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Abstract 

Background Male infertility is a complex, multifactorial pathological condition with a highly heterogeneous pheno-
typic variation, from complete absence of spermatozoa in the testicles (azoospermia) to marked changes in sperm 
quality. The Erb-B2 receptor tyrosine kinase 2 gene (ERBB2, also often called HER2) was hypothesized to be involved 
in spermatogenesis and Leydig cell steroidogenesis in males. Prohibitin (PHB) has been shown to regulate sperm 
motility in infertile men by changing mitochondrial membrane potential and increasing reactive oxygen species lev-
els. In this study, we aimed to investigate the HER2 I655V and PHB 3′UTR C > T polymorphisms in azoospermic infertile 
males.

Methods One hundred and thirty-three infertile males with idiopathic azoospermia and 100 healthy male controls 
were included in this study. Patient and control DNAs, which were extracted from peripheral blood, were analyzed 
using polymerase chain reaction and restriction fragment length polymorphism technics. For statistical evaluation, 
Chi-square and variance analyses were carried out using IBM SPSS (version 20.0) and Openepi (version 3.01) software 
programs.

Results We did not observe any differences between azoospermic infertile males and healthy male controls in terms 
of allele and genotype distributions of both the HER2 I655V and PHB 3′UTR C > T polymorphisms (p > 0.05). Moreover, 
composite genotype analyses did not show any differences between two groups (p > 0.05).

Conclusions No association was found between HER2 I655V and PHB 3′UTR C > T polymorphisms and azoospermic 
male infertility. The study can be expanded further by increasing the number of samples and studying in various 
populations.
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Background
Infertility, which is defined as the inability to have 
children at the end of one year despite regular and 
unprotected sexual intercourse, can cause loss of 

self-confidence and social withdrawal in couples [1, 
2]. About 7% of men have male infertility, which is a com-
plex, multifactorial pathological condition with highly 
heterogeneous phenotypic variations, from complete 
absence of spermatozoa in the testicles (azoospermia) to 
marked changes in sperm quality[3, 4]. The pathogenesis 
of male infertility has been linked to genital anomalies, 
varicocele, testicular pathologies, cancer, chemotherapy, 
urogenital infections, endocrine disorders and genetic 
anomalies[5]. Semen analysis results of male patients 
who applied to clinics due to infertility can vary from 
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normozoospermia to azoospermia. Azoospermia can 
be detected in 1% of male cases and 10–15% of infertile 
male patients [6]. Undescended testis, orchitis, trauma, 
radiotherapy, chemotherapy, hypogonadism, congeni-
tal absence of vas deferens and Y chromosome micro-
deletion are well-known factors causing azoospermia. 
However, apart from these factors, the etiology of azoo-
spermia cannot be completely determined even in the 
majority of the cases with non-obstructive azoospermia.

The Erb-B2 receptor tyrosine kinase 2 gene (ERBB2, 
often referred to as HER2) is a 185-kDa transmem-
brane tyrosine kinase receptor belonging to the epider-
mal growth factor receptors (EGFRs) family. This gene 
is located on the long arm of chromosome 17 (17q12). 
HER1 (EGFR), HER3 (ERBB3) and HER4 (ERBB4) are 
other members of the EGFR family. All these tyrosine 
kinase receptors are single-subunit transmembrane gly-
coproteins and consisted of three domains: the extracel-
lular ligand-binding domain, the transmembrane domain 
and the intracellular tyrosine kinase catalytic domain 
[7]. The levels of HER2 mRNA in the testicles have been 
linked to spermatogenic activity. It has been shown that 
active HER2 functions in spermatogenesis and Leydig 
cell steroidogenesis in males in conjunction with other 
erb type-1 tyrosine kinase receptors via the epidermal 
growth factor-growth factor (EGF-GF) signaling pathway 
[8]. The presence of a single nucleotide polymorphism 
(SNP) (change of isoleucine to valine) at codon 655 in 
the transmembrane coding region of the HER2 gene has 
been reported in different cancer types [9, 10]. Codon 
655 alteration from ATC to GTC results in enhanced 
HER2 dimerization and autophosphorylation as well as 
tyrosine kinase activity, which is known to trigger cell 
transformation [11]. This characteristic means that HER2 
I655V polymorphism may have an impact on sperm cell 
development.

Prohibitin (PHB), a highly conserved protein of the 
mitochondrial inner membrane, was directly linked to 
the process of spermatogenesis and the regulation of 
sperm quality. It is also a potential substrate for ubiq-
uitination modifications [12]. PHB has been shown to 
regulate sperm motility in infertile men by changing 
mitochondrial membrane potential (MMP) and increas-
ing reactive oxygen species (ROS) levels [13]. The 3′ 
untranslated region (UTR) of PHB has a positive effect 
on cell proliferation, and a C to T change in this region 
creates a variant with no antiproliferative effect [14, 15]. 
Hence, PHB 3′UTR C > T polymorphism may have a pro-
liferative effect on sperm cells.

Previous studies have suggested a relationship between 
HER2/PHB genes and spermatogenesis/sperm motility. 
HER2 I655V was found to induce the transformation of 
cells, and PHB 3′UTR C > T polymorphisms was shown 

to have proliferative effects on cells. So, we aimed to 
investigate the possible relationship between azoosper-
mic male infertility and HER2 I655V and PHB 3’UTR 
C > T polymorphisms in a Turkish population, in this 
study.

Materials and methods
Subjects
This study was included 133 infertile males who were 
examined and diagnosed with idiopathic azoospermia 
in Urology Clinic of Tokat Gaziosmanpasa University 
Research Hospital between 2009 and 2019. These 133 
azoospermic infertile males were composed of individu-
als whose blood samples were taken and DNAs were 
obtained routinely for Y chromosome microdeletion 
analysis, and no mutations were detected in the Labora-
tory of Medical Biology Department, and who had signed 
a consent form during the routine examination. Hor-
mone profile (FSH, LH, testosterone), physical examina-
tion, a detailed medical history, semen analysis, routine 
hematological and biochemical analysis were used to 
evaluate the patients. The study excluded individuals 
with chromosomal anomalies, vas deferens agenesis or 
obstructive azoospermia, and testicular trauma, testicu-
lar torsion or a history of undescended testis. The fer-
tile group consisted of 100 male individuals who freely 
decided to participate in the study and completed the 
consent form. They had at least two children, no known 
hereditary or chronic disorders, and had applied to urol-
ogy outpatient clinic for any reason other than infertility. 
The Tokat Gaziosmanpasa University Faculty of Medi-
cine Clinical Research Ethics Committee determined that 
our investigation met ethical requirements (registration 
no.: 19-KAEK-179).

Genotyping
Blood samples were collected in ethylene diamine tetra-
acetic acid (EDTA)-coated tubes from azoospermic infer-
tile males and fertile male controls. Genomic DNA was 
extracted from whole venous blood samples using a com-
mercial DNA isolation kit (Invitrogen Life Technologies, 
Carlsbad, CA) and kept at 20 °C until use. PCR and RFLP 
assays were applied to determine the genotypes of HER2 
I655V (rs1136201) and PHB 3′UTR (rs6917) polymor-
phisms. The forward (F) 5′-CCA GCC CTC TGA CGT 
CCA T-3′ and reverse (R) 5′-TCC GTT TCC TGC AGC 
AGT CTC CGC A-3′ primers were used to detect HER2 
I655V polymorphism. The PCR amplification was per-
formed in a total volume of 25 µL containing 200 ng of 
genomic DNA, 1 × PCR buffer  (MgCl2 supplied), 0.2 mM 
of each deoxyribonucleotide triphosphates, 5  pmol of 
each primer and 1U of Taq DNA polymerase (A.B.T). 
148-bp PCR products were obtained after 5 min at 94 °C; 
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subsequent to 35 cycles of 94 °C for 30 s, 62 °C for 45 s, 
72 °C for 30 s; and finally 7 min at 72 °C. For RFLP analy-
ses, 10U Alw26I (BsmAI) (New England Biolabs) restric-
tion endonuclease was used, and after digestion, 116 and 
32 bp for the Val (GTC) allele and a single 148-bp frag-
ment for the Ile (ATC) allele were observed (Fig. 1).

The F: 5′-AAG GTG GCT TTC TGG TGA-3′ and R: 
5′-GGA AGG TCT GGG TGT CAT TT-3′ primers were 
used to detect PHB 3′UTR C > T polymorphism. The 
PCR amplification was performed in a total volume of 25 
µL containing 200  ng of genomic DNA, 1 × PCR buffer 
 (MgCl2 supplied), 0.2  mM of each deoxyribonucleotide 
triphosphates, 10  pmol of each primer and 1U of Taq 
DNA  polymerase (A.B.T). 1237-bp PCR products were 
obtained after 5  min at 94  °C; subsequent to 35 cycles 
of 94  °C for 45 s, 60  °C for 30 s and 72  °C for 90 s; and 
finally 10 min at 72 °C. For RFLP analyses, 2U AfIIII (New 
England Biolabs) restriction endonuclease was used, and 
after digestion, fragments of 671, 442 and 124 bp for CC 
genotype, fragments 671, 566, 442 and 124  bp for CT 
genotype and fragments 671 and 566 bp for TT genotype 
were observed (Fig. 2).

Statistical analysis
Statistical Program for the Social Sciences (IBM SPSS 
Statistics, version 20) and OpenEpi Info software 

package version 3.01 (www. opene pi. com) were used for 
the statistical analysis. Chi-square (χ2) test was used to 
compare allele, genotype and composite genotype fre-
quencies between the control and patient groups. One-
way analysis of variance (ANOVA) method was used to 
compare the clinical and demographic characteristics of 
the patients with the genotypes of each polymorphism. 
Hardy–Weinberg equilibrium (HWE) was assessed for 
each polymorphism by χ2 test to evaluate the deviation 
of the study groups. Risk factors were determined by 95% 
confidence intervals (CI) and odds ratio (OR). Two-tailed 
p values were used, and values with p less than 0.05 were 
considered significant.

Results
In this study, 133 azoospermic infertile male patients 
and 100 healthy male controls were examined to inves-
tigate the relationship between HER2 I655V (A > G) and 
PHB 3′UTR C > T polymorphisms and azoospermic 
male infertility. Median age for patients and healthy con-
trols was 41.5 years (ranging 20–60 years) and 32.3 years 
(ranging 17–54  years), respectively. The HER2 I655V 
(A > G) polymorphism was examined in 133 patients, of 
whom 76.6% had homozygous AA (Ile/Ile) genotypes 
and 23.3% had heterozygous AG (Ile/Val) genotypes. GG 
homozygous genotype was not observed in the patient 

Fig. 1 The polymorphic alleles of I655V polymorphism of HER2 gene, which is defined by the BsmAI restriction endonuclease. Lines 1, 3, 4, 7, 8, 9 
and 10: homozygous AA genotypes; lines 2, 5 and 6: heterozygous AG genotypes. M: pUC 19 DNA/MspI (HpaII) marker. The DNA marker contains 
the following 11 visible fragments (in base pairs): 501/489, 404, 331, 242, 190, 147, 111/110, 67, 34

Fig. 2 The polymorphic alleles of 3′UTR C > T polymorphism of PHB gene, which is defined by the AflIII restriction endonuclease. Lines 3, 4, 5, 6, 7 
and 8: homozygous CC genotypes; lines 2, 9 and 10: heterozygous CT genotypes; line 1: homozygous TT genotype. M: pUC mix marker. The DNA 
marker contains the following 12 visible fragments (in base pairs): 1118, 881, 692, 501/489, 404, 331, 242, 190, 147, 111/110.

http://www.openepi.com
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group. One hundred controls were tested: 77.0% had AA 
homozygous genotypes, 22.0% had AG heterozygous 
genotypes and 1.0% had GG (Val/Val) homozygous gen-
otype. The PHB 3′UTR C > T polymorphism was exam-
ined in 133 patients of whom 67.6% had CC homozygous 
genotypes, 27.1% had CT heterozygous genotypes and 
5.3% had TT homozygous genotypes; 100 controls were 
tested: 65.0% had CC homozygous genotypes, 32.0% had 
CT heterozygous genotypes and 3.0% had TT homozy-
gous genotypes. No statistically significant relationships 
between azoospermic male infertility and HER2 I655V 
(A > G) polymorphism or between azoospermic male 
infertility and PHB 3′UTR C > T polymorphism were 
found when the genotype and allele frequencies of the 

control and patient groups were compared (p > 0.05). 
When the HER2 gene genotypes were compared as AA 
versus AG + GG between patients and controls, no statis-
tically significant differences were observed (p = 0.956). 
When the PHB gene genotypes were compared as CC 
versus CT + TT, no statistically significant differences 
were observed (p = 0.669), either. Genotype distributions 
in azoospermic infertile males and healthy male controls 
were compatible with HWE for both the polymorphisms 
(p > 0.05) (Table 1).

No statistically significant relationship was observed 
between the age and clinical characteristics of the 
patients (FSH, LH, prolactin, estradiol, total testoster-
one) and HER2 I655V (A > G) and PHB 3’UTR C > T 

Table 1 Genotype and allele frequencies of HER2 and PHB gene polymorphisms in infertile and fertile men

Data were analyzed by χ2 test. HWE, Hardy–Weinberg equilibrium; HER2, Human epidermal growth factor receptor 2; PHB, Prohibitin

Gene (polymorphism) Infertile men n = 133 (%) Fertile men (n = 100) p OR (95% Cl)

HER2 I655V (A > G) HWE p = 0.128 HWE p = 0.676

 Genotypes

  AA 102 (76.6) 77 (77.0) 0.503

  AG 31 (23.3) 22 (22.0)

  GG 0 1 (1.0)

  AA: AG + GG 102:31 77:22 0.956 1.02 (0.55–1.9)

 Allel

  A 235 (88.3) 176 (88.0) 0.909 0.97 (0.55–1.72)

  G 31 (11.6) 24 (12.0)

PHB 3’UTR C > T HWE p = 0.191 HWE p = 0.691

 Genotypes

  CC 90 (67.6) 65 (65.0) 0.544

  CT 36 (27.1) 32 (32.0)

  TT 7 (5.3) 3 (3.0)

  CC: CT + TT 90: 43 65: 35 0.669 0.89 (0.51–1.54)

 Allel

  C 216 (81.2) 162 (81.0) 0.956 0.99 (0.62–1.58)

  T 50 (18.7) 38 (19.0)

Table 2 Clinical characteristics of infertile men stratified according to HER2 and PHB gene polymorphisms

Data were analyzed by ANOVA. Mean ± standard deviation values were given for all characteristics. FSH, Follicle-stimulating hormone; HER2, Human epidermal growth 
factor receptor 2; PHB, Prohibitin

HER2 I655V (A > G) PHB 3′UTR C > T

Characteristics Total
n = 133

AA
n = 102

AG + GG
n = 31

p value CC
n = 90

CT + TT
n = 43

p value

Mean age (years) 32.35 ± 6.76 32.27 ± 7.06 32.58 ± 5.76 0.826 32.64 ± 6.84 31.72 ± 6.62 0.463

FSH (IU/L) 15.48 ± 17.59 16.51 ± 19.24 12.11 ± 10.08 0.267 16.18 ± 18.66 14.02 ± 15.25 0.547

LH (IU/L) 8.53 ± 7.72 8.85 ± 8.56 7.47 ± 3.79 0.429 8.34 ± 8.21 8.91 ± 6.66 0.720

Prolactin (ng/ml) 11.24 ± 6.14 11.43 ± 6.24 10.68 ± 5.97 0.629 11.45 ± 6.22 10.86 ± 6.09 0.679

Estradiol (pg/mL) 23.90 ± 13.29 23.69 ± 14.88 24.48 ± 7.72 0.841 23.54 ± 13.66 24.88 ± 12.57 0.732

Total Testosterone (ng/mL) 3.64 ± 2.26 3.52 ± 2.45 4.0 ± 1.5 0.336 3.68 ± 2.47 3.56 ± 1.80 0.803
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polymorphisms (p > 0.05) (Table 2). Routine hematologic 
and biochemical analysis of the patients was within nor-
mal limits.

In composite genotype analysis, composite genotype 
frequencies of HER2 I655V (A > G)/PHB 3’UTR C > T 
gene polymorphisms were compared between azoo-
spermic infertile men and healthy controls. As a result 
of this analysis, no statistically significant differences 
were observed between the patient and control groups 
(p > 0.05) (Table 3).

Discussion
The EGFR family member HER2 possess intrinsic tyros-
ine kinase activity. In addition to their critical roles in the 
signal transduction pathway, members of this family reg-
ulate a variety of cellular processes, including differentia-
tion and proliferation [16]. EGF promotes proliferation of 
both epidermal and mesothelial cells. It has a stimulating 
effect on human sperm capacity by mediating biologi-
cal processes such as apoptosis and differentiation. Male 
infertility was correlated with decreased EGFR expres-
sion, and gap junction development in spermatogenic 
cells, that is essential for intercellular communication 
[17]. It has been reported that the genetic polymorphism 
of HER2 I655V (rs1136201) can alter receptor structure 
and activation, which can alter signal transduction and 
thus cell cycle regulation [18]. Because of this, HER2 
I655V polymorphism may have an impact on sperm cell 
development.
PHB encodes a 30-kDa protein that regulates both E2F 

transcription factors and p53 protein and is connected 
with proliferative and apoptotic pathways. Its deficiency 
in germ cells was associated with MMP and increased 
ROS production. It has been suggested that a change in 
MMP and a consequent decrease in PHB expression may 
be associated with poor sperm quality in infertile males 

[19]. In a previous study, it was observed that sperm 
with poor motility or low concentrations in infertile men 
were negatively correlated with mitochondrial ROS lev-
els, but positively correlated with MMP. It has also been 
found that these cells have a low PHB expression levels. 
These findings suggested that PHB expression levels are 
critical for germ cell mitochondrial integrity and can be 
used as an indicator of human sperm quality [20]. In a 
recent study, it was also proposed that PHB is essential 
for preventing the energy loss brought on by poor mito-
chondrial function in granulosa cells of infertile endome-
triosis patients [21]. The 3′UTR of PHB gene encodes a 
trans-acting regulatory RNA molecule [22]. Due to their 
control over the expression of genes and proteins, 3′UTR 
polymorphisms have been linked to a variety of pheno-
typic effects [23]. The cytosine to thymine transition at 
position 1630 in the 3’UTR of PON1 gene results in a 
variant that encourages carcinogenesis by reducing cell 
motility and losing antiproliferative function [24].In the 
present study, we were unable to find any data to support 
the claim that the HER2 I655V and PHB 3’UTR C > T 
polymorphisms increase azoospermic male infertility 
risk, either overall or in subgroups based on age or clini-
cal characteristics of the patients. SNPs and copy number 
variations (CNVs) have recently been identified as signifi-
cant factors that affect male fertility [25, 26]. Although it 
is very plausible that genetic alterations affect male fer-
tility, each polymorphism might only be a minor part of 
all occurrences of male infertility. To address the crucial 
questions about the association between SNPs, CNVs 
and male infertility, it will probably be necessary to create 
datasets containing genome-wide data from numerous 
institutions. Deepening our understanding of these top-
ics might help us use assisted reproductive technology 
more successfully.

Conclusions
In this preliminary study, no significant correlation 
was found between HER2 I655V and PHB 3′UTR C > T 
polymorphisms and azoospermic male infertility. Since 
this study is the first and only study examining the 
relationship between azoospermic male infertility and 
HER2 and PHB gene polymorphisms, and the distribu-
tion of polymorphisms differs among populations of 
different ethnic origins, the study should be expanded 
by increasing the number of samples and evaluating in 
different populations.
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