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Abstract 

The coronavirus disease 2019 (COVID-19) pandemic has caused human tragedy through the global spread of the 
viral pathogen SARS-CoV-2. Although the underlying factors for the severity of COVID-19 in different people are still 
unknown, several gene variants can be used as predictors of disease severity, particularly variations in viral recep-
tor genes such as angiotensin-converting enzyme 2 (ACE2) or major histocompatibility complex (MHC) genes. The 
reaction of the immune system, as the most important defense strategy in the case of viruses, plays a decisive role. 
The innate immune system is important both as a primary line of defense and as a trigger of the acquired immune 
response. The HLA-mediated acquired immune response is linked to the acquired immune system. In various dis-
eases, it has been shown that genetic alterations in components of the immune system can play a crucial role in how 
the body responds to pathogens, especially viruses. One of the most important host genetic factors is the human 
leukocyte antigen (HLA) profile, which includes HLA classes I and II and may be symbolic of the diversity of immune 
response and genetic predisposition in disease progression. COVID-19 will have direct contact with the acquired 
immune system as an intracellular pathogen after exposure to the proteasome and its components through class 
I HLA. Therefore, it is assumed that in different genotypes of the HLA-I class, an undesirable supply causes an insuf-
ficient activation of the immune system. Insufficient binding of antigen delivered by class I HLA to host lymphocytes 
results in uncertain identification and insufficient activation of the acquired immune system. The absence of secretion 
of immune cytokines such as interferons, which play an important role in controlling viral infection in the early stages, 
is a complication of this event. Understanding the allelic diversity of HLA in people infected with coronavirus com-
pared with uninfected people of one race not only allows identification of people with HLA susceptible to COVID-19 
but also provides better insight into the behavior of the virus, which helps to take effective preventive and curative 
measures earlier.
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Introduction
A new coronavirus known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) was first reported 
in Wuhan, China, in December 2019. The rapid spread 
of this viral pathogen around the world has resulted in 
619 million confirmed cases of infection and more than 
6,537,636 deaths by October 2022 [1–3]. This virus is 
similar to a number of previous beta coronaviruses such 
as SARS and middle east respiratory syndrome (MERS), 
which can cause lower respiratory tract infections and 
even death [4, 5]. Of note, the mortality rate for the new 
coronaviruses is 3.78%, which is lower than two previous 
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pandemics, SARS-CoV (15%) and MERS (37%) [6, 7]. 
Reportedly, the severity of infection of SARS-COV-2 var-
ies from mild symptoms [8] to severe illness and even 
death. The incubation period (the time between expo-
sure and the onset of symptoms) can be up to two weeks 
[9]. Fever, fatigue, and dry cough are the most common 
symptoms of COVID-19. Various other symptoms may 
also occur, such as pain and bruising, stuffy nose, runny 
nose, sore throat, or diarrhea. To relieve the symptoms, 
infected people should receive supportive treatment [6]. 
Although the world is fighting the epidemic COVID-19 
by implementing quarantine measures and protocols 
as well as vaccinations [10], in reality, these efforts have 
been thwarted by many problems such as the confisca-
tion of vaccines and medical supplies [11, 12].

Host immunity against SARS‑Cov‑2
Viral infections can be effectively controlled by appro-
priate activation of cytotoxic T cells in response to 
antigen-presenting cells [13]. In this context, cluster of 
differentiation 4 (CD4) T cells (TCD4) play an important 
role in host immunity against SARS and MERS by stimu-
lating the production of virus-specific antibodies via B 
cells. Moreover, cytotoxic TCD8 cells can kill infected 
cells by recognizing MHC on the cells [14], highlighting 
the important role of T cells in controlling the patho-
genesis of these viral infections. On the other hand, T 
helper cells control infection by producing inflamma-
tory cytokines [15]. However, the abnormal release of 
cytokines such as some interleukins (IL 6, IL 1, IL 2, IL 
10), tumor necrosis factor-alpha (TNFα), and interferon-
gamma (IFN-γ) causes an uncontrolled response that 
leads to the destruction of lung tissue and even death 
[16–19], phenomenon known as the cytokine storm.

A cytokine storm describes how the immune system 
contributes to an uncontrolled and widespread inflam-
matory response [20]. A cytokine storm is a major con-
tributor to a more severe clinical course, as higher levels 
of CXCL10, CCL2, and TNFα were found in patients 
with COVID-19 who required admission to the ICU than 
in those who did not [21]. The immune system’s "attack" 
on the body immediately follows the cytokine storm, 
and in the most severe cases of COVID-19 infection, 
the result is death [4]. It has been reported that among 
the interleukins, IL-6 plays a more important role in the 
cytokine storm caused by coronavirus due to its involve-
ment in the regulation of the acute phase response [22]. 
However, much less is known about the biochemical and 
clinical implications of this immune system hyperactivity.

The presentation of viral fragments on the surface of 
host cells could be via MHC molecules, often referred 
to as human leukocyte antigen (HLA). The MHC, 
located on chromosome 6, plays an important role in the 

development of the immune response to protein anti-
gens [2]. MHCs are classified into three classes based 
on their tissue distribution and function. Epidemiologi-
cal studies have shown an association between various 
diseases and certain HLA alleles, including those caused 
by ribonucleic acids (RNA) viruses, such as SARS, influ-
enza, human immunodeficiency virus (HIV), hepatitis C, 
rabies, and other [23]. Compared with HLA class II, HLA 
class I plays a crucial role in viral infection by presenting 
viral antigens to  CD8+ T cells on the surface of infected 
cells, followed by recognition and destruction of the cells 
[24]. The likely effect of T cells in SARS-CoV-2 infection 
could be illustrated by the response of 40–60% of T cells 
in unexposed individuals to viral proteins due to a cross-
immune reaction with other coronaviruses in previous 
colds [25].

Pathogenesis of SARS‑CoV‑2
Understanding the susceptibility or resistance to a par-
ticular disease associated with the presence of specific 
alleles can be useful in drug manufacturing and develop-
ment and in identifying at-risk populations [26]. In this 
regard, COVID-19 can be prevented by lifelong immu-
nological memory using a vaccine based on natural 
protective immunity to SARS-CoV-2 infection [27, 28]. 
Therefore, it is important to find the reasons for the dif-
ferent clinical responses of infected individuals. In this 
context, reference can be made to polymorphisms in 
various genes, especially in viral receptor genes (ACE2) 
or genes involved in the diversity of immune responses 
(such as MHCs). Angiotensin-converting enzyme 2 
(ACE2) is a protein with multiple functions, including 
catalytic, amino acid transporter, and viral receptor [29]. 
The host receptor of SARS-CoV-2, ACE2, binds to cell 
membranes and acts as a transporter of the new virus 
[14]. Coronavirus entry is mediated by the spike S gly-
coprotein [30]. Following viral binding and membrane 
fusion, ACE2 is internalized, and its activity is down-
regulated on the target cell surface, leading to COVID-19 
infection [1].

MHC class I/II may be a symbol of the diversity of a 
person’s immune response and genetic predisposition 
to disease progression and immunity [31]. Detection of 
differences in HLA response to SARS-CoV-2 peptides in 
infected patients could be a potential factor for develop-
ing a personalized treatment based on individual risk. 
HLA polymorphism in different populations could have 
an impact on the susceptibility and severity of COVID-
19. In this context, a common specific allele may be more 
prevalent in a given population than others. In contrast, 
various HLA alleles in different populations might have 
similar binding sites for viral peptides [32, 33].
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Antigen presentation in SARS‑CoV‑2 infection
Specifically, MHC-I presents viral antigens via the 
direct involvement of endoplasmic reticulum amin-
opeptidase (ERAP) isoforms, ERAP1 and ERAP2 pro-
teins, which in turn can contribute to the recognition 
of the infected cell by CD8 + cytotoxic T lymphocyte 
(CTL) clones and trigger a protective immune response 
[34]. As shown in Fig.  1, during replication of SARS-
CoV-2 in host cells, viral antigens are processed by host 
proteasomes, and the resulting peptides are transported 
to the endoplasmic reticulum (ER) by the molecular 
transporter associated with antigen processing (TAP) 
[35]. In the endoplasmic reticulum, viral peptides are 
influenced by ERAP1 and ERAP2 to be presented in the 
clefts of MHC class I molecules. Finally, MHC I enables 
the monitoring of ongoing infections by CD8 + T cells 
[36].

Discussion
HLA genotypes and SARS‑CoV‑2
As shown in Table  1, many studies have been per-
formed on the HLA types involved in the susceptibility 
or severity of COVID-19. In describing these studies, 
we first discuss the significant relationship between 
viral infections with a similar pathogenicity mecha-
nism as SARS-CoV-2 and the HLA system. Then, we 
will evaluate SARS-CoV-2 in this regard. For example, 
Nguyen et  al. identified HLA-B*15:03 and found that 
individuals with this allele were more able to deliver 
viral peptides to the cell surface. In contrast, they pre-
dicted that the HLA-B*46:01 allele was the least able to 
bind to viral peptides, suggesting that individuals with 
this allele may have a weaker immune response and 
more severe symptoms [26]. In HIV-1 infection, which 
has a similar pathogenic mechanism to COVID-19, the 
presence of HLA-A*02:05 results in relative resistance 

Fig. 1 SARS-CoV-2 antigen presentation pathway through MHC-I molecules. Cells infected with SARS-CoV-2 produce various isoforms of 
endoplasmic reticulum aminopeptidase 2 (ERAP2) genes dimerized with either ERAP2-wild type (wt) or ERAP1-wt which can be presented on cells 
and recognized by specific CD8 + cytotoxic T lymphocytes (CTL). ER: endoplasmic reticulum; TAP: transporter associated with antigen processing 
[36]. Created with BioRender.com
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Table 1 Types of HLA that are involved in the susceptibility or severity of COVID-19

Authors (ref) Year Locality People/ Database HLA variants Trait

Abdelhafiz et al. [56] 2022 Egypt 69 people with COVID-19/ mild/ 
moderate/ severe

HLA-B*15 Protective

Yung et al. [47] 2021 Hong Kong 190 people with COVID-19/ 3892 
healthy controls

HLA-B*22 Susceptibility

Shkurnikov et al. [57] 2021 Moscow, Russia 111 people with COVID-19/ 428 
healthy controls

HLA-A*02:01
HLA-A*03:01
HLA-A*01:01

Protective
Protective
Susceptibility

Anzurez et al. [58] 2021 Japan 30 mild, 75 moderate, 51 Severe and 
22 Critical COVID-19

HLA- DRB1*09:01 Susceptibility

Weiner et al. [59] 2021 4 Countries (Germany, Spain, Switzer-
land and the United States)

435 people with COVID-19 HLA-C*04:01 Susceptibility

Langton et al. [60] 2021 North East of England 147 people with COVID-19/ 8514 
healthy controls/ IRAS project 
283,409; REC reference: 20/YH/0184

HLA-DRB1*04:01
HLA-DRB1*01:01

Protective
Protective

Romero Lopez et al. [61] 2021 28 states of Mexico TepiTool server from the IEDB Analy-
sis Resource database/ Total: 71,099

HLA-DRB1*01 Susceptibility

L Warren et al. [62] 2021 New York cohort 100 people with COVID-19/ 26 
healthy controls

HLA-DPA1*02:02
HLA-C*04:01
HLA- A*11:01

Susceptibility
Severity
severity

M A Naemi et al. [33] 2021 South Asia (Bangladeshis, Indians, 
and Pakistanis)

64 mild, 31 severe and 20 fatal 
COVID-19

HLA-B*51
HLA-B*35

Susceptibility
Protective

Sakuraba et al. [54] 2020 74 countries The Allele Frequency Net Database 
and worldometer.info

HLA-C*05 Susceptibility

Novelli et al. [50] 2020 Italy 99 severe or extremely severe 
COVID-19/ 1017 healthy controls

HLA-B*27:07 Susceptibility

Wang et al. [63] 2020 China/ Han people 82 people with COVID-19/3548 
healthy controls

HLA-C*07:29
HLA-B*15:27

Susceptibility
Susceptibility

Lorente et al. [64] 2020 Spain/ Canary Islands 72 severe COVID-19/ 3886 healthy 
controls

HLA-B*39
HLA-C*16

Susceptibility
Susceptibility

Correale et al. [65] 2020 Italy (different regions) Italian Bone Marrow Donors Registry 
(IBMDR) high-definition-analysis 
database

HLA-B*44
HLA-C*01

Susceptibility
Susceptibility

Pisanti et al. [49] 2020 Italy IBMDR high-definition-analysis 
database

HLA-A*01:01
HLA-B*08:01
HLA-C*07:01
HLA-DRB1*030:1

Susceptibility
Susceptibility
Susceptibility
Susceptibility

Warren et al. [1] 2020 China/ Wuhan 5 patients with COVID-19 HLA-A*24:02 Susceptibility

Tomita et al. [37] 2020 19 Countries (Allele Frequency Net Database)/ An 
in silico analysis

HLA-A*02:01
HLA-A*24:02
HLA-A*11:01

Susceptibility
Protective
protective

Toyoshima et al. [39] 2020 28 countries 12,343 SARS-CoV-2 genome 
sequences isolated from patients/
the reference SARS-CoV-2 sequence

HLA-A*11:01 protective

Lorente et al. [64] 2020 Spain/ Canary Islands 72 severe COVID-19/ 3886 healthy 
controls

HLA-A*32 protective

Iturrieta et al. [28] 2020 Spain 5 mild, 20 moderate and 20 severe 
COVID-19

HLA-B*15:03 protective

Pisanti et al. [49] 2020 Italy IBMDR high-definition-analysis 
database

HLA-A*02:01
HLA-B*18:01
HLA-C*07:01

Protective
protective protective

Littera et al. [66] 2020 Sardinian 182 SARS-CoV-2 patients/619 
healthy controls

HLA-A*02:05
HLA-B*58:01
HLA-C*07:01

Protective
Protective
protective
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to the disease. However, in the Thai population, some 
HLA alleles, including HLA-A*02:07 and HLA-B*51, 
have been associated with increased disease severity 
[37, 38].

Notably, HLA-Cw1502, DR0301, HLA-Cw*1502, 
DRB1*0301, HLA-B*15:02, A*02:06, A*68:01, A*02:22, 
and A*24:03 confer resistance to SARS-CoV-1 infection 
[39, 40]. It has also been reported that the MHC class 
I haplotype (HLA-B*-4601, HLA-B*-0703, HLA-Cw* 
0801, HLA-A*11:01, B*51:01, C* 14:02) and the MHC 
class II haplotype, HLA-DRB1*1202, are associated with 
increased susceptibility to SARS-CoV-1 [40–42]. Because 
the homology and pathogenicity mechanism of SARS-
Co-V are very similar to COVID-19, the HLAs likely 
mentioned in various studies, such as HLA-A*02:01, 
HLA-A*02:06, HLA-A*24:02, HLA-B*15:03, HLA-B*44, 
C*01, HLA-A*25, and HLA-B*08, also play a vital role in 
susceptibility or resistance to COVID-19 [39, 43, 44].

To better understand the relationship between HLA 
alleles and SARS-CoV-2 outcomes, we will describe addi-
tional studies in this section. The first study examined 
HLA-A*24:02 in a small group of the Wuhan population. 
Warren et al. found this allele in four of five individuals 
and described it as an allele associated with susceptibility 
to SARS-Cov-2 [45]. After the publication of the current 
article, the results of the study by Tomita et  al. showed 
that individuals carrying the alleles HLA-A*24:02 and 
HLA-A*11:01 have a relatively higher ability to present 
SARS-CoV-2 antigens than individuals carrying HLA-
A*02:01. In other words, they mentioned HLA-A*02:01 
as a susceptible allele for COVID-19 [46]. In another 
study, 190 patients infected with SARS-CoV-2 in Hong 
Kong were found to have an association between sero-
type HLA-B*22 and an increased risk of COVID-19 [47].

The association between mortality rate and frequency 
of HLA allele haplotypes was found in 28 countries. In 
addition, the HLA-A*11:01 allele was found to be associ-
ated with a lower mortality rate [48]. In addition, three 
studies have been conducted in different regions of Italy 
to investigate the HLA allele haplotype and the incidence 
and mortality of COVID-19. The first study found that 
HLA-B*44 and HLA-C*01 allele groups were associ-
ated with an increased incidence of COVID-19 [43]. In 
the second study, the authors found that HLA-A*01:01, 
B*08:01, C*07:01, and DRB1*030:1 were associated with 
increased incidence and mortality of COVID-19, whereas 
the HLA-A*02:01-B*18:01-C*07:01-BRB1*11:04 haplo-
type was associated with lower incidence and mortality 
[49]. In the third study, 99 Italian patients infected with 
the severe form of COVID-19 were compared with a 
control group of 1017 uninfected individuals. The results 
showed that the following HLA alleles were susceptible 
to SARS-CoV-2: HLA-B*27:07 from MHC class I and 

HLA-DRB1*15:01 and HLA-DQB1*06:02 alleles from 
MHC class II [50].

In another case–control study in China, two HLA-I 
alleles at high risk for SARS-CoV-2 were identified: 
HLA-C*07:29 and HLA-B*15:27 [44]. A study examining 
a small number of mild, moderate, and severe forms of 
COVID-19 patients in Spain also found that the number 
of SARS-CoV-2 peptides bound to HLA molecules was 
negatively associated with disease severity. Theoretically, 
the higher affinity of HLA-I to bind to SARS-CoV-2 pep-
tides was associated with the less severe forms of the dis-
ease [51].

Accordingly, the genome-wide association study 
(GWAS), involving 835 patients with severe forms of 
COVID-19 from Italy and 775 patients from Spain, did 
not identify any HLA alleles associated with the develop-
ment of infection or disease severity. Similar to the pre-
vious study, the high number of SARS-COV-2 peptides 
binding in the cleft of HLA-I molecules was found to be 
associated with the less severe forms of the disease [52].

It should be noted that information from studies with 
a large statistical population does not always show a 
significant association between HLA and COVID-19. 
For example, in a study of 3886 healthy controls and 72 
COVID-19 patients by Lorente et al. the HLAA*32 allele 
was found to be a protective allele, whereas the frequency 
of the HLA-C*16 and HLA-B*39 alleles was higher in 
infected individuals; however, the results were not statis-
tically significant [53].

Sakuraba et  al. examined the frequency of HLA class 
I alleles in 74 countries around the world using the 
Allele Frequency Net Database and the website www. 
world ometer. info. The results supported an associa-
tion between the HLA-C*05 allele and higher mortality 
after developing COVID-19 [54]. Evaluation of HLA for 
SARS-CoV-2 severity in the Sardinian population also 
showed a protective effect of the following HLA hap-
lotypes against SARS-CoV-2: HLA-A*02:05, B*58:01, 
C*07:01, and DRB1*03:01 [55].

Some studies have also examined the relationship 
between COVID-19 and HLA in patients with certain 
diseases, such as cancer. For example, no significant 
allelic relationship was found in the HLA genotype of 
lung cancer patients with and without COVID-19 [24].

SARS-CoV-2 mutations not only influence the 
COVID-19 course of the pandemic but also have a 
major impact on T-cell immunity, depending on the 
HLA supertype. Specifically, certain types of muta-
tions in the viral genome trigger a variety of CD8 + T 
cell targets. Mutational biases also affect epitope pres-
entation in a manner that depends on the HLA super-
type. An important point regarding the dependence 
on HLA supertype in infection with mutant variants 

http://www.worldometer.info
http://www.worldometer.info
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of SARS-CoV-2 is the differential modulation of T cell 
responses in different populations [27]. Based on the 
genetic landscapes of different populations, a way to 
predict infections and evaluate the efficacy of vaccines 
could be paved.

Conclusion
Although some studies have identified a specific HLA 
allele or allele group significantly associated with 
COVID-19 severity, the resulting data appear to be con-
troversial. In addition, in the largest study examining 
more than 1500 patients with severe forms of COVID-
19, no allelic association was found. Therefore, further 
studies should be performed to clarify the relationship 
between HLA alleles and COVID-19 development. 
Because of the diversity of HLAs and their various eth-
nic-genetic and geographic distributions  [67–70], it is 
essential to study the susceptible and protective HLA 
alleles against SARS-CoV-2 in each race to take effective 
preventive and curative measures.
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