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Abstract 

Infertility is a widespread issue that affects over five million couples globally. The cause of this condition can be related 
to women, men, or both. Male infertility, as a clinical disorder, can be caused by problems in spermatogenesis, tes-
ticular development, epididymal, and sperm maturation. Various methods have been proposed to diagnose and treat 
this disorder, but in some cases, it still remains idiopathic. Nowadays, the investigation of miRNAs is being discussed 
for the diagnosis and treatment of male infertility. miRNAs are small non-coding RNAs that regulate the expression of 
many genes after transcription. The aim of this review is to study miRNAs as noninvasive biomarkers for the diagnosis 
of infertility, as well as proposed treatment strategies and the challenges ahead in these avenues.
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Introduction
Infertility is a common disorder of the male or female 
reproductive system that is characterized by the inabil-
ity to successful pregnancy after regular unprotected 
intercourse for a period of one year [1]. This problem is 
increasingly recognized as a worldwide public health 
concern. It is estimated that 48.5 million couples experi-
ence infertility, and about 9% of men and 10% of women 
aged 15 to 44 reported infertility problems in the United 
States. As both men and women can contribute to infer-
tility, infertility is nearly as common in men as it is in 
women in the U.S [2, 3]. The main causes of infertility 
in men is due to abnormal functioning of the testicles, 

varicocele, difficulty in ejaculating semen, reduction or 
absence of sperm, and abnormalities in the morphology 
and movement of sperm. In addition, genetic diseases, 
environmental factors, and lifestyle can also affect the 
occurrence of infertility [4].

Generally, the inability to have a child affects the nor-
mal life of many women and men in the world [5]. The 
occurrence of psychological and physical problems can 
be one of the consequences of infertility in people [6]. 
Also, every person should be able to decide about having 
a child, the time of pregnancy, and the intervals between 
pregnancies [7]. Problems such as depression, anxiety, 
divorce, social stigma, and betrayal are among the social 
consequences of infertility [8]. Therefore, infertility is an 
issue that needs more attention [6]. The past years have 
seen increasingly rapid advances in the field of methods 
for the treatment of some cases of infertility were pre-
sented, such as in  vitro fertilization (IVF) but diagnosis 
and prevention were more important to researchers [9].

Until today, different methods have been used to diag-
nose infertility in women and men.

Currently, some laboratory and genetic methods 
such as spermiogram, karyotyping, and evaluation of 
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y-chromosome microdeletions can help to diagnose male 
infertility [10].

In addition to the fact that these tests are not able to 
detect the exact cause of all cases of male infertility, high 
cost, time-consuming and uncertainty are other prob-
lems of these diagnostic methods. Today, one of the 
most significant current discussions is the use of non-
coding RNAs such as microRNAs (miRNAs). MiRNAs 
play an important role in regulating gene expression. 
They usually interact with the 3′ untranslated regions (3′ 
UTR) of target mRNAs and cause gene silencing after 
transcription and translation suppression. Recent evi-
dence suggests that miRNAs can be used as noninvasive 
biomarkers to diagnose infertility [11]. Examining the 
expression profile of miRNAs can be a potential diag-
nostic tool to identify male infertility. The purpose of this 
study is to review the role of miRNAs as noninvasive bio-
markers for the diagnosis of male infertility and then we 
will review the therapeutic potential of these miRNAs.

The role of miRNAs in spermatogenesis
MiRNAs are small non-coding RNAs that act as post-
transcriptional regulators of protein-coding genes. Over 
2300 miRNAs have been identified in human cells, and 
their expression varies based on time and tissue patterns. 
MiRNA coding sequences are located in exons, introns of 
protein-coding genes, or intergenic regions [12]. The role 
of miRNAs is to downregulate gene expression by base-
pairing with the 3´ untranslated regions (3´ UTRs) upon 
binding to the target mRNA [13].

MiRNAs biogenesis
MiRNAs Biogenesis occurs in several steps. At first, it is 
transcribed from the miRNA gene and primary miRNA 
(Pri-miRNA) with a length between 100 and 1000 
nucleotides is created. Then they are methylated by the 
methyltransferase like 3 (METTL3). In the next step, Pri-
miRNAs are processed by drosha ribonuclease III (Dro-
sha) and its cofactor DiGeorge syndrome critical region 
8 (DGCR8) and Pre-miRNAs with a length of 70 nucleo-
tides are created, then by exportin 5 (EXP5) together with 
Ran -GTP are transferred to the cytoplasm and then they 
are cleaved into double-stranded RNAs of 22 base pairs 
(bp) by Dicer. The dsRNAs are loaded on the Argonaute 
protein (AGO) and the miRNA-induced silencing com-
plex (miRISC) where one strand of the 22 nucleotides 
duplex RNA remains in the AGO as a mature miRNA, 
and the other strand is degraded [14] (Fig. 1).

Spermatogenesis is a process that leads to sperm dif-
ferentiation by self-renewing spermatogonia stem cells 
(SSCs) in the epithelia of seminiferous tubules and is 
accompanied by successive mitosis and meiosis, which 
finally transforms germ cells into mature male gametes 

[15, 16]. Many miRNAs play a role as post-transcriptional 
repressors in the regulation of different stages of sper-
matogenesis such as mitotic proliferation and formation 
of spermatogonia, SSC self-renewal and differentiation, 
and during meiosis and spermatogenesis of spermato-
cytes [17].

Roles of miRNAs in SSC self‑renewal and differentiation
SSCs are the basis of the spermatogenesis process, and 
the important point for the continuous production of 
sperm is to maintain the balance between self-renewal 
and differentiation of SSCs [18]. There is a group of miR-
NAs that prefer to be expressed in an environment rich 
in SSCs. Therefore they play an important role in the 
maintenance of SSCs and causes their self-renewal [19].

In a study, He et al. [20] reported that miRNA-20 and 
miRNA-106a tend to be expressed in mouse SSCs and 
play a role in maintaining their homeostasis, and by tar-
geting STAT3 and Ccnd1, they cause self-renewal at the 
post-transcriptional level. During their research, Niu 
et  al. [21] observed that inhibition of miR-21 in SSC-
enriched germ cell cultures increases the number of germ 
cell apoptosis and concluded that this miRNA plays a 
vital role in maintaining the SSC population. Song et al. 
[22] found that miRNA-554 regulates the self-renewal 
of SSCs in goats by targeting PLZF, which was the first 
identified transcription factor in SSCs self-renewal. Also, 
Moritoki et  al. [23] identified an interaction between 
miR-135a and FoxO1 and suggested that miR-135a con-
tributes to the maintenance of SSCs by modulating 
FoxO1 activity. In their study on male dairy goat germ 
cells, Li et  al. observed that miR-34c increased apopto-
sis in mGSCs and decreased their proliferation. Further-
more, the expression of miR-34c was dependent on p53 
[24]. These are a large number of studies about miRNAs’ 
roles in regulating the fate of SSCs. In addition, miRNAs 
also play an effective role in the differentiation of SSCs. 
Retinoic acid (RA) is one of the factors that play a sig-
nificant role in guiding the continuous spermatogonial 
differentiation and its entry into the meiosis cycle [25]. 
Studies showed that miR-let 7-family [26], miR-17-29, 
and miR-106b-25 [27] were downregulated during RA-
induced differentiation. In a study conducted by Tong 
et al. [27], they observed that the deletion of miR-17-29 
causes oligospermia in the epididymis of mice and the 
shrinking of the testes, and inversely causes an increase 
in the expression of the miR-106b-25 cluster. Also, Yang 
et al. [16], by examining the expression of miR-221/222, 
concluded that these miRNAs show a decrease in expres-
sion under RA and an increase in expression under 
GDNF, and their dysfunction is the cause of the loss of 
SSC differentiation ability. Huszar et  al. [28], referring 
to the role of miR-146 in the regulation and control 
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of retinoic acid, found that the expression level of this 
miRNA is very high in undifferentiated cells. Generally, 
it can be concluded from the studies that miRNAs play a 
role in the post-transcriptional regulation of spermatogo-
nial differentiation. The list of miRNAs and their role in 
spermatogenesis is summarized in Table 1.

The role of microRNAs as diagnostic biomarkers for male 
infertility
A useful biomarker should be unique, sensitive, non-
invasive, and obtainable from an accessible source [29]. 

MiRNAs can be detected in body fluids such as semen, 
which are called circulating or extracellular miRNAs. 
Levels of these miRNAs are stable in body fluids and 
observing a change in the level of these can be consid-
ered a sign of pathophysiological processes [30]. MiR-
NAs in seminal plasma can be isolated and identified 
by noninvasive methods such as RT-qPCR and miRNA 
microarray, which are much better and simpler meth-
ods than the old methods like testicular biopsy. There-
fore miRNAs can be used as noninvasive biomarkers 
to investigate infertility disorders [31]. Several studies 

Fig. 1  Overview of MicroRNA biogenesis
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reported differential miRNA expression in infertile men 
compared to controls. For example, Joshi et al. [32] iso-
lated miRNAs from sperm samples in individuals and 
then analyzed them with RT-PCR, and after comparing 
with the control group, they found that three miRNAs: 
hsa-miR-9-3p, hsa-miR-30b-5p, and hsa-miR-122-5p are 
strongly associated with infertility and have great poten-
tial as biomarkers of sperm quality. In another study, 
Dorostghoal et al. [33] investigated the sperm parameters 
and miR-26a-5p and PTEN transcript content in ejacu-
lated spermatozoa in infertile and normozoospermic 
infertile men with RT-qPCR and observed changes in 
the expression level of this miRNA, so it was concluded 
that it has the potential to be used as a diagnostic bio-
marker for male infertility. Abu-Halima et  al. analyzed 
a set of miRNAs in several patients with different forms 
of spermatogenic impairments (subfertile and nonob-
structive azoospermia) and compared with the con-
trol group, observed changes in their expression levels, 
such that hsa-miR-34b*, hsa-miR-34b, hsa-miR-34c-5p, 
hsa-miR-122 causes down-regulating and has-miR-429 
causes up-regulating. These findings showed that these 
five miRNAs have the potential as new noninvasive bio-
markers for the diagnosis of infertility patients. Except 
for hsa-miR-429, the combination of these miRNAs with 
other conventional tests improves the diagnostic accu-
racy for the diagnosis of patients with different forms 
of NOA [34]. Also, Gholami et al. conducted a study to 
investigate the relationship between CRISP3 and four 
candidate miRNAs in teratozoospermia (TZ) infertile 
men. They isolated miRNAs from sperm samples and 
analyzed them by RT-PCR. Finally, up-regulation of 
miR-182-5p, miR-192-5p, and miR-493-5p was observed 
and these were introduced as possible biomarkers of TZ 
[35]. In the study that Llavanera et al. [36] conducted to 

identify the strongest molecular biomarker in sperm and 
seminal plasma to detect male infertility, miR-34c-5p was 
identified as the strongest and most specific biomarker 
by the RT-qPCR method. In addition to these studies, 
many other studies have been conducted that have led to 
important and acceptable results for the identification of 
miRNAs as biomarkers related to male infertility, these 
studies are briefly described in Table 2.

Role of microRNAs as therapeutic biomarkers for male 
infertility
Studies have shown that in addition to the diagnos-
tic value of miRNAs, they can also be important in the 
field of therapy. There is increasing hope that therapeutic 
methods based on miRNAs can be effective in future for 
some diseases for therapy. There are some challenges in 
this area such as accurately delivering therapeutic agents 
to the target cells.

The researchers intend to create a balance in the level 
of miRs by injecting or using inhibitors, respectively, in 
cases where we are faced with a down-regulating or up-
regulating in their expression and eliminate the effect of 
this disorder [37, 38].

Two miRNA-based therapeutic methods have been 
used to date, which include anti-miRs and miRNA mim-
ics. Anti-miRs, miRNA Inhibitors are chemically modi-
fied, single-stranded nucleic acids designed to specifically 
bind to and inhibit miRNA molecules. These inhibitors 
can be introduced into cells by transfection and elec-
troporation parameters [39]. miRNA mimics are chemi-
cally synthesized miRNAs that mimic naturally occurring 
miRNAs after transfection into the cell. miRNA inhibi-
tors are single-stranded, modified RNAs that, after trans-
fection, specifically inhibit miRNA function.

Table 1  miRNAs in SSC self-renewal and differentiation

miRNAs Location Action Result Refs.

miR-20
miR-106a

SSCs Expressed in mouse SSCs, targeting STAT3 and Ccnd1 Help maintain and SSC homeostasis in mouse [20]

miR-21 SSCs Decreased apoptosis by increasing the expression of 
miR-21

Maintaining the SSC population [21]

miRNA-554 SSCs Targeting PLZF Self-renewal of SSCs in goats [22]

miR-135a SSCs Modulating FoxO1 activity Help maintain SSCs [23]

miR-34c SSCs Expression in goats Increasing apoptosis of SSCs and reducing their prolif-
eration dependent on P53

[24]

miR-let 7-family SSCs Down regulating Differentiation of spermatogonia and entry into meiosis [26]

miR-17-29
miR-106b-25

SSCs Down regulating
Up regulating

Shrinking of the testis and occurrence of oligospermia 
in mice

[27]

miR-221
miR-222

SSCs Exposed to RA: down-regulating
Exposed to GDNF: up regulating

Occurrence of disorder caused by the loss of differentia-
tion ability

[17]

miR-146 SSCs Regulation and control of retinoic acid High expression level in differentiated cell [28]



Page 5 of 7Sinaei et al. Egyptian Journal of Medical Human Genetics           (2023) 24:40 	

Until now, anti-miR therapy and miRNA mimics have 
been tested for various cancers and some other diseases 
[40]. Considering the different challenges (which are 
explained in the next paragraph), strategies for treating 
male infertility using these ways are also discussed [20]. 
It seems that miRNA-based therapies can be used in per-
sonalized medicine in future.

Challenges
Despite the potential benefits of miRNA-based thera-
pies in diagnosing and treating diseases, there are several 
challenges that need to be addressed. One of the biggest 
challenges is identifying appropriate miRNA candidates 
and their targets for each disease. This process involves 
both computational algorithms and experimental meth-
ods, which can be difficult and time-consuming. Addi-
tionally, the complexity of the data and the sheer number 
of software available make it difficult to identify a single 

miRNA [41]. Another challenge is that one gene can be 
regulated by multiple miRNAs, or multiple genes can be 
regulated by a single miRNA. This suggests that a miRNA 
panel may be more effective in treating certain diseases. 
The delivery of therapeutic agents such as inhibitors or 
activators of miRNAs to target cells is another significant 
challenge. The amount of miRNA isolated from body flu-
ids is often too small, and getting the therapeutic agents 
to the target cells can be difficult.

Furthermore, the cost of data analysis can be high, and 
there is a relatively limited range of variation in miRNA 
expression in infertility biomarkers. Despite these chal-
lenges, researchers are exploring the potential of miRNA-
based therapies as a promising new approach to treating 
a wide range of diseases. As research continues, new 
insights will likely emerge that will help address these 
challenges and improve our understanding of how miR-
NAs can be used in personalized medicine [42, 43].

Table 2  MicroRNAs with biomarker capability for male infertility in previous studies

MirRNAs Type of patients Analysis method Up/down-
regulating

Sample type for RNA isolation Refs.

has-miR-9-3p
has-miR-30b-5p
has-miR-122-5p

Infertile men RT-PCR  −  Sperm [32]

miR-26a-5p Infertile men, normozoospermia RT-qPCR Down Ejaculated sperm [33]

miR-34/449 family Infertile men – – – [37]

has-miR-34b*

has-miR-34b
has-miR-34c-5p
has-miR-429
has-miR-122

Subfertile, nonobstructive azoo-
spermia

RT-qPCR Down
Down
Down
Up
Down

Semen [34]

miR-20a-5p Nonobstructive azoospermia, 
normozoospermia

RT-qPCR Up Blood plasma [38]

miR-182-5p
miR-192-5p
miR493-5p

Teratozoospermia infertile men RT-PCR Up
Up
Up

Semen [35]

miR-34c-5p Infertile men RT-qPCR up Seminal plasma [36]

miR-383
miR-122
miR-15b

Infertile men:
SOAT, MOAT, NOA,
OA

Diff-Quick, RT-qPCR Up
Up
Up

Sperm and testicular tissue [39]

has-miR-942-5p/has-miR-1208
has-miR34b-3p/has-miR93-3p

Asthenozoospermia Teratozoo-
spermia, Oligozoospermia, unex-
plained male infertility [UMI]

RT-qPCR – Semen [40]

miR-210-3p varicocele RT-PCR Up Semen [41]

miR-141
miR-429
miR-7–1-3p

Nonobstructive azoospermia Tagman RT-qPCR assay Up
Up
UP

Seminal plasma [42]

miR-26b
miR-374b

Normospermia NGS Down
Down

Seminal plasma [43]

miR-371a-3p Oligozoospermia qPCR Down Unprocessed ejaculate [44]

miR-192a Nonobstructive azoospermia and 
varicoceles

RT-qPCR Down Seminal plasma an d testicular 
tissue

miR-155 Hypogonadal and eugonadal RT-PCR – Cell-free serum

miR-27a Asthenotertozoo-spermia, normo-
zoospermia

RT-qPCR Western blot Up Semen
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To date, miRNA-based therapies have been tested for 
various cancers and diseases However, there is still a 
lot of work to be done to fully realize their potential. 
One possible solution to some of the challenges fac-
ing miRNA-based therapies is to use a combination of 
different therapeutic methods, including anti-miRs, 
miRNA mimics, and gene therapy [44]. Another impor-
tant area of research is the development of more effi-
cient and effective methods for delivering therapeutic 
agents to target cells. Several approaches, such as the 
use of nanoparticles, liposomes, and viral vectors, are 
currently being investigated [32]. Finally, it is impor-
tant to continue to develop new computational algo-
rithms and experimental methods to identify and select 
the most effective miRNA candidates and their targets 
for each disease. By doing so, researchers can help to 
unlock the full potential of miRNA-based therapies and 
improve outcomes for patients with a wide range of 
diseases.

Conclusion and future perspective
The quest to unravel the mystery behind male infertil-
ity continues to be an arduous journey, fraught with 
numerous challenges. It is disheartening to note that a 
significant proportion of infertility cases in men remain 
inexplicable, despite the utilization of various expensive 
and invasive investigative techniques.

However, recent research has shone a glimmer of hope, 
with the discovery of miRNAs’ potential role in male 
infertility. These tiny molecules, found in body fluids, 
offer a noninvasive avenue to investigate the underlying 
cause of male infertility. Their easy isolation and speedy 
investigation have provided a quicker route to diagnosis, 
complementing existing investigative techniques.

Moreover, researchers are currently exploring the ther-
apeutic potential of miRNAs in treating male infertility. 
However, for this hope to translate into reality, there is 
a need to overcome the numerous obstacles impeding 
progress in this field. Achieving global standardization 
and overcoming the associated challenges would be a sig-
nificant milestone in the quest for a reliable and effective 
treatment for male infertility.
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