 
several cortical regions and hippocampus, in schizo-
phrenic patients [51]. QKI has been implicated in astro-
cyte maturation in mouse brain, wherein it was found to 

Fig. 3  Number of RBPs potentially driving differential gene 
expression in diseased post-mortem human brain samples. 
Differentially expressed genes within the transcriptome datasets 
of post-mortem human brain samples (schizophrenia/SCZ, major 
depressive disorder/MDD, and bipolar disorder/BD) were analysed 
to identify the potential RBPs driving gene expression changes in 
disease conditions. Thirteen RBPs (CPEB3/CPEB4, DAZAP1, ELAVL1/
ELAVL3, hnRNPC, hnRNPCL1, PCBP4/PCBP1/PCBP3, PCBP4/PCBP3, 
PTBP1/PTBP2/ROD1, RBMS2/RBMS1, SF3B4, TARDBP, U2AF2, and 
YBX2/CSDA) were found to be involved in the three disorders 
considered, indicating their potential central roles in multiple 
disorders

Fig. 4  Gene ontology analysis of the identified RBPs. Biological processes associated with the common RBPs were identified via gene ontology 
(GO) enrichment analysis (ShinyGO v0.75; http://​bioin​forma​tics.​sdsta​te.​edu/​go/) [31]. Significantly enriched GO terms were identified with FDR 
cut-off of 0.05, using human database

http://bioinformatics.sdstate.edu/go/
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be important in stabilizing its target transcripts [52]. QKI proteins are now known to regulate multiple aspects of 

Fig. 5  Protein–protein interaction networks of the identified RBPs, and significant modules within the network. a The interaction network was 
obtained through STRING database (v11.5) (https://​string-​db.​org/), using default settings. b-e Subsequently, significant modules within the network 
were identified using Cytoscape (v3.8.0) [29], through the MCODE plug-in. Four modules were identified, having a high degree of connectivity with 
other proteins in the network

Fig. 6  Top 20 hub RBPs in the protein interaction network and their expression levels. a The hub RBPs were identified using cytoHubba plug-in [30] 
of Cytoscape (v3.8.0), ranked by maximal clique centrality (MCC) method. b Gene expression levels in different regions of the brain were obtained 
from the human protein atlas (https://​www.​prote​inatl​as.​org/)

https://string-db.org/
https://www.proteinatlas.org/
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gene expression regulation, including alternative splic-
ing, mRNA stability, transcription, and translation [53]. 
ELAVL2 is known to be associated with schizophrenia 
and has been reported to be involved in regulation of 
MMP-9 (Matrix metalloproteinase-9, implicated in sev-
eral disorders including those of nervous system) mRNA 
stability in hippocampal neurons [54]. FMRP, encoded by 
FXR1, is widely studied for its involvement in brain func-
tion and plasticity. Mutations in FXR1 are known to be 
associated with several psychiatric disorders including 
autism spectrum disorders, attention deficit and hyper-
activity disorder, obsessive–compulsive disorder, and 
substance abuse [55, 56]. SRSF3 (serine-/arginine-rich 
splicing factor 3) is a member of SR family RBPs, involved 
in multiple regulatory processes including alternative 
splicing and polyadenylation, mRNA export, translation, 
and also microRNA processing [57]. SRSF3 is also impli-
cated in bipolar disorder, wherein its mRNA levels were 
found to be elevated in peripheral white blood cells [58]. 
Aberrant mRNA translation is associated with a number 
of psychiatric conditions including schizophrenia, major 
depression, and bipolar disorder [59]. The translation ini-
tiation factor EIF4B was reported to be associated with 
major depressive disorder, wherein its levels were found 
to be reduced in prefrontal cortices of MDD patients 
[60]. It was also reported to be potentially involved 
in neuronal plasticity and synaptic changes [61]. The 

expression of EIF2, another initiation factor, was found 
to be dysregulated in schizophrenia [62]. EIF2S1 is a 
main initiation factor controlling protein synthesis, with 
important roles in cellular stress response associated with 
mitochondrial dysfunction in psychiatric disorders [63]. 
IGF2BP2 was reported to be involved in susceptibility to 
schizophrenia, indicating potential similarities in genetic 
bases of schizophrenia and diabetes [64]. DAZAP1 is a 
conserved hnRNP protein potentially involved in mRNA 
localization, alternative splicing, and translation [65] 
and is also a potential marker of bipolar disorder and 
schizophrenia [66]. On PsyGeNET database, SNRNP70, 
a major component of spliceosome, was associated with 
alcohol dependence. This protein was reported to regu-
late local protein synthesis in the synapses and also influ-
ence axonal growth and synapse formation [67]. MBNL1 
is another protein involved in splicing, and a marker of 
schizophrenia [68]. Thus, multiple RBPs regulating tran-
script splicing, localization, and stability were found to be 
associated with psychiatric disorders.

RBPs are known to form interactive clusters and 
chains, and co-bind to their targets. Such clusters could 
contain cooperating/competing RBPs, giving rise to com-
plex regulatory modules [23]. In order to get insights 
into multi-RBP networks modulating gene expression, 
it would be important to identify the RBPs potentially 
interacting with psychiatric disorder-associated RBPs. To 
this end, transcriptome studies related to gene expression 
changes in response to genetic manipulation (knockout/
knock-down/overexpression) of the selected RBPs were 
identified, followed by their analysis to index all the RBPs 
which could be influencing differential gene expression. 
As a result, downregulation of individual RBPs associated 
with psychiatric disorders was found to result in global 
gene expression changes potentially driven by multi-
ple other RBPs. 75–100 RBPs were found to influence 
transcriptomic changes in response to the depletion of 
EIF2S1, SRSF3, IGF2BP2, FMR1, DAZAP1, and MBNL1, 
mainly through the 3’UTRs of DEGs.

Subsequently, publicly available transcriptome data 
from diseased and control human brain samples were 
analysed to identify RBPs potentially driving differen-
tial gene expression in multiple psychiatric disorders, 
which could be an underlying molecular feature of psy-
chiatric co-morbidities. Next, the RBPs obtained via the 
two approaches (analyses of in  vitro and human brain 
transcriptomes) were compared to identify those RBPs 
commonly present in both the sets, which yielded 132 
RBPs. These RBPs were found to be involved in multiple 
processes of post-transcriptional regulation, including 
splicing, mRNA transport, localization, and stabiliza-
tion. Since mRNA transport and localization could have 
a profound impact on neuronal processes and plasticity 

Table 3  Top 20 hub proteins identified in the RBP network

Rank Hub RBP Protein name

1 HNRNPA1 Heterogeneous nuclear Ribonucleoprotein A1

2 HNRNPK Heterogeneous nuclear Ribonucleoprotein K

3 U2AF2 U2 small nuclear RNA auxiliary factor 2

4 HNRNPL Heterogeneous nuclear Ribonucleoprotein L

5 HNRNPDL Heterogeneous nuclear Ribonucleoprotein D like

6 SRSF1 Serine- and arginine-rich splicing factor 1

7 SRSF3 Serine- and arginine-rich splicing factor 3

8 HNRNPH1 Heterogeneous nuclear ribonucleoprotein H1

9 PTBP1 Polypyrimidine tract-binding protein 1

10 KHDRBS1 KH RNA-binding domain containing, signal 
transduction-associated 1

11 HNRNPC Heterogeneous nuclear ribonucleoprotein C

12 PCBP1 Poly(rC)-binding protein 1

13 SNRNP70 Small nuclear ribonucleoprotein U1 subunit 70

14 PCBP2 Poly(rC)-binding protein 2

15 HNRNPR Heterogeneous nuclear ribonucleoprotein R

16 HNRNPF Heterogeneous nuclear ribonucleoprotein F

17 MATR3 Matrin3

18 SRSF6 Serine- and arginine-rich splicing factor 6

19 SRSF9 Serine- and arginine-rich splicing factor 9

20 PABPN1 Poly(A)-binding protein nuclear 1
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[69], RBPs controlling these processes could potentially 
contribute to local differential gene expression within the 
neurons and synapses. For example, RBPs such as TDP-
43 (Transactive Response DNA-Binding Protein 43) and 
SMN (survival motor neuron) are known to influence 
local mRNA translation within axons and dendrites [70].

An analysis of potential interactions between the iden-
tified RBPs showed an extensive network. Four discrete 
modules were identified within this network. The larger 
module (with 37 nodes and 615 edges) was composed of 
hnRNP, SRSF, PCBP, and ELAVL family RBPs, implicat-
ing their widespread interactions. In agreement with this 
observation, further analysis of the network also identi-
fied hnRNP, SRSF, and PCBP family RBPs to be among 
the hub proteins. hnRNP family RBPs associate with the 
pre-mRNA and control their splicing, stability, and trans-
lation. Multiple hnRNPs have been implicated in neuro-
logical disorders and cancers. For example, hnRNPA1, 
A2, F, H, and K are known to regulate splicing, transla-
tion, and stability of the target transcripts, and are asso-
ciated with amyotrophic lateral sclerosis [71]. hnRNPA2 
and hnRNPC1 were found to be associated with Alzhei-
mer’s disease (AD), while hnRNPC1 is involved in frag-
ile X syndrome [71]. These proteins interact with other 
RBPs, and disrupting such interactions could contrib-
ute to diseases like spinal muscular dystrophy and ALS 
[71]. hnRNPA1, which was the top ranked hub protein, 
is known to be associated with several neurological dis-
eases including ALS, SMN, multiple sclerosis (MS), AD, 
and Huntington’s disease [72]. Mutations and altered 
expression of hnRNPA1 could lead to dysregulated splic-
ing, translation, and transport of the target transcripts 
[72]. PABPN1 is associated with oculopharyngeal muscu-
lar dystrophy (OPMD), characterized by (GCN)n muta-
tion [73]. The SRSF proteins are involved in regulating 
alternative splicing [74]. SRSF1, 3, 6, and 9 were found to 
be among the hub proteins of the RBP network. SRSF1 
is known to be important in functioning of T cells and 
is implicated in autoimmune diseases [75]. SRSF3 is 
involved in alternative splicing and polyadenylation, 
mRNA export, and also miRNA processing. Further, 
it is also associated with bipolar disorder, tauopathies, 
and AD [57], while SRSF6 was reported to be potentially 
associated with Huntington’s disease [76]. PCBP1 and 2 
are also potentially associated with neurological condi-
tions. The target transcripts of PCBP1 were reported to 
be associated with neuropathies [77], while PCBP2 was 
found to be downregulated in ALS [78]. Matrin3 is an 
established RBP associated with ALS [79], which was 
also detected to be a hub RBP in the network. Thus, the 
hub proteins identified in the RBP network in this study 
are known to be involved in a number of neurological 

conditions, which suggests a shared molecular basis 
underlying these disorders.

The potential dysregulation of RBP activity in psychiat-
ric disorders is recently being examined. SF3B4 (splicing 
factor 3B subunit 4) was associated with ADHD, bipo-
lar disorder, and major depression [22]. Also, EFTUD2 
(Elongation Factor Tu GTP-Binding Domain-Contain-
ing 2) was associated with ADHD, bipolar disorder, and 
schizophrenia, providing insights into shared molecular 
dysregulation in multiple psychiatric disorders [22]. Thus, 
the present study catalogued RBPs which could be poten-
tially driving psychiatric co-morbidities. Future studies in 
this regard could elucidate the functional importance of 
these RBPs in disease conditions.

Conclusions
The present study involved the identification of RBPs 
associated with psychiatric disorders and also their 
interaction networks. The RBPs potentially driving gene 
expression changes in diseased human brain samples 
were also identified. Subsequently, hnRNP, PCBP, and 
SRSF family RBPs and a few other RBPs were found to 
form highly inter-connected hubs, representing their 
interactions with multiple other RBPs. These RBPs func-
tioning as multi-protein networks could regulate multiple 
post-transcriptional regulatory processes. Disruption of 
one or a few RBPs could lead to dysfunction of the larger 
modules and networks, leading to multiple psychiatric 
conditions. The number of human studies conducted 
in this regard so far is limited, which could be a poten-
tial limitation of the present study. In future, large-scale 
functional studies to delineate the involvement of these 
RBPs in psychiatric co-morbidities could provide insights 
into gene regulatory processes underlying such condi-
tions, which can help identify drug targets and design 
effective treatment strategies.
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