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Abstract 

Background Organic anion transporters and efflux transporters are involved in the metabolism of drugs such as ten‑
ofovir disoproxil fumarate (TDF). Given the important role of organic anions and efflux transporters in drug disposi‑
tion, genetic variations lead to interindividual differences in drug response. Variations in the SLC and ABC transporters 
have been associated with drug‑induced renal dysfunction. Looking at the prevalence of HBV infection in our popula‑
tion and the use of drugs such as TDF in managing this condition, this study aimed to undertake an exploratory analy‑
sis of genetic variation in renal transporters SLC22A6, SLC22A8, ABCC10 and ABCC4 in a Ghanaian HBV infected cohort.

Methods We genotyped 160 HBV infected patients for SNPs in SLC22A6 (rs12293966, rs4149170, rs6591722, 
rs955434), SLC22A8 (rs11568487), ABCC10 (rs700008, rs831311) and ABCC4 (rs9282570) genes. Clinicodemographic data 
was taken, and glomerular filtration rate (eGFR) was estimated using the CKD‑EPI formula. Genotyping was under‑
taken using Iplex gold SNP genotyping protocol on the Agena MassARRAY ® system. Statistical analysis was under‑
taken using packages in Stata SE (v17) and GraphPad prism. Hardy–Weinberg equilibrium, haplotype inference, 
and linkage disequilibrium (LD) were evaluated using web‑based tools LDlink and Shesis.

Results The average eGFR was 79.78 ± 33.08 mL/min/1.73  m2 with 31% classified as stage 1 with normal or high 
GFR (eGFR > 90 mL/min/1.73  m2) and 45% with stage 2 CKD (> 60–89.99 mL/min/1.73  m2). All variants were in HWE 
except rs4149170, rs9282570 and rs700008 where p < 0.05. Strong LD was observed in the variants rs6591722, 
rs4149170, rs12293966, rs955434 and rs11568487. There was significant association between rs12293966 and eGFR 
stage under crude dominant inheritance model (OR 0.27, 95% CI 0.08–0.81; p = 0.019). Under crude model (OR 0.21, 
95% CI 0.07–0.66; p = 0.008), adjusted model 1 (OR 76, 95% CI 0.39–7.89; p = 0.014) and adjusted model 2 (OR 0.30, 95% 
CI 0.12–0.78; p = 0.013) there was significant association observed between rs12293966 and eGFR stage in a codomi‑
nant inheritance.

Conclusion The associations observed in this study point to the need for further evaluation with the population 
of HBV patients on TDF treatment in addition to other factors that would lead to unfavorable outcomes. This explora‑
tory finding may require confirmation in a larger cohort with proper phenotyping to investigate the exact pharmaco‑
genetic mechanisms.
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Introduction
Membrane transporters are important in drug disposi-
tion as they are key determinants in the pharmacokinet-
ics of drugs where they affect absorption, distribution, 
metabolism and elimination (ADME) [1, 2]. Their role 
in the overall response to drugs and subsequent adverse 
reactions is well established. Several of these membrane 
transporters have been elucidated with their physiologi-
cal roles highlighted. The ATP-binding cassette proteins 
(ABC) and solute carrier (SLC) transporters are two 
major superfamilies of membrane transporters [3–5]. 
ABC transporters use energy from ATP hydrolysis to 
function as efflux transporters, while SLC transporters 
are involved in the uptake of molecules into cells. These 
transporters play an important role in regulating the 
inflow and outflow of substances across plasma mem-
branes such as organic or inorganic molecules, sterol, 
metal ions, polypeptides and proteins [6, 7]. In drug 
metabolism, considerable interest lies in these transport-
ers, especially for drugs that are not metabolized by the 
cytochrome p450 family of enzymes. These transporters 
then serve in ADME of such pharmacologically diverse 
drugs and may serve as sites for interactions that underlie 
drug toxicities and adverse drug reactions.

In this study, we screened for transporters that are rel-
evant to nephrotoxic drugs that are of clinical and phar-
macological importance, such as tenofovir disoproxil 
fumarate (TDF), which has been recommended in treat-
ment guidelines for human immunodeficiency virus 
(HIV) and hepatitis B virus [8]. Drug clearance in the 
proximal tubule of the renal nephron is controlled mostly 
by membrane transport proteins [9] and its uptake in the 
epithelial cells of the kidney tubules is mediated through 
anion transporters coded for by solute carrier family 22 
member (SLCs) through basolateral membranes [10, 11]. 
There are other transporters involved in active efflux 
through the apical membrane responsible for excreting 
drugs. The anion transporters are encoded by SLC22A6 
and SLC22A8 which act in the uptake of drugs into 
the renal proximal tubule while ABCC10, ABCC2 and 
ABCC4 control efflux across the apical membrane [11–
14]. The genes that code for transporters have genetic 
variations which affect their accumulation, function, and 
efficiency.

The organic anion transporter SLC22A6, located 
on 11q12.3, has been shown to transport several sub-
stances including xenobiotics with its important role in 
renal function been greatly elucidated in literature [15]. 
Variants in SLC22A6 have been previously associated 
with pharmacokinetic differences in nucleoside ana-
logues such as adefovir, cidofovir and tenofovir [16–18]. 
The SLC22A8 gene which is located on 11q12.3 encod-
ing a protein is involved in  Na+ -independent transport 

and excretion of organic anions. This protein appears 
to be localized to the basolateral membrane of the kid-
ney and therefore genetic variations may influence renal 
function [19]. SLC22A8 has also been implicated in 
TDF-induced Falconi syndrome [20]. The ABCC4 gene, 
located on 13q.32.1 is a member of the ABC transport-
ers which plays an important role in cellular detoxifica-
tion as a pump for substrates and may also function in 
prostaglandin-mediated cAMP signaling [21, 22]. Varia-
tions in ABCC4 have been highlighted in studies involv-
ing tenofovir [13, 23]. ABCC10 is located on 6p21.1 and 
is a transporter of various molecules across extra- and 
intra-cellular membranes. This transporter is a member 
of the multidrug resistance protein family that has been 
involved in multi-drug resistance [24]. ABCC10 plays a 
significant role in gefitinib transport and its mechanism 
of action has been implicated in gefitinib drug resistance 
[25]. Genetic variations in ABCC10 have been found to 
influence tenofovir renal tubular transport and may 
potentially contribute to kidney dysfunction [26].

Due to reports of genetic variations that are associated 
with impaired transport function, which may influence 
drug disposition, it is important to identify SNPs that 
may confer susceptibility to individuals.

In this study, we selected HBV patients being treated 
with tenofovir and those not on treatment and screened 
them for variations in SLC22A6, SLC22A8, ABCC4 and 
ABCC10. Also, since these genes are involved in drug 
metabolism with variations affecting renal function, we 
explored any potential association between the variants 
and renal function using eGFR.

Methods
Study design and subjects
This study is a single-center cross-sectional study to 
explore genetic variations in genes encoding tubular 
transporters and the potential for renal dysfunction in 
HBV patients in Ghana. The study cohort consisted of 
160 unrelated participants. We recruited participants 
from March 2021 to April 2022. To be considered eligible, 
participants, male or female had to be at least 18  years 
and diagnosed with HBV infection. HBV infection was 
diagnosed using Wondfo One step HBsAg whole blood/
serum/plasma rapid immunochromatographic assay 
(Guangzhou Wondfo Biotech Co., Ltd, China) using 
blood plasma. Eligible participants were approached 
and informed of the study verbally and those willing to 
enroll consented. The participants were recruited at the 
hepatitis clinic at the Cape Coast Teaching Hospital in 
Cape Coast, Ghana. To maintain confidentiality, all par-
ticipants were given unique codes as a means of deiden-
tification and assigned study numbers. Participants were 
recruited irrespective of whether they were at the acute 
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stage or chronic stage of infection. Clinical data was col-
lected, including their medication history. The follow-
ing people were excluded from the study: pregnant or 
lactating women; patients with hypertension, diabetes 
mellitus or known renal dysfunction; or any other medi-
cation known to affect kidney function. Whole blood was 
collected into vacutainer tubes for renal function tests 
and DNA extraction. Aliquoted samples were stored 
at − 20 °C until ready for DNA extraction.

Sample size
The prevalence of HBV in Ghana is estimated to be 8.36% 
[27]. Based on the data at the hepatitis clinic at the Cape 
Coast Teaching Hospital, the average population is 1000. 
With a confidence interval of 95%, 5% margin of error 
and a 5% provision for contingency, the required sample 
size for this exploratory study is 160. The Raosoft soft-
ware was used to calculate the sample size.

Ethics statement
This study obtained ethical clearance from the Cape 
Coast Teaching Hospital Ethical Review Committee 
(CCTHERC/EC/2021/005). All research protocols were 
in accordance with the Helsinki declaration. Participants 
provided both written and verbal consent to partici-
pate in this study. Participants were provided with study 
numbers and unique codes to deidentify and anonymize 
them.

Biochemical measurement
Blood was collected on the day of recruitment along with 
other body measurements. Serum creatinine (sCr) and 
urea were estimated using Selectra Pro XL autoanalyzer 
(ElitechGroup, Puteaux, France). The estimated glomeru-
lar filtration rate (eGFR) was calculated according to the 
CKD-EPI formula [28].

The various stages of renal dysfunction were therefore 
classified based on the eGFR as follows:

• Stage 1  with normal or high GFR (GFR > 90  mL/
min/1.73  m2)

• Stage 2 Mild CKD (GFR = 60–89 mL/min/1.73  m2)
• Stage 3A  Moderate CKD  (GFR = 45–59  mL/

min/1.73  m2)
• Stage 3B  Moderate CKD (GFR = 30–44  mL/

min/1.73  m2)
• Stage 4 Severe CKD (GFR = 15–29 mL/min/1.73  m2)
• Stage 5 End Stage CKD (GFR < 15 mL/min/1.73  m2)

DNA extraction and pharmacogenetic analysis/genotyping
DNA was extracted from 200uL of whole blood for each 
patient using the E.Z.N.A ® blood DNA mini kit (Omega 
Bio-tek, Inc. Norcross, USA) according to the manu-
facturer’s instructions. Extracted DNA was diluted to a 
concentration of 20 ng/uL for genotyping procedures. A 
candidate gene approach was utilized to select 8 SNPs 
in total. The SNPs selected were rs12293966, rs4149170, 
rs6591722, rs955434 rs11568487, rs700008, rs831311 
and rs9282570. Selection criteria for these SNPs included 
those that had been previously reported in African popu-
lations. A total of SNPs were genotyped using the Iplex 
GOLD SNP genotyping protocol on the Agena MassAR-
RAY ®system (Agena Bioscience™, San Diego, CA, USA) 
[29].

Statistical analysis
Data for this study was collected using the KoBo toolbox 
[30]. Statistical analysis was undertaken using STATA, 
version 17.0 (StataCorp, College Station, Texas, USA) and 
Graphpad v9 (Prisma, San Diego, California) statistical 
software packages. Continuous variables were expressed 
as mean ± standard deviation or median (inter-quartile 
range), with categorical variables being expressed as abso-
lute values and or frequencies. Baseline characteristics 
were compared between patients who had eGFR < 60 mL/
min/1.73   m2 and those that had > 60  mL/min/1.73   m2 
by z-test and either chi-square test or Fisher’s exact test 
for categorical variables. The Wilcoxon signed test was 
used to test for non-parametric data. Linkage disequi-
librium, haplotype genotype and allele frequencies were 
calculated using a web based tool LDlink [31] and Shesis 
Plus [32]. SNPs were tested for departure from Hardy–
Weinberg Equilibrium (HWE) using a chi-square good-
ness of fit test. To test for an association between eGFR/
CKD stages and SNPs, logistic regression models were 
fitted. Each SNP was presented as a predictor variable in 
the presence of a minimum of one (1) copy of the minor 
allele in a dominant model, two (2) copies of the minor 
allele in a recessive model and a codominant model. Age, 
duration of diagnosis, medication use, and gender were 
included in the model as covariates. Statistical signifi-
cance was considered at p < 0.05.

Results
Our study included 160 patients who had been diagnosed 
with HBV infection with or without TDF treatment. 
The characteristics of our study population are listed 
in Table 1. Of these 160, only 17 (10.62%) were on TDF 
treatment. The HBV cases were made up of acute and 
chronic forms, and only 13% of patients who had chronic 
HBV were on treatment. HBV DNA was low in 35% of the 
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study population, while 53% had HBV DNA of more than 
300 copies/mL. The average eGFR was 79.78 ± 33.08 mL/
min/1.73   m2 with 31% of our study population classi-
fied stage 1  with normal or high GFR (eGFR > 90  mL/
min/1.73  m2) and 45% with stage 2 CKD (> 60–89.99 mL/
min/1.73   m2). Some patients were on herbal medicine 
to treat their HBV infection and out of our cohort 7.6% 
indicated using some form of herbal medicine. There was 
no effect shown on renal function.

Inferred haplotype analysis also showed five (5) haplo-
type blocks that existed between these variants on chro-
mosome 11 (Table  2) with haplotype frequencies < 0.03 
being ignored. The most common haplotype was 
TCAGG with a frequency of 0.551.

Genotype data for the study population is shown in 
Table  3. All polymorphisms were in Hardy–Weinberg 
equilibrium (HWE) except SLC22A6 rs4149170 C > T, 
ABCC4 rs9282570 T > C and ABCC10 rs700008 A > G that 
displayed a departure (p < 0.05) (Table  3). There was no 
significant statistical difference in the distribution of the 
genotypes among the patients that had eGFR < 60  mL/
min/1.73  m2 or not.

D’ values for linkage disequilibrium (LD) analysis 
showed strong LD for the SLC22A6 and SLC22A8 vari-
ants (Fig.  1). High LD was observed for rs12293966, 
rs4149170, rs955434, rs11568487 and rs6591722.

The variant allele frequencies (VAF) of genotyped SNPs 
were compared to data from different populations, as 
shown in Table  4. Comparison was between VAF from 
this study, Africans, East Asians, Americans, South 
Asians, and Europeans with data as reported in dbSNP 
(www. ncbi. nlm. nih. gov/ snp/). All our frequencies were 
similar to what has generally been reported in Africans.

Table  5 summarizes the genotypic distribution of 
transporters with eGFR. A combined percentage of the 
patients had stage 1/normal eGFR (> 90 mL/min/1.73  m2) 
and stage 2 (60–89.99  mL/min/1.73   m2) eGFR distrib-
uted across the various genotypes. There was no signifi-
cant association between transporter genotype and CKD 
stage. Thirty-three percent (33.03%) of participants had 
eGFR lower than 60 mL/min/1.73  m2.

Further analysis was undertaken for the association 
between transporter SNPs and renal dysfunction using 

Table 1 Clinical and demographic data of patient population 
(N = 160)

Continuous variables are expressed as median (IQR) while categorical variables 
are expressed as absolute values and or frequencies

TDF Tenofovir disoproxil fumarate, eGFR Estimated glomerular filtration rate, IQR 
Interquartile range

*statistically significant

Gender N (%) p value

Male 76 (47.50) 0.528

Female 84 (52.50)

Age

Male median age (IQR) 31 (24–40) 0.054

Female median age (IQR) 35 (28–43)

Herbal medicine usage

Yes 12 (7.64) 0.001*

No 140 (92.36)

Treatment

TDF 17 (10.62) 0.001*

Without treatment 143 (89.38)

Creatinine (mg/dL) median (IQR)

TDF 0.32 (0.29–0.36) 0.305

Without treatment 0.34 (0.27–0.47)

Classification

Acute 47 (29.38) 0.001*

Chronic 113 (70.62)

Duration versus treatment

 < 6 months + TDF 3 (5.67) 0.001*

 < 6 months + without treatment 44 (94.33)

 > 6 month + TDF 14 (9.62) 0.001*

 > 6 month + without treatment 99 (90.38)

VL (copies/mL)

0–299 57 (35.62) 0.001*

300–9999 84 (52.50)

10,000–999991 15 (9.38)

 > 100,000 4 (2.50)

eGFR, mL/min/1.73 m2

Stage 1 (> 90 mL/min/1.73  m2) 50 (31.25) 0.001*

Stage 2 (> 60–89.99 mL/min/1.73  m2) 72 (45.00)

Stage 3a (> 45–59.99 mL/min/1.73  m2) 23 (14.38)

Stage 3b (> 30– 44.99 mL/min/1.73  m2) 10 (6.25)

Stage 4(15–29.99 mL/min/1.73  m2) 3 (1.88)

Stage 5 (< 15 mL/min/1.73  m2) 2 (1.25)

Table 2 Inferred haplotypes in SLC22A6 and SLC22A8 in overall study cohort

Gene rs6591722 rs4149170 rs12293966 rs955434 rs11568487 Freq.

SLC22A T C A G G 0.551

T T G G G 0.207

T T A A G 0.140

A C A G G 0.046

T T G G T 0.038

http://www.ncbi.nlm.nih.gov/snp/
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eGFR/CKD stage under three genetic models dominant, 
recessive, and codominant. Table  6 shows all the geno-
types of the SNPs under the 3 models. It was observed 
that under dominant and codominant models rs12293966 

showed a significant association to reduced eGFR. The 
remaining polymorphisms were not significantly associ-
ated with eGFR or medication usage (Table 6).

Table 3 Distribution of different genotypes in overall population and patients based on non‑graded CKD categories

*HWE-pΔ—Hardy Weinberg p values,  pΔ represents the chi square test to compare genotype frequencies. If the p < 0.05 depicts inconsistency with HWE
σ The two categories were based on the NKF/KDOQI guidelines[33]

Genotype Overall population, N = 160; 
n (%)

σeGFR > 60 mL/min/1.73  m2, 
N = 122; n (%)

σeGFR < 60 mL/min/1.73  m2 N = 38; 
n (%)

P*

SLC22A6 rs12293966 A > G

AA 76 (47.50) 52 (42.62) 24 (63.57) 0.209

GA 64 (40.00) 56 (45.90) 8 (21.05)

GG 20 (12.50) 14 (11.48) 6 (15.79)

HWE‑pΔ 0.264

SLC22A6 rs4149170 C > T

CC 63 (39.38) 46 (37.70) 17 (44.74) 0.446

TC 40 (25.00) 31 (25.41) 9 (23.68)

TT 57 (35.62) 45 (36.89) 12 (31.57)

HWE‑pΔ 0.001

SLC22A6 rs6591722 T > A

TT 140 (87.50) 107 (87.71) 33 (27.05) 0.889

AT 20 (12.50) 15 (12.29) 5 (13.15)

AA 00(0.00) 0 (0.00) 0 (0.00)

HWE‑pΔ 0.399

SLC22A6 rs955434 G > A

GG 132 (82.50) 102 (83.61) 30 (78.95) 0.512

GA 28 (17.50) 20 (16.39) 8 (21.05)

AA 0 (00) 0 (0.00) 0 (0.00)

HWE‑pΔ 0.225

ABCC10 rs700008 A > G

AA 28 (17.50) 23 (18.85) 5 (13.16) 0.423

GA 0 (00) 0 (0.00) 0

GG 132 (82.50) 99 (81.15) 33 (86.84)

HWE‑pΔ 0.001

ABCC10 rs831311 C > T

CC 105 (65.62) 83 (68.03) 22 (57.89) 0.245

TC 49 (30.62) 35 (28.69) 14 (36.84)

TT 6 (3.75) 4 (3.25) 2 (5.26)

HWE‑pΔ 0.145

ABCC4 rs9282570 T > C

TT 145 (90.62) 110 (90.16) 35 (92.10) 0.581

TC 13 (8.12) 10 (8.20) 3 (7.90)

CC 2 (1.25)

HWE‑pΔ 0.015

SLC22A8 rs11568487 G > T

GG 149 (93.12) 113 (92.62) 36 (94.74) 0.655

GT 11 (6.88) 9 (7.37) 2 (5.26)

TT 0 (00) 0 (0.00) 0 (0.00)

HWE‑pΔ 0.652
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Discussion
Pharmacogenetic variations have implications for drug 
disposition in Africa, and therefore screening of such 
genetic variants is meaningful for bridging studies and 
precision medicine.

This exploratory pharmacogenetics study therefore 
investigated genetic variation in SLC22A6, SLC22A8, 
ABCC4 and ABCC10 genes. These genes are drug trans-
porters involved in the metabolism of drugs such as acy-
clovir, atenolol, cisplatin, lamivudine, metformin and 
tenofovir (TDF). In this exploratory study, our partici-
pants were HBV patients. HBV patients are prescribed 
with TDF monotherapy or TDF-based combination 
therapies that have proven effective in achieving viral 
suppression and viral progression to liver complications. 
Despite the effectiveness of TDF, renal safety remains 
one of the greatest concerns with respect to long-term 
administration or usage in HBV-infected patients though 

debatable in everyday reported clinical data [34, 35]. Our 
study did not focus on comparing patients on TDF and 
those that were not on treatment as recruitment was 
not tailored towards that. We anticipated that this study 
would provide a basis for cohort studies to establish clini-
cal effects of these variants on renal function in patients 
being managed with TDF-based therapy as obtaining 
pharmacogenetic-phenotype data would be useful for 
monitoring renal function in such patients.

One pathway that mediates active renal secretion and 
reabsorption of organic anions is the renal organic anion 
transporter (OAT, SLC22A) family [36]. Renal excre-
tion of drugs such as TDF is mediated through multid-
rug resistance protein 2 (MRP2), 4 (MRP4) and MRP10 
encoded by ABCC2, ABCC4 and ABCC10 [9, 13]. We 
explored variations in these transporters and the risk of 
renal dysfunction in HBV-infected patients. We observed 
that all polymorphisms studied were in HWE except 

Fig. 1 Linkage disequilibrium for five SNPs on the SLC22A6 and SLC22A8. The LD shows the D′ and  R2 values between each pair of SNPS

Table 4 Compares the frequency of variant alleles in different populations

Gene SNP Variant allele Frequency in %

This study Africans East Asians Americans South Asians EUR

SLC22A6 rs12293966 G 0.33 0.27 0.01 0.02 0.00 0.00

rs4149170 T 0.48 0.377 0.23 0.12 0.16 0.08

rs6591722 A 0.06 0.06 0.15 0.26 0.18 0.32

rs955434 A 0.09 0.13 0.41 0.18 0.20 0.25

ABCC10 rs700008 G 0.83 0.86 0.95 0.81 0.92 0.87

rs831311 T 0.19 0.15 0.00 0.00 0.00 0.00

ABCC4 rs9282570 C 0.09 0.06 0.00 0.01 0.00 0.00

SLC22A8 rs11568487 T 0.03 0.04 0.00 0.00 0.00 0.00
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for rs9282570 T > C, rs4149170 C > T and rs700008 
A > G which showed a departure (Table  3). This depar-
ture could have resulted from several reasons including 
population substructure or genotyping error. Renal dys-
function in this study was evaluated with eGFR. In our 

study, 31.25% and 45% of our participants had stage 1 and 
stage 2 CKD, which, according to NKF/KDOQI is kidney 
damage with normal or increased GFR and kidney dam-
age with mild reduced GFR [37, 38]. A combined 23.75% 
of our participants had eGFR of < 60  mL/min/1.73   m2. 

Table 5 SNP genotypes among patients and eGFR

Total 
number in 
category

Stage 1/normal 
(> 90 mL/
min/1.73  m2)

Stage 2 
(> 60–89.99 mL/
min/1.73  m2)

Stage 3a 
(> 45–59.99 mL/
min/1.73  m2)

Stage 3b 
(> 30–44.99 mL/
min/1.73  m2)

Stage 4 
(15–29.99 mL/
min/1.73  m2)

Stage 5 
(< 15 mL/
min/1.73  m2)

P value

Genotype

ABCC10 rs831311

 CC 105 32 51 14 6 1 1 0.565

 TC 49 15 20 7 4 2 1

 TT 6 3 1 2 0 0 0

 Total 160 50 72 23 10 3 2

SLC22A6 rs12293966

 AA 76 18 34 14 5 3 2 0.104

 GA 64 23 33 6 2 0 0

 GG 20 9 5 3 3 0 0

 Total 160 50 72 23

SLC22A6 rs4149170

 CC 63 15 31 11 3 2 1 0.904

 TC 40 17 14 5 4 0 0

 TT 57 18 27 7 3 1 1

 Total

ABCC10 rs700008

 GG 132 39 60 21 8 2 0 0.715

 GA

 AA 28 11 12 2 2 1 2

 Total

ABCC4 rs9282570

 TT 145 44 66 21 10 2 2 0.772

 TC 13 6 4 2 0 1 0

 CC 2 0 2 0 0 0 0

 Total

SLC22A6 rs955434

 GG 132 44 58 20 8 1 1 0.153

 GA 28 6 14 3 2 2 1

 AA 0 0 0 0 0 0 0

 Total

SLC22A8 rs11568487

 GG 149 47 66 22 9 3 2 0.961

 GT 11 3 6 1 1 0 0

 TT 0 0 0 0 0 0 0

 Total

SLC22A6 rs6591722

 TT 140 45 62 20 8 3 2 0.900

 AT 20 5 10 3 2 0 0

 AA 0 0 0 0 0 0 0

 Total
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According to KDIGO definition of CKD, abnormalities of 
kidney structure or function that persists for more than 
3  months and requires of one of two criteria for diag-
nosis. There should be either a reduced eGFR of 60 mL/
min/1.73   m2 (Stages 3a–5) or kidney damage markers 
such as albuminuria [33, 38]. This therefore implies that 
our participants were moving to a stage of renal dys-
function, which may require clinical management. Some 
patients acknowledge the use of herbal medicine to self-
manage their condition, which may potentially affect 
renal function if continuously used indiscriminately. 

Herbal medicine being multi-phytoconstituent may have 
components that may be substrates of these genes, and 
they, therefore still stand a risk of renal dysfunction if the 
use of these herbal medicines is not monitored for these 
patients [39, 40]. The combined 23.75% participants who 
had eGFR < 60  mL/min/1.73   m2 (Stage 3a to 5) consti-
tuted patients who were either on TDF or not. However, 
apart from self-reported usage of other nephrotoxic med-
ications or foods such as herbal medicine, these patients 
could have been on other forms of “treatment” for their 
condition which has implications for renal function.

Table 6 Association between eGFR and SNPs under multiple models of inheritance

CI Confidence interval, bolded values are statistically significant

Model 1 Adjusted for duration of diagnosis, herbal medicine usage and medication usage

Model 2 Adjusted model 1 + age, gender and BMI

Inheritance MODEL Alleles CRUDE MODEL MODEL 1 MODEL2

SNP OR (95%) p value OR (95%) p value OR (95%) p value

SLC22A6 rs955434

Dominant GA‑AA 1.54 (0.35–6.82) 0.570 1.50 (0.33–6.74) 0.53 1.13 (0.33–3.80) 0.211

Recessive AA – – –

Codominant GA 2.05 (0.57–7.39) 0.271 1.78 (0.51–6.19) 0.366 1.14 (0.41–3.20) 0.800

SLC22A6 rs12293966

Dominant GA‑GG 0.27 (0.08–0.81) 0.019 0.33 (0.08–1.23) 0.099 0.35(0.11–1.09) 0.070

Recessive GG 1.45 (0.51–4.07) 0.48 0.64 (0.09–4.16) 0.641 1.69 (0.49–5.85) 0.41

Codominant GA 0.21 (0.07–0.66) 0.008 1.76 (0.39–7.89) 0.014 0.30 (0.12–0.78) 0.013
SLC22A6 rs4149170

Dominant TC‑TT 3.90 (0.94–16.16) 0.061 1.58 (0.41–6.06) 0.507 1.46 (0.46–4.64) 0.52

Recessive TT 0.91(0.38–2.13) 0.830 1.49(0.40–5.61) 0.55 0.82 (0.29–2.32) 0.71

Codominant TC 0.87 (0.29–2.5) 0.806 0.91 (0.31–2.67) 0.863 1.19 (0.48–2.96) 0.700

SLC22A6 rs6591722

Dominant AT‑AA 0.52 (0.12–2.22) 0.380 0.81 (0.23–2.86) 0.747 0.95 (0.29–3.07) 0.93

Recessive TT – – –

Codominant AT 0.69 (0.18–2.59) 0.580 0.76 (0.21–2.73) 0.674 1.15 (0.37–3.67) 0.802

SLC22A8 rs11568487

Dominant GT‑TT 0.92 (0.10–8.11) 0.701 1.40 (0.20–9.82) 0.734 1.08 (0.20–5.77) 0.92

Recessive TT – – –

Codominant GT 1.01 (0.13–7.36) 0.989 0.96 (0.13–6.87) 0.967 0.93 (0.18–4.87) 0.936

ABCC10 rs831311

Dominant TC‑TT 4.53 (0.38–54.25) 0.234 1.06 (0.41–2.69) 0.22 1.96 (0.30–12.93) 0.48

Recessive TT 1.64(0.28–9.32) 0.58 2.05(0.26–16.26) 0.5 1.76 (0.30–10.27) 0.53

Codominant TC 0.83 (0.30–2.31) 0.723 0.88 (0.32–2.37) 0.801 1.30 (0.57–2.94) 0.535

ABCC10 rs700008

Dominant GA‑GG 2.17 (0.51–9.18) 0.941 2.12 (0.52–8.57) 0.293 1.58 (0.53–4.72) 0.41

Recessive GG 1.53 (0.54–4.36) 0.42 2.10(0.60–7.51) 0.25 1.45 (0.79–0.50) 0.5

Codominant GA – – –

ABCC4 rs9282570

Dominant TC‑CC 0.25 (0.04–1.49) 0.125 0.37 (0.06–2.05) 0.256 0.64 (0.15–2.66) 0.52

Recessive CC – – –

Codominant TC 0.27 (0.04–1.70) 0.164 0.33 (0.06–1.94) 0.224 0.93 (0.18–4.87) 0.936
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ABCC10 rs700008 A > G had a genotypic frequency of 
127 for homozygous mutant (GG) and 24 for homozygous 
wildtype (AA) with departure from HWE (χ2, P ≤ 0.05). 
ABCC10 variants have been associated with kidney tubu-
lar dysfunction [26]. Variations in ABCC10 may influence 
how drug substrates are metabolized and may influ-
ence renal function. This therefore makes our study very 
important as there was 84% representation of the variant 
allele in our cohort, implying a possibility of influence 
on renal function. The variant allele frequency (VAF) for 
this SNP (G) was comparable to what has been reported 
in other African populations (Table  4). For instance, in 
designing TDF pharmacogenomics, a proposed list of 
transporters that includes the SLC22A6 group of families, 
the variant rs4149170 C > T has been highlighted as one 
of the key variants to evaluate [41]. Our study showed a 
departure from HWE for rs4149170 with a VAF of 0.48, 
which was comparable to other populations. The VAF 
detected, however, was higher than a study that assessed 
transporters and chronic kidney disease, where they 
obtained a VAF of 0.09 among a group of chronic renal 
insufficiency cohort with variable ancestry [42]. The 
SLC22A6 rs4149170 has been linked to antiviral drug 
metabolism, which causes renal toxicity [43].

There were only seventeen patients in our total cohort 
that had been initiated on TDF treatment for their condi-
tion. The natural history and management of HBV infec-
tion follow a protocol that looks at HBeAg status, viral 
loads (HBV DNA), co-infections and liver enzymes lev-
els before deciding on providing medication [44, 45]. The 
implementation of these protocols explains why only 11% 
percent of patients were on treatment which is corrobo-
rated by a meta-analysis which showed approximately 
10% of patients who have been infected with HBV glob-
ally are prioritized for treatment [46, 47].

The distribution of the genotypes of SLC22A6, 
SLC22A8, ABCC4 and ABCC10 among the various cat-
egories of renal output measured with eGFR showed no 
significant variations among genotypes and stages of 
renal function. However, there is high variability in the 
pharmacokinetics of drugs in individuals, so identifying 
factors that will contribute to this variability will inform 
dosing. We therefore modeled inheritance patterns to 
look for associations and we observed that dominant 
(OR 0.27, 0.08–0.81; p = 0.019) and codominant (OR 
0.21, 0.07–0.66; p = 0.008) models for rs12293966 were 
significantly associated with renal function measured 
with eGFR. This variant has been reported in South Afri-
can Xhosa and Cape mixed Ancestry group in a similar 
exploratory study [48]. Looking at the use of TDF in HBV 
treatment, it is important that patients be evaluated for 
renal dysfunction over time once they initiate TDF treat-
ment. In patients who have used nephrotoxic drugs for a 

long time, including TDF, the rs12293966 gene should be 
tested in addition to other susceptibility variants.

The aspect of our study that is important is that this 
exploratory study has provided genotype information 
on patients who are following the natural management 
history of HBV, and based on prevailing factors, they 
are prescribed with TDF. Our study is the first to report 
these SNPs in the Ghanaian population. Further studies 
need to be conducted, especially on these SNPs for their 
impact on long-term use of their substrate drugs, includ-
ing TDF.

Key limitations in this study include the fact that we did 
not recruit patients with renal dysfunction for compari-
son and that was because we wanted to follow the natural 
management of HBV at these health facilities. Also, we 
did not measure albuminuria and proteinuria markers 
of renal function which could also have informed fur-
ther classifications. Again, not all genes of the targeted 
transporter proteins were examined, and we might have 
therefore missed other important SNPs. Sample size does 
not match well among the various groups that were used 
in the classifications which could have potential impli-
cations for the outcome. The genotype frequencies for 
homozygous variant alleles were few which implies fur-
ther investigations would have to be conducted to affirm 
the findings of this study.

Conclusion
In conclusion, the findings of this study provide an over-
view of genetic variations in four important pharmaco-
genetic transporters. We show that rs12293966 may be 
associated with renal function measured with eGFR in 
HBV patients. Therefore, in managing patients with HBV 
infection, when the decision is made to put them on TDF, 
metabolite concentrations and genotypes should be eval-
uated to prevent renal dysfunction. These exploratory 
results would require further evaluation and confirma-
tion in a cohort that would be followed up after tenofovir 
dosing for renal functional effects in our population.
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