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Abstract 

Background Congenital muscular dystrophies (CMD) and congenital myopathies (CM) are clinically and genetically 
heterogeneous groups of neuromuscular disorders resulting in prenatal or early-onset hypotonia, muscle weakness, 
myogenic pattern, and dystrophic or myopathic features on muscle biopsy. In this study, we provide a genetic and 
molecular characterization of CMD and CM in Moroccan patients.

Patients and methods In this cohort, we investigated 23 Moroccan patients from 21 families who consented 
to genetic testing. Firstly, genetic analysis in the probands was conducted by next-generation sequencing (NGS) 
technology using two approaches: targeted NGS gene panel and clinical exome sequencing to study the mutational 
spectrum and to achieve an accurate diagnosis of these hereditary myopathies in Morocco.

Results NGS data analysis revealed 16 pathogenic variants harbored in 17 unrelated patients that were geneti-
cally resolved. The phenotypic forms identified were in order: LAMA2-related CMD (52.94%), LMNA-CMD (23.53%), 
and RYR1-related congenital myopathy (17.65%). The congenital titinopathy group was less frequent (5.88%). Here, 
we identified two novel recessive variants in LAMA2 gene: c.2164G > A (p.Glu722Lys), and c.(6992 + 1_6993-1)_
(7300 + 1_7301-1)del p.(Pro2332Glnfs*10). Additionally, we expanded the phenotypic spectrum of a known heterozy-
gous LMNA c.1718C > T p.(Ser573Leu) variant, and we report it for the first time to a form of CMD.

Conclusions The introduction of the NGS tool in clinical practice allowed us to improve the diagnosis and the man-
agement of these neuromuscular diseases and to highlight the importance of molecular genetic diagnosis of these 
disorders that are underestimated in the Moroccan population.

Keywords Congenital muscular dystrophy, Congenital myopathy, Neonatal hypotonia, Moroccan patients, 
Expanding the phenotypic and mutation spectrum

Introduction
Congenital muscular dystrophies (CMD) and congenital 
myopathies (CM) are a group of genetically and clini-
cally heterogeneous hereditary neuromuscular disorders 
with autosomal dominant and/or recessive inheritance. 

The frequency of various phenotypic forms of CMD and 
CM varies between studies, depending on the cohort size 
and the patients’ ethnic origins [1–3]. They are charac-
terized mostly by hypotonia during neonatal or early 
infancy, stable or progressive muscle weakness of differ-
ent limbs, contractures, motor developmental delay, and 
a myogenic pattern on electromyogram (EMG) [4, 5]. In 
the case of CMD, other organ systems, such as the brain 
and eyes, may be affected, as seen in Walker-Warburg 
syndromes (WWS) or muscle–eye–brain diseases [4]. 
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CMD’s histopathological pattern shows a degenerative 
primary muscle with dystrophic features, associated with 
moderate to high creatine kinase (CK) serum levels. On 
the other hand, CM’s cases are characterized by archi-
tectural abnormalities in the muscle fibers with specific 
structural changes, associated with normal to moder-
ate CK [6–8]. Nonetheless, both forms most often have 
a myogenic pattern, and some CM forms have a normal 
EMG [9, 10].

The classification of these forms has traditionally been 
based on a combination of three parameters: clinical 
presentation, muscle histopathology and immunohisto-
chemistry, and genetic data [11, 12]. In the last few years, 
next-generation sequencing has accelerated the identifi-
cation of new genes involved in these disorders, leading 
to an expansion of their spectrum. NGS has revealed that 
the forms of these diseases can have a substantial overlap 
between the causative genes and clinical and histopatho-
logic features of congenital myopathies [13].

Physicians confront a great challenge to have an accu-
rate diagnosis of these complex muscle diseases. This is 
not only due to their high genotype and phenotype vari-
ability but also to the overlap of clinical signs between 
congenital muscular dystrophy and congenital myopa-
thy [14, 15]. The diagnosis is made even more difficult 
by the fact that congenital hypotonia is a typical early 
clinical symptom in CMD and CM, but it is not a spe-
cific sign to either [16, 17]. Although histopathology and 
immunohistochemistry are central in both the diagnosis 
and the accurate identification and classification of these 
diseases, they are not done routinely in Morocco, as it is 
often unavailable to patients. The diagnosis is thus based 
on a clinical evaluation, coupled with various paraclinical 
tests (CK level, brain MRI, ocular, and cardiac investiga-
tion). Because of this reality, and given its analytic accu-
racy, high throughput, and potential cost-effectiveness, 
the NGS approach has quickly become an indispensable 
tool and a gold standard for the early diagnosis of these 
neuromuscular disorders in Morocco [18–20].

This present study aims to highlight the major contri-
butions of Next-Generation Sequencing technology, as 
a first-line strategy, in achieving an accurate and rapid 
diagnosis of these rare neuromuscular disorders, and in 
establishing, in the future, a better molecular epidemio-
logical characterization of CMD and CM forms in the 
Moroccan population.

Patients and methods
Study subjects
This cohort included a total of 23 Moroccan patients 
from 21 families referred between 2017 and 2022 to our 
Department of Medical Genetics for molecular genetic 

analysis with a suspected diagnosis of early-onset myo-
pathy, including congenital muscular dystrophy and con-
genital myopathy. All patients were clinically assessed 
by pediatric neurologists. Inclusion criteria consisted in 
patients with early-onset hypotonia, muscle weakness, 
and delayed motor development, but non-inclusion cri-
teria were the differential diagnosis of congenital muscle 
diseases such as congenital myasthenic syndromes, meta-
bolic disorders and severe infectious diseases. Patients 
with neurogenic patterns seen on EMG and patients 
diagnosed with spinal muscular atrophy (SMA) were 
excluded. Moreover, the availability of histopathological 
features in muscle biopsy was available in three cases, and 
radiological findings data (cMRI/CT scan) were available 
in 13 cases. Written informed consent was obtained from 
all of the minor patients’ parents or adult patients before 
DNA collection by referring physicians in order to imple-
ment the genetic analysis.

NGS technology was used as a powerful genetic tool 
for the investigation of these patients.

Next‑generation sequencing workflow
Genomic DNA extraction
Genomic DNA (gDNA) was extracted from 200  µl of 
peripheral blood through manual extraction with a 
commercial Kit based on Silica Spin Column isolation 
technology (PureLink™ Genomic DNA Mini Kit, Invitro-
gen™), and by semi-automated sample preparation using 
KingFisher Duo Prime with an automatable magnetic 
bead-based sample preparation technology (MagMAX 
DNA Multi-Sample Ultra 2.0 Kit, Applied Biosystems™). 
These two extraction methods achieve high molecular 
gDNA, following standard protocols according to the 
manufacturer’s instructions. gDNA purity and quantity 
were determined for each sample using NanoDrop™ 2000 
Spectrophotometer (Thermo Scientific™) followed by 
Qubit 3.0 Fluorometer with the Qubit dsDNA HS Assay 
Kit (Invitrogen; Thermo Fisher Scientific) to accurately 
measure DNA quantity.

Targeted gene panel approach using ion torrent platform
Seventeen unrelated patients were investigated by a mul-
tigene panel; six of them (P2 to P7) were analyzed by 
manual NGS workflow according to the manufacturer’s 
protocols and sequenced on the Ion PGM platform using 
Ion AmpliSeq On-Demand panel of 24 targeted genes, 
in which 17 genes (TCAP; LARGE1; ITGA7; LAMA2; 
COL6A1, COL6A2, COL6A3; DNM2; PMM2; DPM2; 
FKRP; FKTN; LMNA; POMT1; POMT2; POMGNT1, 
SEPN1) are involved in CMD, CM, and/or congenital 
disorder of glycosylation (CDG). Patient (P3) was already 
(diagnosed) in our lab and it was published [21].
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The remaining 11 patients (P11 to P13, P15 to P22) 
were analyzed by automated NGS workflow using Ion 
Chef™ system and sequenced on the Ion GeneStudio™ 
S5 system. These 11 patients were diagnosed through 
sequencing of 26 targeted genes of myopathies, in which 
18 genes (TCAP; RYR1; LARGE1; ITGA7; LAMA2; 
COL6A1, COL6A2, COL6A3; DNM2; PMM2; DPM2; 
FKRP; FKTN; LMNA; POMT1; POMT2; POMGNT1, 
SEPN1) are involved in CMD, CM, and/or CDG.

Eight targeted libraries per run were prepared on the Ion 
Chef™ system from 10  ng (0.67  ng/μl) of gDNA samples 
using Ion AmpliSeq™ Kit for Chef DL8 (Thermo Fisher 
Scientific), which was performed in accordance with the 
manufacturer’s instructions. Template preparation, chip 
loading, and sequencing of 275 base–read next-generation 
sequencing libraries were performed with the Ion 510™ 
& Ion 520™ & Ion 530™ Kit (Thermo Fisher Scientific) in 
accordance with the manufacturer’s protocol. Templated 
ISPs are enriched and loaded onto an Ion 510™ Chips v2 BC 
and sequenced on Ion GeneStudio™ S5 System with a read 
length set at 200 bp protocol and a number of flows at 550.

Raw data were processed for base calling, trimming, 
demultiplexing, alignment to the human reference 
genome assembly (Feb. 2009, GRCh37/hg19), and variant 
calling on the Ion Torrent Server (Thermo Fisher Scien-
tific) using the Torrent Suite software version 5.12.3. The 
identified variations were annotated with Ion Reporter 
software 5.18.2.0 (Thermo Fisher Scientific).

Clinical exome sequencing approach using Illumina platform
Four unrelated patients (P1, P9, P10, and P23) from our 
series were able to benefit from clinical exome sequenc-
ing analysis. The clinical and molecular data of the 
patient (P9) was previously published by our team [22]. 
Clinical Exome Solution v2 kit (SOPHiA Genetics, Bos-
ton, USA) covers the coding regions of 4490 genes (tar-
get region of 12 Mb) related to rare and known inherited 
diseases. It was used for the enrichment of the conserved 
coding regions in these four probands’ DNA. Paired-
end exome sequencing was performed on an Illumina 
 NextSeq® 500 sequencer (Illumina Inc., San Diego, CA, 
USA) with a read length of 150 × 2 according to the man-
ufacturer’s protocols.

Following sequencing, a custom cloud-based infor-
matics pipeline was used to conduct alignment, variant 
identification, and annotation of sequencing data from 
FASTQ files using Sophia  DDM® platform for genetic 
analysis of variants.

Variant filtering and pathogenicity interpretation 
of candidate variants
Common genetic variants or single nucleotide poly-
morphisms with a minor allele frequency (MAF) ≥ 1% 

were excluded by referring to public genetic databases, 
including dbSNP database (https:// www. ncbi. nlm. nih. 
gov/ snp/), 1000 Genomes Project (1000G; http:// www. 
inter natio nalge nome. org/), the Genome Aggregation 
Database (gnomAD; https:// gnomad. broad insti tute. 
org/). Moreover, MAF ≥ 2% in local resources (in-house 
database) was filtered out. The clinical significance of 
annotated variations was assessed with ClinVar data-
base (https:// www. ncbi. nlm. nih. gov/ clinv ar/), Leiden 
Open Variation Database (LOVD; https:// www. lovd. nl/), 
Online Mendelian Inheritance in Man (http:// www. ncbi. 
nlm. nih. gov/ omim), and PubMed (https:// pubmed. ncbi. 
nlm. nih. gov/). The pathogenicity of the candidate vari-
ants was then assessed through a set of criteria, accord-
ing to the American College of Medical Genetics and 
Genomics (ACMG) guidelines. The prediction of the 
pathogenicity of the identified variants was performed 
on MutationTaster (http:// www. mutat ionta ster. org/), 
Sorting Intolerant From Tolerant (SIFT; https:// sift. bii.a- 
star. edu. sg/), Polymorphism Phenotyping (PolyPhen v2; 
http:// genet ics. bwh. harva rd. edu/ pph2/), and Protein 
Variation Effect Analyzer (PROVEAN; http:// prove an. 
jcvi. org). The variants predicted to be benign or tolerated 
were filtered out.

All variants and regions included in the genes of inter-
est with < 20X coverage depth were manually verified 
in the Integrative Genomics Viewer (IGV) version 2.5.0 
(https:// softw are. broad insti tute. org/ softw are/ igv/).

Confirmation of the identified variants
Sanger sequencing
Single nucleotide variants (SNV) and small insertion–
deletions (Indel) identified in this study were confirmed 
by DNA Sanger sequencing in the probands using spe-
cific primer pairs (Additional file 1: Table S1). The segre-
gation analysis was assessed on some families when the 
samples of the parents and/or siblings were available.

The Sanger sequencing was performed following the 
standard protocol of ABI Prism  BigDye® Terminator v3.1 
Cycle Sequencing Kit (Applied  Biosystems®). They were 
sequenced on an ABI 3500 automated Genetic Analyzer 
(Applied Biosystems). The sequences were analyzed by 
the Sequencing Analysis software version 7.

Multiplex PCR and quantitative real‑time PCR
Firstly, the large exon deletions in LAMA2 gene were 
confirmed by multiplex PCR (MPCR) performed on the 
genomic DNA of the patient (P11). Two pairs of primers 
were used to amplify exon 50 and exon 58 (internal con-
trol) of LAMA2 gene. The final volume of MPCR reaction 
was 20  µl using Platinum™ Multiplex PCR Master Mix 
(Applied Biosystems™). Migration of fragments amplified 
was performed on electrophoresis gel using 3% agarose 

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
http://www.internationalgenome.org/
http://www.internationalgenome.org/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.lovd.nl/
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
http://www.mutationtaster.org/
https://sift.bii.a-star.edu.sg/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org
http://provean.jcvi.org
https://software.broadinstitute.org/software/igv/


Page 4 of 17El Kadiri et al. Egyptian Journal of Medical Human Genetics           (2023) 24:36 

and 1% nusieve and stained with SYBR™ Safe DNA Gel 
Stain (Invitrogen™).

Afterward, this copy number variant was subsequently 
confirmed by quantitative real-time PCR (qPCR) in the 
proband and her parents using  SYBR® Green dyes and 
loaded on a QuantStudio™ 7 Flex Real-Time PCR System 
(Applied Biosystems, Thermo Fisher Scientific). To quan-
tify the region of interest, a pair of primers was designed 
in such a way that the forward primer (5ʹ-CGC TGG TAC 
CCC AAC ATC TC-3ʹ) was hybridized within the exonic 
sequence (ex50) and the reverse primer (5ʹ-TCT TGG 
CTG CCA GAC AAT CAT-3ʹ) was incorporated within the 
intron 50–51 sequence with an amplicon length of 230 
base pairs. As a reference gene, we used the KIF1A with 
the following primers: (ex12_F: 5ʹ-GGA GCA GAC ATA 
GCC CTG G-3ʹ and ex12_R: 5ʹ-CCT AAT TCA AGC ACG 
AGA GG-3ʹ).

Patient (P11), his parents, and unrelated normal sam-
ples were analyzed together with the calibrator sample. 
Each sample was run in triplicates. All data were calcu-
lated by the comparative Ct method to detect the relative 
copy number of exon 50 in LAMA2 gene using a sample 
of normal control DNA as a calibrator. The relative copy 
numbers were determined by the expression:  2−∆∆Ct, with 
∆∆Ct as the difference in ΔCt between the target and 
reference samples. The first ΔCt  is the difference in  Ct 
between the target and reference genes.

The  2−∆∆Ct ratio was expected to be about 1 in nor-
mal controls, about 0.5 in carriers, and 0 in patients with 
homozygous deletion.

Conservation analysis of amino acids sequence
Protein multiple sequence alignments for variants har-
bored in P7, and P12 were performed by the Clustal 
Omega tool (https:// www. ebi. ac. uk/ Tools/ msa/ clust alo/). 
The input file sequences in format FASTA were obtained 
from the UniProt database (https:// www. unipr ot. org/).

Results
Clinical features of patients
Clinical and paraclinical details of patients are summa-
rized in Table 1.

Molecular diagnostic
In this cohort, we report molecular data of 17 unrelated 
patients from 21 families. The proportion of resolved 
patients with DNA variations in the analyzed genes 
using two diagnostic approaches of NGS is (17/21; 
80.95%), while the remaining 4 patients represent (4/21; 
19.05%) of undiagnosed cases. Among 17 patients who 
were investigated by the targeted NGS gene panel, a 

confirmed molecular genetic diagnosis was established in 
13 patients (P2 to P7, P11 to P13, and P18 to P21) rep-
resenting (13/17; 76.47%), while genetic testing of known 
and available genes included in our panel was negative 
for 4 remaining patients (P15 to P17, and P22) repre-
senting (4/17; 23.53%). The coverage sequencing of the 
coding regions of interest represents 98% in these unre-
solved four patients, with a read deep > 10X. All other 
four patients analyzed by CES approach (P1, P9, P10, and 
P23) were genetically resolved by identified variants in 
LAMA2, TTN, and LMNA genes (Fig. 1).

A total of 16 variants (two are novel) were identified in 
the 17 unrelated positive probands. The most frequently 
mutated gene analyzed by both NGS approaches was 
LAMA2 in nine unrelated patients (P1 to P7, P11, and 
P23), followed by LMNA in four patients (P10, P12, P18, 
and P21), RYR1 in three unrelated patients (P13, P19, and 
P20), and then TTN in one patient (P9).

There are four diagnostic groups of patients that bear 
mutations in four different genes: (i) Laminin subunit 
alpha 2-related congenital muscular dystrophy (LAMA2-
related CMD) is the most prevalently mutated form 
observed in nine probands (9/17; 52.94%). All had a phe-
notype ranged from severe to moderate form of CMD. 
The identified variants were three splice sites, two mis-
senses, two frameshifts, and one-nonsense variations. (ii) 
Lamin-related congenital muscular dystrophy (LMNA-
related CMD) was detected in four probands (4/17; 
23.53%). The variants were three missenses and one in-
frame variant. (iii) Ryanodine receptor type 1-related 
congenital myopathy (RYR1-related CM) was observed in 
three probands (3/17; 17.65%) with three missense vari-
ants. (iv) Titin-related congenital myopathy (TTN-related 
CM) was observed in a female child (1/17; 5.88%) diag-
nosed with Early-Onset Myopathy with Fatal Cardio-
myopathy and caused by a frameshift variant. Molecular 
findings of patients are summarized in Table 2.

Through this study, we identified two novel vari-
ants in LAMA2 gene. The first missense c.2164G > A 
p.(Glu722Lys) variant identified in P7 (IV:8) is located in 
coding exon 15 of the LAMA2 gene, resulting in a G to 
A substitution at nucleotide position 2164. This sequence 
change replaces glutamic acid with lysine at codon 722 of 
the Laminin-α2 protein. Glutamic acid (E) is highly con-
served among different species. This variant has not been 
previously reported in databases and was not found in 
138 Moroccan clinical exomes (in-house database). Seg-
regation analysis revealed the presence of this variant in 
the proband’s sister P8 (IV:7) with a similar phenotype 
(Fig.  2). The sample DNA of the proband’s mother was 
not available. It was classified as likely pathogenic accord-
ing to ACMG/AMP criteria.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.uniprot.org/
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The second novel LAMA2 variant is a large homozy-
gous deletion of exons 50–51, NM_000426.4(LAMA2):c.
( 6 9 9 2  +  1 _ 6 9 9 3 - 1 ) _ ( 7 3 0 0  +  1 _ 7 3 0 1 - 1 ) d e l 
p.(Pro2332Glnfs*10), identified in P11 using IGV v2.5.0 
(Fig.  3). It has not been reported in databases or found 
in personal data (in-house database). It results in a 
frameshift variant starting from amino acid position 2332 
and introduces a premature termination signal at codon 
position 2341. It may lead to the synthesis of a truncated 
laminin-alpha 2 protein lacking 782 C-terminal amino 
acid residues. qPCR analysis of exon 50 validated the 
molecular genetic diagnosis in the proband (IV:1) with 
no copy of this exon and showed that his parents (III:2, 
III:7) are heterozygous with one copy (Fig. 4).

The known de novo heterozygous LMNA missense 
c.1718C > T p.(Ser573Leu) variant harbored by patient 
P12 (IV:3) is located in a highly conserved amino acid 
position in orthologous proteins. Both parents (III:1, 
III:2) were normal for this variant. The LMNA gene 
is completely sequenced at 100% with a minimal read 
deep of 33x. The coverage sequencing of the coding 
regions of interest represents 97% in this patient with a 
read deep > 10X. This variant has never been reported 
in Moroccan exomes data (in-house database), and it is 
associated with our patient for the first time with con-
genital muscular dystrophy (Fig. 5).

The accession numbers from ClinVar database, 
SCV002515382, and SCV002524097 were assigned to 
our novel missense and CNV LAMA2 variants, respec-
tively. Moreover, the SCV002547317 was assigned to the 
known LMNA variant involved in CMD phenotype.

Discussion
The diagnosis of inherited skeletal muscle disorders espe-
cially early-onset myopathies represents a great challenge 
not only for their high clinical and pathological hetero-
geneity but also because of the large number and great 
diversity of inheritance patterns seen [18, 42].

It should be noted that congenital hypotonia is a non-
specific clinical criterion that can occur in association 
with multiple other conditions. Generally, the propor-
tion of newborns/infants with central hypotonia is much 
more than the peripheral hypotonia types. In several 
studies, the frequency of peripheral causes of neonatal 
hypotonia (neuromuscular disorders) was estimated to 
range between 9% and 46.9% of diagnosed patients with 
hypotonia [17, 43–47]. Moreover, patients with neonatal 
hypotonia related to CM or CMD/CM represent approx-
imately 18.2% to 61.5% of peripheral hypotonia [17, 43, 
45–47].

Usually, clinicians find major difficulties in targeting 
the gene responsible for the disease. Despite the lack of 
clinical information in several patients, NGS technology 
overcomes these difficulties through rapid screening of 
several genes to achieve a correct and definitive molecu-
lar genetic diagnosis for these heterogeneous diseases 
[48].

In the last update, the 2021 version of the GeneTable of 
neuromuscular disorders includes about 36 genes associ-
ated with all congenital muscular dystrophy phenotypes 
and ≈45 genes with all congenital myopathy forms [49].

In this cohort, four different conditions/classes of 
congenital muscle diseases have been described. The 

Fig. 1 Flowchart diagram to illustrate the analysis method used in this cohort
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Fig. 2 Analysis of a novel LAMA2 c.2164G > A p.(Glu722Lys) variant. A Pedigree of the studied family. Affected individuals are denoted by filled 
symbols (IV:7; IV:8), while unaffected individuals are denoted by unfilled squares and circles. The black arrow indicates the proband P7. Asterisks 
indicate tested individuals. B IGV screenshot of a next-generation sequencing panel showing the homozygous DNA variation of exon 15 in LAMA2 
gene identified in the proband P7 (IV:8). C, D Representative Sanger sequencing chromatograms with c.2164G > A variant position in the patient 
and his sister compared with a reference sequence. E Residue conservation analysis of the p.Glu722Lys variant in LAMA2 in orthologous proteins. 
The LAMA2 p.Glu722Lys variant is shown with a black box identifying the corresponding amino acid position. «sp» for UniProtKB/Swiss-Prot, «tr» for 
UniProtKB/TrEMBL, *(Asterisk) positions with a single, fully conserved residue,: (colon) positions with conservation between amino acid groups of 
similar properties

Fig. 3 Representation of the next-generation sequencing data coverage depth detected using the Integrative Genomics Viewer (IGV). This 
snapshot shows the homozygous deletion of exons 50–51 (indicated with red arrows) in the LAMA2 gene identified in patient P11
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predominance of AR forms is probably due to the prev-
alence of consanguinity, which represents 15.25% in 
Morocco [50]. The identified variants were classified as 
pathogenic or likely pathogenic.

LAMA2‑related congenital muscular dystrophy
In this study, the most prevalent pathology was 
laminin-α2 chain-related congenital muscular dystrophy, 
also known as Merosin-Deficient Congenital Muscular 
Dystrophy type 1A (MDC1A) phenotype. It represents 
52.94% of positive patients. Similarly, MDC1A is the 
most severe and common form of CMD in many Euro-
pean countries with an average frequency of 30–40% 
among CMD patients [2, 51]. Moreover, a recent study 
revealed that MDC1A is the most common CMDs in 
Qatar, accounting for 48.5% [52]. The prevalence of 
MDC1A is estimated at 1–9/1000000 (ORPHA: 258).

In all our MDC1A patients, the initial clinical symp-
toms were identified at birth, as in previous studies. Gen-
erally, MDC1A is caused by variations in the LAMA2 
gene, which has been associated with the complete 
absence of the laminin-α2 chain and characterized by 
early-onset symptoms [53]. In the literature, frequency of 

seizures was estimated to 30% of patients [54]. Two sib-
lings of our LAMA2 mutated patients (P7 and P8) had 
developed epileptic seizures but were controlled by treat-
ment. Specific abnormal cerebral white matter signals are 
regularly observed by 1 year of age on an MRI scan [55].

MDC1A results from different and numerous patho-
genic variants that are scattered along the 65 exons of 
LAMA2 gene. More than 500 variants are reported in 
The Human Gene Mutation Database (accessed on 12 
December 2022; HGMD Professional 2021.4). Interest-
ingly, missense substitutions were associated with some 
reported patients with milder CMD and partial LAMA2 
deficiency.

All patients of our series who carried LAMA2 vari-
ants had a severe phenotype of LAMA2. The frameshift 
c.1377delC variant harbored in P6 was previously 
reported in a Moroccan patient and published as 
1426delC following the old nomenclature [25]. It was not 
found in ClinVar database but was listed in the Moroc-
can Genetic Disease Database (local database of Pasteur 
Institute of Morocco, Laboratory of Human Molecular 
Genetics).

Fig. 4 Molecular analysis of a novel copy number variation in LAMA2 gene. A Pedigree of the studied family. The black arrow indicates the proband 
P11 (IV:1) and asterisks indicate tested individuals. B Representative agarose gel picture of multiplex PCR products migration using ChemiPRO 
Chemiluminescence Imaging System (Cleaver Scientific) with GenePIX software V1.6.3.8. Original agarose gel is presented in (Additional file 2: Fig. 
S1). Lanes 1 and 3 indicate the presence of two bands in the normal controls. Lane 2 indicates the absence of the band of targeted amplicon (exon 
50) and the presence of the band of control amplicon (exon 58) in the patient (IV:1). Lane 4 indicates the absence of the bands in the negative 
control. C Real-time amplification plots of targeted LAMA2 gene. D Real-time amplification plots of endogenous KIF1A gene. E Bar graph showed 
the copy number results calculated from delta-delta Ct
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The splicing c.8244 + 1G > A variant described in P4 
and P23 was previously identified at homozygous or 
compound heterozygous state in the Tunisian and Alge-
rian populations, and other countries [24, 27–29]. We 
assume that it could be a recurrent variant, especially 
in the Maghreb. Our hypothesis remains valid as long 
as the allele frequency of this variant is low and esti-
mated at 1/120032 chromosomes (0.0008%) in Exome 
Aggregation Consortium (ExAC) and 2/250124 chromo-
somes (0.0008%) in the Genome Aggregation Database 
(gnomAD_exome), but higher at 7/264690 chromo-
somes (0.0026%) in Trans-Omics for Precision Medicine 
(TOPMed) (accessed on 12 December 2022).

LMNA‑related congenital muscular dystrophy
The second frequent clinical phenotype in our series is 
LMNA-related CMD or L-CMD caused by variations 
in LMNA gene encoding two splicing products (lamin 
A/C). To date over 100 cases of L-CMD have been 
reported in the literature with an autosomal dominant 
inheritance with a prevalence estimated at < 1/1000000 
(ORPHA:157,973, last update:  November 2020). In 

addition, more than 700 LMNA variants have been iden-
tified (accessed on 12 December 2022; HGMD Profes-
sional 2021.4). Patients with L-CMD are described as 
having severe weakness in the first year, with marked 
weakness in the neck extensors, resulting in the "dropped 
head syndrome."

In our study, L-CMD represents the second most com-
mon condition with (4 patients/17; 23.53%) of positive 
patients. In comparison with previous studies, the pro-
portion of patients with LMNA variants was 12.5% in 
CMD Chinese patients [56], and 8.8% in the UK popula-
tion [2].

The heterozygous missense c.1718C > T variant har-
bored in patient P12 was previously reported at a het-
erozygous state in other several clinical phenotypes like 
dilated cardiomyopathy, ventricular tachycardia, and 
ventricular ectopy, familial partial lipodystrophy subtype 
2, Charcot-Marie-Tooth disease, and in a patient with a 
limb-girdle muscular dystrophy form with no cardiac 
involvement [34–37]. Moreover, it was found in hete-
rozygous individuals affected by Emery-Dreifuss muscu-
lar dystrophy type 2 [57], but it has also been reported 

Fig. 5 Analysis of a known LMNA c.1718C > T p.(Ser573Leu) variant associated with another phenotype was never reported. A Pedigree of the 
studied family. The affected individual P12 is denoted by filled square (IV:3), while unaffected individuals are denoted by unfilled squares and circles. 
Asterisks indicate tested individuals. B IGV screenshot of a next-generation sequencing panel showing the heterozygous DNA variation of exon 11 
in LMNA identified in the patient (P12). C–E Representative Sanger sequencing chromatograms with c.1718C > T variant position. The patient (IV:3) is 
heterozygous and their parents (III:1, III:2) are healthy for the variant. F Residue conservation analysis of the p.Ser573Leu variant in LMNA in different 
species. The LMNA p.Ser573Leu variant is shown with a black box identifying the corresponding amino acid position. «sp» for UniProtKB/Swiss-Prot, 
«tr» for UniProtKB/TrEMBL, * (Asterisk) positions with a single, fully conserved residue,: (colon) positions with conservation between amino acid 
groups of similar properties
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in the homozygous state in a patient with progeroid fea-
tures with no cardiac findings [38]. We identified for the 
first time a de novo heterozygous missense c.1718C > T 
variant in congenital muscular dystrophy without cardiac 
involvement, and we assume that it is a strong candidate 
variant responsible for CMD in our patient.

It was suggested that additional factors, either genetic 
or environmental, may contribute to the precise tis-
sue involvement [36]. The association between LMNA 
gene mutations and different phenotypes is complex and 
poorly understood and can present with a wide range of 
severity [58]. Several hypotheses have been proposed, 
including mechanical shearing, differential gene regula-
tion by interaction with nuclear chromatin, and inter-
action between mutant lamins A/C and other nuclear 
proteins [59].

RYR1‑related congenital myopathy
RYR1-related myopathies are a group of congenital 
muscle diseases due to variations in the RYR1 gene that 
encodes the skeletal muscle sarcoplasmic reticulum cal-
cium release channel (Ryanodine receptor type 1). Main 
histological subtypes of  RYR1-RM include central core 
disease (CCD), multiminicore disease (MmD), core–rod 
myopathy (CRM), centronuclear myopathy (CNM), and 
congenital fiber-type disproportion (CFTD). A range 
of RYR1-RM clinical phenotypes has also emerged more 
recently and includes King Denborough syndrome (AD, 
MIM#619,542),  RYR1  rhabdomyolysis-myalgia syn-
drome, atypical periodic paralysis, Malignant hyper-
thermia susceptibility 1 (AD, MIM#145,600), Congenital 
myopathy 1A, autosomal dominant, with susceptibility to 
malignant hyperthermia (AD, MIM#117,000), Congenital 
myopathy 1B, autosomal recessive (AR, MIM#255,320), 
and late-onset axial myopathy [60–63].

To date, more than 800 RYR1 variants have been iden-
tified (accessed on 12 December 2022; HGMD Profes-
sional 2021.4) and can be inherited in both autosomal 
dominant and recessive manners. The majority of vari-
ants are categorized as “variants of uncertain signifi-
cance” [64]. Symptoms of  RYR1-related diseases are 
often present from birth or appear in early infancy and 
the disease course is often non-progressive or very slowly 
progressive.

In this study, RYR1-related congenital myopathies 
represent the third most common class with 3 mutated 
patients (3 patients/17; 17.65%). In comparison, Gon-
zalez-Quereda and their colleagues found that 15.7% of 
patients with variants occurred in RYR1 gene as the most 
common causative gene in a large cohort of Spanish 
patients [19].

After Sanger sequencing confirmation, the little brother 
P14 of the proband P13 harbored the same homozygous 
pathogenic missense c.1201C > T p.(Arg401Cys) variant 
in exon 12 with a similar clinical phenotype of congeni-
tal myopathy. Their parents were heterozygous for this 
familial variant. The same variant has been previously 
reported in individuals with malignant hyperthermia at 
a heterozygous state [39]. However, it was reported in a 
patient with centronuclear myopathy [40], and in another 
patient with severe congenital RYR1-associated myopa-
thy in a recessive manner [41].

The known heterozygous missense c.7880  T > G 
p.(Val2627Gly) variant in exon 49 presented in the P19 and 
the homozygous missense c.13892A > G p.(Tyr4631Cys) 
variant in exon 95 harbored in the P20 are causative of 
RYR1-related congenital myopathy.

The association with malignant hyperthermia in genet-
ically susceptible individuals may reveal and confirmed 
after a clinical reaction by exposure to volatile anesthetics 
or succinylcholine [65].

Congenital titinopathy
TTN is a huge gene with 364 exons. It encodes titin, the 
largest described protein in humans [66]. Given the size 
of titin, it is not unexpected that recessive prenatal or 
infant onset forms of titinopathy have been reported 
in several clinically different diseases affecting skeletal 
and/or cardiac muscle, including early-onset myopathy 
with fatal cardiomyopathy (EOMFC) [67], centronu-
clear myopathy [68], core myopathy with heart disease 
[69], and arthrogryposis multiplex congenita with myo-
pathy [70]. In contrast to many other neuromuscular 
disorders, cardiac involvement is a substantial source 
of morbidity and mortality [71], while in most cases 
of congenital myopathy, cardiac involvement is not 
a major concern [72]. Nevertheless, the TTN  gene is 
among the most frequent genes related to severe cardiac 
involvement in the literature [73]. To date, more than 
1000 variants are reported in The Human Gene Muta-
tion Database (accessed on 12 December 2022; HGMD 
Professional 2021.4).

Our homozygous pathogenic frameshift c.106541delA 
p.(Asp35514Valfs*32) variant harbored in patient P9 with 
an EOMFC phenotype was previously published [22].

For the patients (P15, P16, P17, and P22), further 
sequencing including a large gene panel is slated to be 
carried out to investigate these four genetically unre-
solved patients. They may be due to variants in other 
myopathic or neuromuscular genes that were not cov-
ered by our custom gene panel.
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Conclusions
We would like to emphasize the importance of family 
segregation studies as they offer useful information on 
the clinical significance of the variants and give further 
data about their association with the disease.

We assume that several Moroccan patients with neu-
romuscular disorders are undiagnosed due to difficulties 
for patients accessing specialized centers of genetic pedi-
atric neurology in our context, in addition, to the limited 
means of genetic investigation, offered by only a few cent-
ers in our country. That is why, we investigated molecular 
analysis and application of a targeted NGS-based method 
and clinical exome sequencing in Moroccan patients with 
early-onset myopathies.

In summary, the variation of these genetic results of con-
genital myopathies and congenital muscular dystrophies 
emphasizes the crucial role of NGS technology in accurate 
genetic diagnosis, notably, for some cases with an atypical 
phenotype that does not fit with the classical description of 
these diseases. The NGS-based molecular diagnosis allows 
us to significantly increase the rate of positive cases for 
heterogeneous genetic diseases and expand the mutation 
spectrum to better understand the genotype–phenotype 
correlations of congenital muscle diseases. The results of 
this study will contribute to the achievement of an epide-
miological characterization of early-onset myopathy, high-
lighting the importance of these neuromuscular diseases 
that are underestimated in the Moroccan population, and 
improvement of the diagnosis and management of these 
genetic disorders with potentially significant improvement 
in prognosis of patients.
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