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Abstract 

Background LHPP is a tumor suppressor protein associated with various malignancies like liver, oral, pharyngeal, 
bladder, cervical, and gastric cancers through controlling various pathways. Several single nucleotide variants have 
been reported to cause cancers. The main objectives of our study were to investigate the impact of the deleterious 
non-synonymous single nucleotide variants on structure and functions of the LHPP protein.

Results We used nine computational tools (SNAP2, PROVEAN, POLYPHEN 2, PREDICT SNP, MAPP, PhD-SNP, SIFT, 
PANTHER, and PMUT) to find out the deleterious SNPs. These nine computational algorithms predicted 34 nsSNPs 
to be deleterious as a result of their computational analysis. Using ConSurf, I-Mutant, SDM, MUpro, and Mutpred, we 
emphasized more how those harmful nsSNPs negatively affect the structure and function of the LHPP protein. Fur-
thermore, we predicted the mutant protein structures and assessed the total energy value deviation in comparison 
with LHPP original structure and also calculated RMSD values and TM scores. By comparing the result from all these 
computational approaches, we shortlisted a total eight novel nsSNPs (D214G, D219N, Q224P, L231P, G236W, R234C, 
R234P, and V233G) that impose high risks to the structure and functions of LHPP protein. To analyze the mutant 
protein’s behavior in physiological condition, we performed 50 ns molecular dynamic simulation using WebGro 
online tool and found that the mutants values vary from the wild type in terms of RMSD, RMSF, Rg, SASA, and H-bond 
numbers. Prognostic significance analysis by Kaplan–Meier plotter showed that abnormal regulation of LHPP can 
also serve as a prognostic marker for the patient with breast, ovarian, and gastric cancers. Additionally, ligand binding 
sites analysis revealed the presence of D214G and D219N mutants in the binding site one which means these two 
nsSNPs can disturb the binding capacity of the LHPP protein. Protein–protein interaction analysis revealed LHPP pro-
teins’ interactions with PPA1, ATP12A, ATP4A, ATP4B, ATP5F1, ATP5J, PPA2, ATP6V0A4, ATP6V0A2, and MT-ATP8 with dif-
ferent degree of connectivity.

Conclusion These results demonstrate a computational understanding of the harmful effect of nsSNPs in LHPP, 
which may be useful for molecular approaches.
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Background
As a member of halo-acid dehalogenase like hydrolase 
domain-containing (HDHD) gene family [1], phospho-
histidine phosphate inorganic pyrophosphatase (LHPP) 
inhibits the growth of tumors in a variety of human 
organs [2]. The protein coded by the human LHPP gene 
(NM 022126) which can be found on chromosome 
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10q26.13 [3] weighs 29 KD and consists of 270 amino 
acid [4]. It is a non-transmembrane, hydrophobic, 
and non-secretory protein, which is encyclopedically 
expressed mainly in the cytoplasm in most tissues such 
as urinary bladder, kidney, liver, and brain [4–7]. This 
LHPP protein consists of three leucine zipper domains 
and from worms to humans, it is a highly evolutionary 
preserved histidine phosphatase that was first discovered 
in swine brain tissues [2]. This gene is mainly expressed 
in thyroid and brain tissue [8].

It is believed that LHPP may be directly linked to the 
development of several types of cancer in humans, such 
as bladder cancer, liver cancer, oral and pharyngeal can-
cers, cervical cancer, and gastric cancer [9] (Table 1). Low 
level of LHPP expression is closely linked with an rise in 
tumor malignancy and a reduction in overall survival [1]. 
Recent studies have found that tumorigenesis in stomach, 
breast, esophageal, skin, head and neck, bladder, lung, 
liver, and pancreas tissues is mainly caused by LHPP 
mutation and its decreased expression. LHPP mutations 
were found in a wide range of tumors [9]. Forty nine 
LHPP mutations involvement were acknowledged in a 
search through the TCGA and the international cancer 
genome consortium (ICGC) databases in several human 
cancers, for example, liver, skin, breast, bladder, stomach, 
head and neck, esophagus cancers [9]. Moreover, LHPP 
is also crucial to prevent stress-related illness like depres-
sion [10].

The emergence of a variety of cancers is mediated by 
various signaling pathways. The PI3K/AKT/mTOR sign-
aling cascades play a role, either directly or indirectly, 
in the progression of various types of malignant tumors 
[18]. Through controlling the PI3K/AKT signaling path-
way, LHPP influences the development of human malig-
nancies. It can prevent cancer cells from proliferating 
and metastasizing while also promoting their apoptosis 

through the regulation of AKT as it is reported to sup-
press the expression of p53. The biological signaling sys-
tem of phosphatidylinositol 3-kinase and protein kinase 
B (PI3K/AKT) is crucial in controlling the propagation, 
apoptosis, and development of cancer cells [1]. The phos-
phorylation of PI3K/AKT is significantly lowered by the 
overexpression of LHPP proteins, which prevents tumor 
progression.

Furthermore, LHPP performs as a restrainer of the 
Wnt/catenin signaling pathway. When LHPP is overex-
pressed, it lowers phospho-GSK-3 levels and depletes 
active catenin, which  in turn inactivates Wnt/catenin 
signaling [3]. Furthermore, LHPP inhibits Wnt/-catenin 
signaling via controlling Akt activation [3], where LHPP 
up-regulation lowers p-Akt levels and influences Akt’s 
downstream targets [19]. Besides, Akt serves as a crucial 
upstream regulator of GSK-3, and when it is activated, it 
phosphorylates GSK-3, causing GSK-3 to become inac-
tive and Wnt/-catenin signaling to become active [20].

Single nucleotide polymorphisms (SNPs) are thought 
to be the most prevalent form of variations in DNA 
sequence, account for the majority (90%) of genetic vari-
ants in the human genome [21]. Non-synonymous SNPs 
(nsSNPs), alternatively referred to as missense SNPs, 
hold great importance as they result in substitutions 
of amino acid residues, causing functional diversity in 
human proteins. This variation either can be neutral or 
deleterious. Potentially negative effects such as protein 
structure destabilization, changes in gene regulation, 
and influences on protein charge, shape, hydrophobicity, 
firmness, dynamics, translation, and inter/intra protein 
connections compromise the structural integrity of cells. 
This non-synonymous SNPs can also modify DNA and 
transcriptional binding factors, retaining the structural 
integrity of cells and tissues while having an impact on 
gene regulation [22]. Past research has demonstrated that 

Table 1 Example of few cancers where LHPP plays essential role.

Serial no. Cancer name Pathway by which LHPP exerts tumor 
suppressor effect

1 Oral squamous cancer PI3K/AKT signaling pathway [11]

2 Hepatocellular carcinoma PI3K/AKT signaling pathway [12]

3 Breast carcinoma PI3K/AKT signaling pathway [13]

4 Bladder carcinoma AKT/p65 signaling pathway [14]

5 Papillary thyroid carcinoma AKT/AMPK/mTOR signaling pathway [15]

6 Pancreatic carcinoma PTEN/AKT signaling pathway [16]

7 Cervical cancer PI3K/AKT signaling pathway [13]

8 Glioblastoma Akt and Wnt/β-catenin signaling [3]

9 Gastric cancer By influencing the metabolism of GC 
by altering the acetylation level [4]

10 Colorectal cancer TGF- β Pathway [17]
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around 50% of mutations associated in various genetic 
illnesses are caused by nsSNPs [23, 24]. Recently, the 
structural and functional effects of nsSNPs on different 
tumor suppressor proteins of the human genome have 
been predicted by numerous studies using in silico analy-
sis [25–27].

Several nsSNPs have been found in LHPP that are 
responsible for LHPP gene’s impeded activity which 
eventually lead to tumorigenesis. LHPP (rs201982221) is 
found to be linked with oral cavity and pharyngeal can-
cers in a genome-wide study [28]. Besides, by suppress-
ing the expression of Cyclin B1, Pyruvate Kinase M2, 
and Matrix Metallo Proteinase 7/9 (CCNB1, PKM2, and 
MMP7/9), high LHPP expression reduces the prolifera-
tion and spread of various human cancer cells [12]. Given 
the significance of LHPP in human health and sickness, 
the primary goals of this analysis were to identify the 
most harmful missense SNPs and to assess how the SNPs 
affect the protein’s structure and functions. So far, there 
hasn’t been any significant in silico study on LHPP pro-
tein that analyzes the impact of SNPs on both sequencing 
and structural properties except Mahmood et  al. pre-
dicted the association of L22P, I212T, G227R, and G236R 
nsSNPs with hepatocellular carcinoma [11]. Taking into 
consideration of LHPP proteins’ role in various can-
cer types (Table 1) with rising data, we have carried out 
extensive analysis and used a variety of bioinformatics 

tools to find novel single nucleotide variants that impose 
high risks to the function and structure of LHPP protein 
in various cancer types. An outline of the whole proce-
dural tactics is summarized in the following schematic 
diagram (Fig. 1).

Methods
Retrieval of nsSNPs
The NCBI dbSNP database, which is the largest SNP 
database, was used to get the desired LHPP gene SNPs 
[29, 30] (https:// www. ncbi. nlm. nih. gov/ snp/). SNPs 
have been categorized into nine main groupings based 
on where they are present in the genome: synonymous, 
frameshift, in frame deletion, in frame indel, in frame 
insertion, initiator codon variation, intron, and missense 
[31]. This site provided information on missense SNPs 
(SNP ID), protein accession numbers, positions, and resi-
due changes. The RCSB PDB was used to obtain the pro-
tein structural file [32].

Screening of deleterious nsSNPs
The influence of missense single nucleotide polymor-
phisms (SNPs) on the LHPP gene’s structure and func-
tion was anticipated using a variety of computational 
programs. To evaluate the most harmful nsSNPs, we 
made use of nine different in silico nsSNP prediction 

Fig. 1 Overall strategies employed in this study. Following nsSNPs retrieval from the dbSNP database, deleterious nsSNPs were identified using 
nine different computational tools. Selected SNPs were tested whether affect proteins’ stability or not using I Mutant, SDM, and MuPro tools. After 
that, evolutionary conservation of the deleterious SNPs was predicted using ConSurf followed by their functional and structural modifications 
identification using MutPred. Structural effects of point mutation were observed and then cancer-associated SNPs were identified. Then, different 
cancer patients’ survival analysis was performed using Kaplan–Meier plotter followed by ligand binding sites prediction using FTSite tool. LHPP 
protein–protein interaction network was predicted using the STRING database. At last, a 50 ns simulation was carried out using WebGro tool 
to assess the mutant structures’ stability in terms of RMSD, RMSF, Rg, SASA, and Hydrogen bonds values

https://www.ncbi.nlm.nih.gov/snp/
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techniques (SNAP2, PROVEAN, POLYPHEN 2, PRE-
DICT SNP, MAPP, PhD-SNP, SIFT, PANTHER, and 
PMUT).

SNAP2 (https:// www. rostl ab. org/ servi ces/ snap/) uses 
only sequence-based computationally acquired data, and 
using (screening for non-acceptable polymorphisms) this 
it is able to categorize all nsSNPs in all proteins as harm-
ful (impact on function) or neutral (no effect). SNAP 
assigns a reliability score to each occurrence, which 
serves as a well-calibrated indicator of the degree of 
confidence in a specific prediction [33]. SNAP2 enables 
a rapid evaluation of functionally important positions in 
new proteins and offers a reliable prediction of variant 
effects [34].

The PROVEAN (http:// prove an. jcvi. org/ index. php) 
enables high-throughput genomic and protein variant 
analysis for human and mouse variants. It provides a fast 
analysis of protein variations from any organism. For 
large sets of mouse and human genome-wide nucleotide 
or amino acid variants, this web interface can now offer 
a precomputed forecast. PROVEAN’s cutoff was set at 
-2.5 for well-balanced accuracy where amino acid altera-
tions score > − 2.5 is regarded as a deleterious mutation. 
Researchers can, however, reapply their individual cut-
offs to their investigation to improve either sensitivity or 
specificity [35].

POLYPHEN 2 (polymorphism phenotyping v2) (http:// 
genet ics. bwh. harva rd. edu/ pph2/) assesses the possi-
ble effect of amino acid dissimilarities on the stability 
and functionality of human proteins using structural 
and comparative evolutionary factors. A number of 
sequences, phylogenetic, and structural characteristics 
that define the substitution provide the foundation of the 
prediction [36]. The PolyPhen-2 value ranges from 0 (tol-
erated) to 1 (deleterious). Variants predicted to be benign 
have scores of 0. More confidently anticipated to have 
negative effects are values closer to 1.0. For the query 
submission, the FASTA sequence of a protein and infor-
mation about amino acid substitution are needed [37].

The PredictSNP (https:// losch midt. chemi. muni. cz/ 
predi ctsnp/) is a consensus classifier that combines the 
eight top prediction techniques (MAPP, nsSNPAnalyzer, 
PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, 
and SNAP) to give a more reliable and alternate predic-
tion that is accurate made by individual integrated pro-
grams. A FASTA formatted amino acid sequence of a 
query protein and the mutations are used as input. The 
PredictSNP score’s fall within the continuous range 
of < −  1, + 1 > . The mutations are regarded as neutral, if 
the score is between −  1 and 0 and deleterious for the 
values in the interval (0, + 1 >) [38].

MAPP (multivariate analysis of protein polymorphism) 
forecasts the functional impact of altered amino acids 

on the basis of the evaluation of physicochemical prop-
erties discovered in the protein sequence alignment. 
The likelihood that amino acid replacement will impair 
the protein’s ability to function normally increases with 
the computed deviation. MAPP’s interpretability of its 
impact ratings, which offer a transparent justification of 
predictions in terms of physicochemical features, com-
plements its ability to forecast outcomes accurately [39].

PhD-SNP (https:// snps. biofo ld. org/ phd- snp/) is 
intended to be lightweight and simple which is only 
trained on comparative data in the form of the conserva-
tion score derived from numerous sequence alignments. 
The purpose of this tool is to ascertain whether a specific 
single-point protein mutation is a benign polymorphism 
or linked to a pathology. An output from the PhD-SNP 
ranges from 0 to 1. When the score is greater than 0.5, 
pathogenic SNVs are expected; otherwise, it is benign 
[39].

SIFT (sorting intolerant from tolerant) (https:// sift. 
bii.a- star. edu. sg/) employs sequence homology to deter-
mine if an amino acid replacement will have an impact 
on protein function and, perhaps, change phenotype. 
SIFT delivers a prediction score against submitted rsID 
for the nsSNP query, with a prediction score of 0.05 or 
higher being considered intolerant and 0.05 or lower 
being considered tolerant [40]. The SIFT algorithm just 
uses the sequence to make predictions.

PANTHER (protein analysis through evolutionary 
relationships) (http:// www. panth erdb. org/) uses family 
multiple sequence alignments and phylogenetic trees to 
estimate whether a query protein amino acid alteration 
would likely affect protein function [41, 42]. If protein 
sequences coupled with human missense variations are 
supplied as a query, PANTHER offers position-specific 
evolutionary conservation values [43].

PMUT (http:// mmb. irbba rcelo na. org/ PMut/ analy ses/ 
new/) enables the quick and precise prediction (80% 
success rate in humans) of the pathogenic character of 
single-point amino acids changes based on the usage of 
neural networks. The pathogenicity score ranges from 0 
to 1. A score higher than 0.5 signals pathological muta-
tions. The PMUT server exhibits the location of the 
mutation on the protein structure, utilizing a color-cod-
ing system to indicate the pathogenicity of the mutation. 
The software has the capability to simulate numerous sin-
gle-point mutations throughout the entire sequence, aid-
ing in the identification of regions where mutations are 
anticipated to have a substantial pathological effect [44].

Analyzing protein stability
To check the stability of the target protein, I Mutant, 
SDM, and MuPro tools were used. It is possible to 
determine with the aid of I Mutant (http:// gpcr2. bioco 

https://www.rostlab.org/services/snap/
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://loschmidt.chemi.muni.cz/predictsnp/
https://loschmidt.chemi.muni.cz/predictsnp/
https://snps.biofold.org/phd-snp/
https://sift.bii.a-star.edu.sg/
https://sift.bii.a-star.edu.sg/
http://www.pantherdb.org/
http://mmb.irbbarcelona.org/PMut/analyses/new/
http://mmb.irbbarcelona.org/PMut/analyses/new/
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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mp. unibo. it/ cgi/ predi ctors/I- Mutan t3.0/ I- Mutan t3.0. 
cgi) whether or not a change in amino acid in a protein 
sequence will or won’t affect the firmness of the protein. 
The tool makes use of information from ProTherm, the 
largest experimental database on protein mutations. I- 
Mutant2.0 facilitates the prediction of alterations in pro-
tein stability across different temperature and pH ranges. 
It forecasts the reliability index (RI) of the results on a 
scale of 0–10, with 10 being the most reliable [45, 46].

SDM is available at http:// www- cryst. bioc. cam. ac. 
uk/ sdm/ sdm. php. A statistical potential energy func-
tion called the site directed mutator was created to fore-
cast how SNPs will affect protein stability. Site-directed 
mutagenesis (SDM) can assist in directing the design of 
experiments or determining if a mutation will impact 
protein structure and contribute to disease. The input 
section must provide a wild-type structure as well as the 
position and type of the mutated amino acids [47].

MUpro (https:// www. ics. uci. edu/ ~baldig/ mutat 
ion. html) includes SVM and neural networks, two 
machine  learning programs. The result predicts only 
whether or not the change will cause destabilization, 
without providing an actual ddG value. The user can 
choose from three different sorts of prediction outcomes 
when using MUpro, which employs protein sequence as 
its input information [48].

ConSurf’s prediction of the evolutionary conservation 
of the most damaging missense nsSNPs
Critical locations in the concerned molecules can be 
found using ConSurf analysis (https:// consu rf. tau. ac. il/). 
It uses both the empirical Bayesian and maximum likeli-
hood paradigms to calculate rate of evolution at each site. 
Based on phylogenetic relationships between homolo-
gous sequences, the ConSurf server calculates the evo-
lutionary conservation of amino/nucleic acid positions 
in a protein/DNA/RNA molecule. ConSurf analyzes the 
phylogenetic relationship, performs  multiple sequence 
alignment and sequence homology of the protein to 
determine the conservation of an amino acid in a protein. 
The scores range from 1 to 4 as a variable, 5–6 as inter-
mediate, and 7–9 as conserved. The program also fore-
casts whether a certain residue will be buried or exposed, 
which can further highlight the residue’s structural and 
functional significance [49].

Identification of functional and structural modifications
MutPred (http:// mutpr ed. mutdb. org/) is an experimen-
tal study of phenotype-altering variations that is guided 
by probabilistic modeling of variant influence on specific 
characteristics of protein structure and function. Utiliz-
ing three separate built-in tools, namely Psi-BLAST, SIFT, 
and PFAM, which cover protein structure, function, and 

evolution, it categorizes a variant as disease-associated 
(pathogenic) or neutral. MutPred compares the struc-
tural and functional features of mutant and wild-type 
sequences. These variations are expressed as probabilities 
of structure and function gain or loss. A missense muta-
tion with a MutPred score > 0.5 may be deemed "harm-
ful," while one with a MutPred score > 0.75 should be 
regarded as having a high probability of being "damaging" 
[50].

Effect of point mutation on protein structure
Project HOPE (https:// www3. cmbi. umcn. nl/ hope/) ana-
lyzes the effects of amino acid substitutions on the native 
structures, as well as the hydrophobicity, charge, and size 
differences between wildtype and mutant residues. When 
a FASTA sequence or a Uniprot id is submitted as a query 
file, 3D homology modeling using the YASARA program 
yields significant findings about structural differences 
between mutant and native residues [51].

The energy minimization of a protein is calculated 
using Swiss  PDB (Swiss PDB Viewer-Home (unil.ch)) 
[52] Viewer for various amino acid substitutions. It is a 
tool for modeling, visualizing, and analyzing protein 
structures.  Structural data are retrieved directly using 
PDB structure. Energy minimization of a 3D structure of 
a protein is performed by this server using GROMACS 
program as a default force field that is built on the meth-
ods of steepest descent, conjugate gradient, and LBFGS 
(Limited-memory Broyden–Fletcher–Goldfarb–Shanno) 
algorithm [53].

Identification of cancer‑associated nsSNPs
Mutation 3D (http:// www. mutat ion3d. org/) is used to 
find clusters of amino acid substitution that  arise from 
somatic cancer mutations. It is a useful tool for inves-
tigating the geographical distribution of amino acid 
changes on protein models and structures. When a target 
protein together with its mutations is inserted as a query, 
this program uses a 3D clustering approach to identify 
amino acid substitution of a protein that can cause can-
cer [54].

Structure analysis of wild‑type and mutant models
The 3D structure of native protein was downloaded from 
PDB (2X4D), and models for mutant proteins were gen-
erated using PHYRE2 and SWISS-MODEL.

Phyre 2 uses cutting-edge distant homology identifica-
tion techniques to create 3D protein models and analyze 
the effect of different amino acid combinations on a pro-
tein’s structure and function. PDB file 2X4D was used as 
template, and the development of the mutant 3D struc-
tures of the LHPP protein was performed using Phyre 2 

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://www-cryst.bioc.cam.ac.uk/sdm/sdm.php
http://www-cryst.bioc.cam.ac.uk/sdm/sdm.php
https://www.ics.uci.edu/~baldig/mutation.html
https://www.ics.uci.edu/~baldig/mutation.html
https://consurf.tau.ac.il/
http://mutpred.mutdb.org/
https://www3.cmbi.umcn.nl/hope/
http://www.mutation3d.org/


Page 6 of 22Feroz and Islam  Egyptian Journal of Medical Human Genetics           (2023) 24:47 

[55]. These models was visualized by Biovia Discovery 
Studio which is also used for sequence alignment, analyz-
ing protein, and modeling data [56].

After that, utilizing TM-align [57] tool, comparative 
analysis of the structures of wild-type and mutant pro-
teins was achieved. The TM-score is a number between 
0 and 1, where 1 indicates that two structures perfectly 
match one another. The RMSD value associated with the 
mutant residues after superimposition with the natural 
protein structure was computed using PyMol, an open-
source application for structural research [58].

The SWISS-MODEL server is used for the structural 
analysis of native and mutant structure using FASTA 
sequence of LHPP protein as input. When evaluating the 
model quality, the QMEAN scoring function is used to 
confirm the accuracy of the final models for both wild-
type and mutant proteins. It also calculates z score rang-
ing from 0 to 1 where 0 indicates a good match between 
model and experimental structures [52].

Survival analysis
Kaplan–Meier plotter (http:// kmplot. com/ analy sis/ index. 
php?p= backg round) was used to examine the prognostic 
value of LHPP gene expression for breast, ovarian, lung, 
and gastric cancers [59]. This database utilizes the Gene 
Expression Omnibus (GEO), European Phenome Atlas 
(EGA), and the Cancer Genome Atlas (TCGA) datasets 
for the data on overall survival rate and relapse-free rates 
that are available for cancer patients, meta-analysis-
based biomarker discovery and evaluation [60]. Hazard 
ratio with 95% confidence intervals and logrank p-value 
were calculated and shown on the plot. The analysis was 
done in two categories of people according to the median 
expression of a gene. Through the use of microarray gene 
expression data from 21 different types of cancer, this 
algorithm can examine the potential effects of 54,675 
genes (mRNA, miRNA, and protein) on the survival of 
13,316 cancer patients, including 6235 breast, 3452 lung, 
1440 gastric, and 2190 ovarian cancers [61].

Binding site prediction
FT site was used to predict the LHPP protein’s ligand 
binding sites. Over 94% of apo-proteins have their bind-
ing sites predicted by FTSite, a service that also offers 
protein engineering, structure-based protein prediction, 
medication design, and an understanding of how proteins 
work together [62].

Protein–protein interaction
A protein’s structure may change as a result of a muta-
tion, which may also alter the protein’s functionality. 
Consequently, interactions between mutant proteins and 

other proteins can have phenotypic implications. The 
STRING server [63] (https:// string- db. org/) was used to 
examine how LHPP interacts with different proteins.

Molecular dynamics simulation analysis
An effective approach for studying the evolution of 
molecular systems and predicting their attributes 
from the underlying interactions is molecular dynam-
ics (MD). The simulation for predicted structures were 
performed using WebGro server (https:// simlab. uams. 
edu/) to check stability and flexibility [64]. A simple 
point charge (SPC) water model in a triclinic periodic 
box was used to solve the complex system and GRO-
MOS96 43a1 force field settings was used. The temper-
ature and pressure were set to, respectively, 300 k and 
1.0 bar. There were 1000 frames per simulation, which 
took 50  ns to complete. The root mean square devia-
tion (RMSD) of each atom and root mean square fluc-
tuation (RMSF) of each amino acid residue were used 
to analyze the simulation’s findings. We also perform 
H bond, radius of gyration (Rg) and solvent accessible 
surface area (SASA) analysis to investigate the effect of 
mutation.

Results
Retrieval of nsSNPs
The polymorphism information for the LHPP gene was 
collected using the NCBI dbSNP database. There were 
a total of 60,891 SNPs of which 1570 were noncod-
ing transcript variants, 192 were synonymous, 59,393 
were in the intron region, 421 were missense, and the 
rests were of other kinds. Since some reference SNP ID 
(rsID) contains multiple SNPs at a single site, a total of 
323 missense variants were considered for our further 
study.

Identification of damaging nsSNPs
Nine distinct harmful SNP prediction tools, namely 
SNAP2, PROVEAN, POLYPHEN 2, PREDICT SNP, 
MAPP, PhD-SNP, SIFT, PMUT, and PANTHER were 
utilized to detect deleterious nsSNPs that can modify 
the structure or function of LHPP protein. Out of 323 
nsSNPs, 35 nsSNPs were predicted to be deleterious 
(Table 2) by all nine in silico tools.

Prediction of changing structural stability
By using I-Mutant, SDM, and MUpro, which all per-
form tasks by taking into account single-site muta-
tions, we were able to forecast any stability changes in 
the LHPP protein. The calculations were performed 
by I-Mutant using the reliability index (RI) value and 
free energy change values of ΔΔG and it predicted 31 

http://kmplot.com/analysis/index.php?p=background
http://kmplot.com/analysis/index.php?p=background
https://string-db.org/
https://simlab.uams.edu/
https://simlab.uams.edu/
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nsSNPs decreased the stability of the protein, while 
03 nsSNPs were found to increase the stability of the 
protein (Table  3). SDM tool predicted three nsSNPs 
(P190A, P190L, and P190R) as stabilizing and MuPro 
predicted P190L nsSNP as stabilizing substitution. 
We targeted only those nsSNPs which are predicted 
to be destabilizing by all the in silico tools for further 
analysis.

Evolutionary conservation analysis of deleterious nsSNPs 
in LHPP
The evolutionary conservation of amino acid residues 
of wild LHPP protein was predicted using the ConSurf 
server (Fig.  2). It was found that among 27 nsSNPs, 10 
nsSNPs are in highly conserved regions of whom eight 
SNPs are buried and the rest two are exposed. Besides, 
Q224P is conserved and exposed while V186E, Y23D, 
Y23N, L22P, and I212T are also conserved but buried. 
Proteins are thought to be severely harmed by the nsS-
NPs (Additional file 1: Table S1) that are found in these 
conserved areas [23, 65].

Table 2 List of highly deleterious nsSNPs screened by nine computational programs.

A total of 35 nsSNPs have been predicted deleterious by all in silico tools

E effect; DL deleterious; PD probably damaging; DI disease

RSID A.A Change SNAP2 PROVEAN POLYPHEN 2 Predict SNP MAPP PhD‑SNP SIFT PANTHER PMUT

rs142386969 G227R E DL PD DL DL DL DL PD DI

rs143345981 R234C E DL PD DL DL DL DL PD DI

rs199534407 I212T E DL PD DL DL DL DL PD DI

rs372122309 G222R E DL PD DL DL DL DL PD DI

rs375457352 P190A E DL PD DL DL DL DL PD DI

rs531050111 Y172S E DL PD DL DL DL DL PD DI

rs573011028 L231P E DL PD DL DL DL DL PD DI

rs573011028 L231R E DL PD DL DL DL DL PD DI

rs754022892 L22P E DL PD DL DL DL DL PD DI

rs759890361 N55T E DL PD DL DL DL DL PD DI

rs759928988 G236R E DL PD DL DL DL DL PD DI

G236W E DL PD DL DL DL DL PD DI

rs766371253 L91P E DL PD DL DL DL DL PD DI

rs772361101 L199P E DL PD DL DL DL DL PD DI

rs778152634 R51S E DL PD DL DL DL DL PD DI

rs778834983 D219N E DL PD DL DL DL DL PD DI

rs899597192 V80G E DL PD DL DL DL DL PD DI

rs984607794 Y23N E DL PD DL DL DL DL PD DI

Y23D E DL PD DL DL DL DL PD DI

rs1202486494 V233M E DL PD DL DL DL DL PD DI

rs1263254735 D214G E DL PD DL DL DL DL PD DI

rs1302605486 Q58P E DL PD DL DL DL DL PD DI

rs1309201353 V186E E DL PD DL DL DL DL PD DI

rs1311232035 G13R E DL PD DL DL DL DL PD DI

rs1311232035 G13W E DL PD DL DL DL DL PD DI

rs1361592111 R234P E DL PD DL DL DL DL PD DI

rs1382625953 G29C E DL PD DL DL DL DL PD DI

rs1486839697 L68F E DL PD DL DL DL DL PD DI

rs1564759586 G35D E DL PD DL DL DL DL PD DI

rs1564805010 Q224P E DL PD DL DL DL DL PD DI

rs1589821103 V233G E DL PD DL DL DL DL PD DI

rs1953247951 L101P E DL PD DL DL DL DL PD DI

rs1953781167 P190R E DL PD DL DL DL DL PD DI

P190L E DL PD DL DL DL DL PD DI
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Identification of functional and structural modifications
To identify the functional and structural modifications, 
the 27 nsSNPs that had been selected and determined to 
be harmful in the earlier steps were uploaded to the Mut-
Pred2 website and all of the nsSNPs showed a greater g 
value than 0.5. The structural and functional alterations 
predictions of these substitutions include altered ordered 
interface, altered stability, loss of relative solvent accessi-
bility, altered DNA binding, altered metal binding, glyco-
sylation and gain of phosphorylation, ubiquitination, and 
molecular recognition features.

The predicted data provided by this server showed that 
the various nsSNPs may be responsible for the struc-
tural and functional changes to the LHPP protein. All the 
SNPs (G227R, R234C, I212T, Y172S, L231P, L231R, L22P, 
N55T, V80G, Y23D, Y23N, D214G, V186E, G13R, G13W, 
R234P, G29C, D219N, V80G, G35D, and Q224P) exhib-
ited very confident hypothesis with g value greater than 
0.75 and p-value 0.05 (Additional file 1: Table S2). These 
estimated data offer convincing proof that these nsSNPs 
may have an impact on the structural and functional 
modifications of the LHPP protein.

Effect of point mutation on protein structure
To demonstrate how the physicochemical characteristics 
of wild-type and mutant amino acids differed in terms of 
size, charge, and hydrophobicity values, Project HOPE 
was used to create the 27 mutant LHPP protein 3D 
model structures (Additional file 1: Table S3). Apart from 
D219N, all of the mutant residues caused alteration in the 
size of the amino acid. G227R, L231R, G236R, G236W, 
R51S, V233M, V186E, G13R, G13W, L68F, and G35D are 
larger whereas R234C, I212T, Y172S, L231P, L22P, N55T, 
L91P, V80G, Y23N, Y23D, D214G, R234P (Fig. 3), G29C, 
Q224P, and V233G residues are smaller compared to the 
native structure. Besides, V233G, G35D, Y23D, Y23N, 
V80G, L231R, G29C, G227R, V186E, and I212T are less 
hydrophobic than wild type residue. And Y23D, Y23N, 
and I212T will cause loss of hydrophobic interactions in 
the core of the protein whereas V186E will cause loss of 
interaction in the surface of the protein. Furthermore, 
Q224P, R234P, R51S, G236W, G236R, N55T, G13W, and 
G13R are more hydrophobic and may result in possible 
loss of external interactions while D214G causes loss of 
H bond in the core of the protein and disturbs the correct 
folding. And in D219N, the charge of the buried wild-
type residue is lost by this mutation (Fig. 3).

When an atom or molecule’s position changes, 
Swiss PDB Viewer estimates the fluctuations in a protein’s 
energy state. We identified the variations in the energy 
minimization state of the LHPP structure geometry 
between 27 variants and the wild-type protein (Table 4). 
The total amount of energy used by the native structure 
was −  20,422.141  kj/mol. G227R, I212T, L231R, Y23N, 
V233M, and G35D exhibited decrease in energy where 
rest of the variants showed increase in energy which is 
considered to be less favorable changes in comparison 
with native structure. After energy minimization, other 
missense variations indicated an increase in total energy. 
It was also found that G227R, L231P, L231R, L22P, 
G236R, G236W, L91P, D219N, Y23N, Y23D, V233M, 
V186E, G13R, G13W, R234P (Fig. 4), G29C, L68F, G35D, 
and Q224P exhibited both networks of clashes and H 
bond with nearby residue which was lacking in wild type 

Table 3 Alterations in the structural stability profile of the LHPP 
protein by I-MUTANT, SDM, and MuPro tools.

Seven SNPs have been excluded from further analysis (Italics)

D decrease; I increase; NR no result

RSID A.A Change I mutant SDM MuPro

rs142386969 G227R D D D

rs143345981 R234C D D D

rs199534407 I212T D D D

rs372122309 G222R I D D

rs375457352 P190A D I D

rs531050111 Y172S D D D

rs573011028 L231P D D D

rs573011028 L231R D D D

rs754022892 L22P D D D

rs759890361 N55T D D D

rs759928988 G236R D D D

rs759928988 G236W D D D

rs766371253 L91P D D D

rs772361101 L199P I D D

rs778152634 R51S D D D

rs778834983 D219N D D D

rs899597192 V80G D D D

rs984607794 Y23N D D D

rs984607794 Y23D D D D

rs1202486494 V233M D D D

rs1263254735 D214G D D D

rs1302605486 Q58P I NR D

rs1309201353 V186E D D D

rs1311232035 G13R D D D

rs1311232035 G13W D D D

rs1361592111 R234P D D D

rs1382625953 G29C D D D

rs1486839697 L68F D D D

rs1564759586 G35D D D D

rs1564805010 Q224P D D D

rs1589821103 V233G D D D

rs1953247951 L101P NR D D

rs1953781167 P190R D I D

rs1953781167 P190L D I I
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residue. We have taken into consideration for our future 
studies those substitutions that showed an increase in 
energy following energy minimization.

Prediction of cancer‑causing nsSNPs
This analysis is done by Mutation 3D server that pre-
dicts the harmful nsSNP that are associated with the 
development of cancer. Structural and functional 
changes in LHPP protein are due to mutation that 
results in tumor development. This analysis showed 

that D214G, D219N, Q224P, L231P, G236R, G236W, 
R234C, R234P, and V233G are associated with cancer. 
These nine cancer-associated nsSNPs are considered 
for further analysis. While these nine SNPs are the 
clustered mutation (colored red), SNPs (Y172S, L22P, 
N55T, L91P, R51S, V80G, Y23D, V186E, G13R, G13W, 
G29C, L68F) are covered mutation (colored blue) 
(Fig. 5).

Fig. 2 Evolutionary conservation analysis of LHPP produced by ConSurf
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Structure analysis of wild‑type and mutant models
PHYRE 2 and SWISS-MODEL computational tools were 
used to perform comparative structural analysis.

While Phyre 2 used LHPP proteins’ PDB file ‘2X4D’ 
as the template for predicting the 3D structures of the 
mutants, these structures were visualized by Biovia Dis-
covery Studio, and further analysis of these structures 
were performed by calculating Tm-Score and RMSD 
values for each model (Table 5). The difference between 
the mutant structures and the wild type increases with 
increasing RMSD values. R234P displayed the highest 
RMSD value of 1.187 followed by L22P, Y23D, V233G, 
V186E and Q224P among other mutant models. Besides, 
nsSNPs R234C, G236R, and G236W showed a very slight 
deviation from the wild type model.

Furthermore, 3D structures of native LHPP protein 
and nine nsSNPs were analyzed using SWISS-MODEL 
to study the solvation and torsion with wild protein’s 
solvation score of 0.65 and torsion score of 1.03. L231P, 
G236R, G236W, D214G, R234P, Q224P, and V233G sol-
vation scores are decreased. While the R234P torsion 
score is increased, D214G and D219N torsion scores 
remain the same. These physical modifications to the 
protein structure have therefore an impact on the side 
chains’ capacity for molecular interaction (Additional 
file 1: Table S4).

Survival analysis
The prognostic significance of the LHPP gene expres-
sion for breast, ovarian, lung, and stomach cancers was 
examined using the Kaplan–Meier plotter by correlating 
gene expression and cancer patient survival. A log rank 
p-value and the hard ratio (HR) with 95% confidence 
intervals (CI) were computed. The plot analysis showed 
that LHPP dysregulation had various effects on various 
types of cancer. The HR ratio and p value for lung can-
cer were HR = 1.07 (0.94−1.21), log rank p = 0.29: the 
finding was not statistically significant. But in case of 
breast cancer and ovarian cancer, the LHPP gene had a 
HR and log rank p value HR = 0.85 (0.77−0.94); log rank 
p-value = 0.0019 and HR = 0.87 (0.76−0.99), p = 0.032, 
respectively, which are statistically significant and 
lower-level expression of LHPP is related to the less sur-
vival rate. Besides, in gastric cancer, the HR and p value 
were HR = 1.85 (1.51−2.28), log rank p-value = 2.5e−09 
which is statistically very significant. This result showed 
that LHPP deregulation is associated with many differ-
ent types of cancer and it can also serve as a prognostic 
marker for the patient with breast, ovarian and gastric 
cancers (Fig. 6).

Fig. 3 Structural effect of the point mutation on variant R234P (a and b) and D219N (c and d) predicted by HOPE server where green color 
indicates wild and red color indicates mutant residue
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Table 4 Swiss PDB Viewer result

Out of 27 SNPs, six SNPs have been excluded (Italics) from further analysis

RSID A.A change Presence of clash/hydrogen 
bond

Number of rotamer Energy 
minimization (kj/mol)

rs142386969 G227R Both 28 − 20,735.715

rs143345981 R234C H bond 3 − 20,101.102

rs199534407 I212T H bond 3 − 20,422.918

rs531050111 Y172S Both 3 − 20,290.529

rs573011028 L231P Both 2 − 20,397.299

rs573011028 L231R Both 28 − 20,667.475

rs754022892 L22P Both 2 − 20,362.113

rs759890361 N55T H bond 3 − 20,239.061

rs759928988 G236R Both 28 − 20,321.631

rs759928988 G236W Both 2 − 19,142.076

rs766371253 L91P Both 2 − 20,071.346

rs778152634 R51S Both 3 − 20,224.369

rs778834983 D219N Both 5 − 20,225.535

rs899597192 V80G H bond 1 − 20,304.168

rs984607794 Y23N Both 5 − 20,482.748

rs984607794 Y23D Both 6 − 20,293.883

rs1202486494 V233M Both 13 − 20,469.342

rs1263254735 D214G H bond 1 − 20,157.153

rs1309201353 V186E Both 14 − 20,409.354

rs1311232035 G13R Both 28 − 19,331.146

rs1311232035 G13W Both 7 − 18,770.787

rs1361592111 R234P Both 2 − 19,645.45

rs1382625953 G29C Both 3 − 20,396.191

rs1486839697 L68F Both 5 − 18,906.451

rs1564759586 G35D Both 8 − 20,461.344

rs1564805010 Q224P Both 2 − 19,960.779

rs1589821103 V233G H bond 1 − 20,313.127

Wild protein − 20,422.141

Fig. 4 Structural effect analysis by Swiss PDB Viewer. a represents R234 where four hydrogen bonds (green color) formed and b represents 234P 
where one clashes (pink color) found along with two hydrogen bonds after point mutation
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Ligand binding site prediction
Additionally, FTSite tool was used to reveal ligand bind-
ing sites of LHPP protein, which are shown in (Additional 
file 1: Table S5). It predicted three binding sites for LHPP 
whom all were visualized using the PyMol tool (Fig.  7). 

From this analysis, it was found that mutation positions 
of D214 and D219 are present in binding site one which 
can hamper its’ binding interactions with ligand.

Protein–protein interaction analysis
For metabolite interaction and the maintenance of regu-
lar cellular activity, optimal protein–protein interac-
tion is critical [66]. A protein’s structure may change as 
a result of a mutation, which may also alter the proteins’ 
functionality. The STRING server was used to predict the 
interactions network of LHPP protein and it was found 
that LHPP protein has interactions with PPA1, ATP12A, 
ATP4A, ATP4B, ATP5F1, ATP5J, PPA2, ATP6V0A4, 
ATP6V0A2, and MT-ATP8 (Additional file 1: Table S6). 
Any change in LHPP protein can disrupt all these inter-
actions (Fig. 8).

Molecular dynamic simulation analysis
To investigate the alteration of the mutant LHPP from its 
initial configuration under physiological circumstances, 
molecular dynamic simulation was performed. In order 

Fig. 5 Mutation 3D server predicted the association of nsSNPs (red mark) with cancer. Red color represents clustered mutation, while blue 
represents covered mutation. Nine SNPs are predicted to be associated with cancer

Table 5 Comparative structural analysis based on TM score and 
RMSD value

RMSD Root mean square deviation; TM score Template modeling score

RSID A.A change RMSD TM score

rs143345981 R234C 1.124 0.9954

rs573011028 L231P 1.112 0.99562

rs759928988 G236R 1.08 0.99557

rs759928988 G236W 1.149 0.99566

rs778834983 D219N 1.171 0.99551

rs1263254735 D214G 1.15 0.99557

rs1361592111 R234P 1.187 0.99581

rs1564805010 Q224P 1.012 0.99517

rs1589821103 V233G 1.061 0.99554
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to examine the structural flexibility, stability, hydrogen 
bonding and solvency, the simulations were run for 50 ns.

Root mean square deviations (RMSD) data were used 
to calculate the total alterations in protein stability 
caused by the mutation. The native structure LHPP aver-
age RMSD is 0.0397 nm which was decreased in mutant 
D214G, Q224P, V233G, and R234P (Fig. 9a). The highest 
RMSD value was showed by mutant R234C with an aver-
age of ∼ 0.132 nm (Fig. 9b).

To examine the structural flexibility, RMSF (root mean 
square fluctuation) analysis was performed. The highest 
residual fluctuation for native structure was 0.5409  nm 
and 0.3896 nm noticed at the position of Met 1 and Ser 
241, respectively. Mutant L231P, R234C, Q224P, and 
D219N showed almost similar level of flexibility dur-
ing 50 ns simulation. However, mutant V233G, G236W, 
D214G, R234P RMSF values varied greatly in compari-
son with wild structure. Among them, mutant R234P 

Fig. 6 Study of the relationship between LHPP protein expression and patient survival rates by means of Kaplan–Meier plotter that uses 
microarray-based data. Low level of LHPP expression is associated with the survival rates of patients with breast, ovarian, and gastric cancers
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exhibited highest residual fluctuation (Fig. 10b). Overall, 
total RMSF value of all the mutant structures differed 
considerably from the native structure.

In order to determine the stability of the protein, we 
also analyzed the total amount of hydrogen bonds pre-
sent in the protein. The native structure exhibited an 
average of ∼ 337 H bonds while D219N, L231P, R234C, 
G236W, D214G, Q224P, V233G, and R234P exhibited, 
respectively, ∼ 201, ∼ 195, ∼ 194, ∼ 193, ∼ 199, ∼ 192, 
∼ 196 and ∼ 192 H bonds throughout the 50 ns simula-
tions (Fig. 11).

Following that, we have also calculated solvent acces-
sible surface area. The SASA (solvent accessible surface 
area) value of native and mutant proteins varies greatly 
during 50  ns simulations period. The native struc-
ture average SASA value was ∼ 0.90  nm2 and highest 
fluctuation was seen at the position of Leu 43. Mutant 
D219N, L231P, G236W, R234P exhibited similar SASA 
value to the native structure. However, R234C and 

Q224P showed greater and remaining mutant structure 
average SASA value was lower than the native structure 
(Fig. 12).

In order to evaluate the compactness and rigidity of 
the chosen proteins, the radius of gyration (Rg) was cal-
culated. The Rg values of wild structure ranged from ∼ 
1.82 nm to ∼ 1.89 nm. All the mutants exhibited fluctua-
tion of Rg values compared to the wild one ranges from 
∼ 1.80 nm to ∼ 1.9 nm (Fig. 13). D214G, Q224P, R234P, 
V233G, D219N, L231P, R234C, and G236W average Rg 
values were ∼ 1.88 nm, ∼ 1.85 nm, ∼ 1.83 nm, ∼ 1.87 nm, 
∼ 1.87  nm, ∼ 1.87  nm, ∼ 1.84  nm, and ∼ 1.82  nm, 
respectively.

Fluctuation in RMSD, RMSF, Rg, H bonds, and SASA 
values indicating alteration in structures in mutant 
proteins.

Discussion
SNPs which are distributed widely throughout the 
human genome may have a significant impact on the 
structure and functionality of the relevant protein are 
crucial in the search of the causes of human diseases and 
traits, medication development, and human therapeutic 
responses [65, 67]. However, the abundance of SNPs pre-
sents a problem for scientists because it is costly, time-
consuming, and labor-intensive to analyze every SNP 
using molecular methods to choose target SNPs. Apply-
ing in silico approaches may result in a better under-
standing of genetic dissimilarities in disease vulnerability 
and their phenotypic effects and a decrease in the num-
ber of candidates that need to be screened in molecular 
research [68].

In this study, we investigated the effect of point muta-
tion on the structural and functional activity of phospho-
histidine phosphate inorganic pyrophosphatase (LHPP) 
protein which has been involved in several numbers of 

Fig. 7 a Ligand binding site of LHPP gene. First, second, and third binding sites are indicated by pink, green, and blue colors, respectively. b Ligand 
binding interaction at Asp(D) 214 in interaction site one

Fig. 8 Protein–protein interaction network of LHPP protein predicted 
by STRING server
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cancers (Table 1). The human LHPP gene, positioned on 
chromosome 10q26.13, belongs to the HDHD gene fam-
ily with three leucine zipper domains in it [2]. Thousands 
of polymorphisms in the LHPP genes’ coding and non-
coding regions have already been identified.

Thirty-four missense SNPs were predicted deleterious 
by nine different computational tools amid 323 missense 
nsSNPs that have been identified to date. To investigate 
the effects of the identified thirty-four nsSNPs on protein 
stability, I-Mutant 3.0, SDM, and MuPro were utilized. 
The I-mutant tool projected that the G222R, L199P, and 

Q58P SNPs would increase the protein’s stability whereas 
L101P showed no result. P190L, P190R, and P190A were 
predicted by the SDM tool to increase stability, but Q58P 
presented no result. And MuPro predicted P190L to 
increase the stability of the protein. Only those 27 SNPs 
were considered for further analysis which was fore-
cast to decrease the stability of the protein by all three 
in silico tools. As changes in a protein’s stability have an 
impact on its conformational shape, which controls how 
that protein functions, [67, 69], ConSurf conducted an 
investigation on the evolutionary conservation of chosen 
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Fig. 9 The RMSD values of wild LHPP protein (blue) and eight mutant proteins. Wild LHPP versus D214G, Q224P, V233G, R234P in (a). Wild LHPP 
versus D219N, L231P, R243C, G236W in (b)
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missense mutations to prioritize the identified most 
harmful SNPs for further analysis. The majority of the 
identified harmful SNPs were found at conserved posi-
tions and were structural and functional residues, which 
suggests that these SNPs may be harmful.

Using the MutPred2 web server, the causes of any 
molecular changes that might have an impact on the 
structure or function of the LHPP protein were investi-
gated. Based on the g score and p score, all of the identi-
fied deleterious SNPs were "pathogenic" and were shown 
as potentially actionable, confident, and extremely con-
fident hypothesis. Altered stability or altered ordered 

interfaces were the most consistently predicted effect in 
whole LHPP protein.

The Project Hope program offers in-depth knowledge 
of how point mutations harm a proteins’ structural con-
figuration. While V233G, G35D, Y23D, Y23N, V80G, 
L231R, G29C, G227R, V186E, and I212T were less 
hydrophobic than wild type residue; in contrast, Q224P, 
R234P, R51S, G236W, G236R, N55T, G13W, and G13R 
were more hydrophobic which might cause the altera-
tion of hydrophobic interactions. Additionally, D214G 
disrupts proper protein folding by causing a loss of the 
H bond in the protein’s core. A change in an amino acid 
has an impact on the polar-polar interactions occurring 
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within the protein molecule, which further alters the 
stabilization energy and destabilizes the protein [70]. 
The differences in stability were found by comparing 
particular characteristics of native and mutant struc-
tures. In the case of R234C, Y172S, L231P, L22P, N55T, 
G236R, G236W, L91P, R51S, D219N, V80G, Y23D, 
D214G, V186E, G13R, G13W, R234P, G29C, L68F, and 
Q224P, there were increased in energy which was cal-
culated using Swiss PDB Viewer in comparison with the 
native structure. We targeted these variants for further 
analysis as these changes are considered less favorable. 

This shift in stability can be due to the variant residue’s 
larger R group than the wild type, which cannot fit in the 
given space. Then, mutation 3D server analysis showed 
the association of D214G, D219N, Q224P, L231P, G236R, 
G236W, R234C, R234P, and V233G nsSNPs with cancer.

Understanding the overall effects of SNPs on proteins’ 
function depends heavily on the protein’s 3D structure 
and conformation. As the 3D structure of the LHPP gene 
is already deposited in PDB, for the rest of the mutant 3D 
structures we have utilized Phyre 2, and SWISS-MODEL. 
The SWISS-MODEL analyzes solvation, and torsion 
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value and it is known to impact protein stability as well 
as protein conformation and chain elasticity. These nine 
nsSNPs showed greater deviation in comparison with 
the native model. The structural effects of these muta-
tions were examined by superimposing the wild-type 
and mutant protein models in PyMOL to calculate the 
RMSD value. The aberration between the two structures 
increased with increasing RMSD values, which predicted 
altered functional activity, and since all of these nine 
SNPs showed greater RMSD values which means it could 
be believed that these SNPs might greatly affect the func-
tion and structure of the LHPP protein.

To observe the prognostic characteristics, the Kaplan–
Meier plotter bioinformatics tool was used and predicted 

that the LHPP gene dysregulation had a prognostic rele-
vance and altered the overall survival rate of patients with 
ovarian, lung, and gastric cancers. In gastric and breast 
cancer, low expression is related to less survival rate. 
Any type of dysregulation caused by SNPs in the LHPP 
gene may have a significant impact on how long patients 
with breast and gastric cancer can survive. Furthermore, 
as the D214G and D219N mutations were found in the 
binding site in FT site analysis, the LHPP gene’s ability to 
attach to its target may be affected.

It is also important to investigate how aberrant LHPP 
protein interacts with other interacting partner pro-
teins to better understand the regulatory mechanism it 
uses. The result of the STRING analysis shows that the 
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LHPP protein serves a variety of essential roles and con-
nected with other proteins that may be involved in many 
pathways, and disruption of these pathways may lead to 
disorders. LHPP variants are also known to be associated 
with depressive disorder [71], risky sexual behavior, and 
alcohol dependence [72].

Our study finally predicted nine variants, namely 
D214G, D219N, Q224P, L231P, G236R, G236W, R234C, 
R234P and V233G associated with different types of 
cancer where G236R was also predicted to be associ-
ated with hepatocellular carcinoma  in a research which 
also complements our study [11]. However, our study 
is not without limitations and was focused only on the 
coding region of the protein using a various number of 

computational algorithms and the PDB structure of the 
native protein was missing some side chain atoms.

To analyze the mutant protein’s behavior in the physi-
ological condition, we performed molecular dynamic 
simulation using WebGro online tool and found that 
the mutants values vary from the wild type in terms of 
RMSD, RMSF, Rg, SASA, and H-bond numbers.

The outcomes of the MD simulations offer insightful 
information regarding the changes in native and mutant 
LHPP protein structures under physiological circum-
stances. The main focus of our analysis was mainly the 
deviation of mutant’s structure from the native struc-
ture. Only R234C showed higher RMSD value and on 
average mutant D214G, Q224P, R234P, D219N, L231P, 
and G236W displayed ∼ 0.30 nm, ∼ 0.26 nm, ∼ 0.27 nm, 
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∼ 0.29 nm, ∼ 0.31 nm, ∼ 0.27 nm, and ∼ 0.34 nm, respec-
tively. These result indicates the higher structural devia-
tion from the native structure as the lower RMSD value 
represents similarity to the target structure [73].

In order to analyze fluctuation caused by mutation, 
we also analyzed root mean square fluctuation (RMSF) 
value. We observed higher residual fluctuation from 
235 to 244 residues for V233G, Q224P, D214G and for 
G236W residual fluctuation was spotted at 153–169 resi-
dues. In case of the native structure, the highest residual 
fluctuation was noticed at 1–10 aa and 244–255 aa.

Furthermore, from H bond analysis, we found that the 
number of H bonds in all mutant structure are lower than 
the native structure. Loss of H bond in mutant struc-
ture signified the loss of stability compared to the native 
structure. The SASA analysis also significantly illustrates 
the impact of mutation on LHPP structure as change in 
surface area may hamper ligand bindings, alter protein 
stability.

We calculated radius of gyration as well to evaluate the 
overall dimension of the protein (Fig. 13) exhibited that 
the mutant proteins were less compact in comparison 
with native structure suggesting structural changes due 
to mutation. The average value of native structure was ∼ 
1.84 nm, and the mutants D214G, Q224P, R234P, V233G, 
D219N, L231P, R234C, and G236W average values were, 
respectively, ∼ 1.88 nm, ∼ 1.85 nm, ∼ 1.83 nm, ∼ 1.87 nm, 
∼ 1.87 nm, ∼ 1.87 nm, ∼ 1.84 nm, and ∼ 1.82 nm. There-
fore, it is evident that D214G, Q224P, V233G, D219N, 
L231P, and R234C mutants had higher radius of gyration 
compared to the native structure and it represents the 
lower stability compared to the native LHPP which ulti-
mately leads to the functional dysfunction [74, 75].

It is clear that using computational approaches to 
quickly investigate the anticipated effects of variations 
remains a cost-effective strategy; besides, the more 
parameters that are considered, the more precise the 
forecast will be. By comparing the results of the above 
methods, we can conclude that these eight novel muta-
tions (D214G, D219N, Q224P, L231P, G236W, R234C, 
R234P, and V233G) should be further confirmed through 
experimental approaches for their association with disor-
dered LHPP function in addition to existing deleterious 
nsSNPs of this gene.

Conclusions
LHPP has been associated with several malignancies. 
Using computational prediction techniques, it was pos-
sible to determine the functional and structural effects 
of nsSNPs in the LHPP gene. Using SNAP2, PROVEAN, 
POLYPHEN 2, MutPred, PREDICT SNP, MAPP, PhD-
SNP, SIFT, PANTHER, and PMUT, we were able to 

identify 35 harmful nsSNPs out of total 421. Among 
the 35, structural analysis showed that 27 SNPs had the 
greatest impact on the stability of LHPP protein. Further 
analysis identified eight nsSNPs with a high risk of being 
detrimental. In vitro and in vivo experimental studies can 
be designed by taking into account these in silico data 
and these findings will be valuable in the development of 
future therapeutic and diagnostic modalities.
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