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Abstract 

Background  Acute ischemic stroke (AIS) is one of the leading contributors to death and disability in adults. 
And cuproptosis is a novel type of cell death. Yet, its role in AIS is still unknown.

Methods  The mRNA, miRNA, and circRNA expression data were downloaded from the Gene Expression Omnibus 
database. We explored differentially expressed circRNAs (DEcircRNAs), microRNAs (DEmiRNAs), and cuproptosis-
related genes (DECuRGs) after AIS. With the target prediction tools, we constructed a cuproptosis-related competitive 
endogenous RNA (ceRNA) network mediated by circRNAs in AIS. Afterward, functional enrichment analysis, cyto-
Hubba plugin, protein–protein interaction, weighted gene co-expression network analysis, and unsupervised cluster-
ing analysis were performed to determine the critical genes and relevant pathways. Machine learning techniques 
were used to identify the optimal risk model. The CIBERSORT was applied to explore the immune-infiltrating char-
acteristics in AIS samples. Finally, two independent datasets were employed to verify the predictive value of the risk 
model.

Results  Altogether, 26 DECuRGs were identified in this study. Enrichment analysis revealed that they participated 
in the reactive oxygen metabolism, inflammatory responses, and corresponding cuproptosis-related biological 
processes. Of the DECuRGs, MTF1 and UBE2D2 were included in the ceRNA network, comprising three circRNA-
miRNA and two miRNA-mRNA interaction pairs. Hub gene analysis determined the hub regulatory axis in the process 
of cuproptosis, namely, MTF1-miR-765-circ_0040760/0068531. We finally constructed a 5-gene risk model (C10orf32, 
NUCB1, AX748267, MRPL28, and PPP1R15A) by multiple analyses, which was validated by two independent data-
sets (AUC = 0.958 and 0.668). Besides, significant differences in immune cell infiltration were observed between AIS 
patients and normal controls. The levels of neutrophils were correlated with most of the DECuRGs. The ceRNA axis 
identified in this study was also associated with the immune microenvironment of AIS patients.

Conclusion  The findings revealed that cuproptosis might be associated with AIS and that the key nodes, includ-
ing the regulatory axes, might exert critical roles in the process of AIS. The risk model provided new insights 
into the early diagnosis and treatment of AIS.
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Introduction
Based on the latest statistics from the World Health 
Organization, ischemic stroke is the leading contribu-
tor to permanent disability in adults and ranks second 
among the significant causes of death worldwide [1]. Of 
note, acute ischemic stroke (AIS) due to embolism or 
artery thrombosis constitutes approximately 85–90% of 
all stroke cases [2]. Cerebral ischemia provokes a series 
of pathological events, including intracranial hem-
orrhage, blood–brain barrier (BBB) disruption, irre-
versible neuronal death, and angioedema [3]. Despite 
advances in understanding the pathology of cerebral 
ischemia, only a few AIS patients benefit from throm-
bolytic therapy nowadays due to the narrow “time 
window” [4]. Therefore, exploring the novel molecular 
mechanism of AIS and screening potential biomarkers 
for early AIS diagnosis have been top priorities.

Proper levels of copper are indispensable as a cata-
lytic cofactor for primary enzymes participating in the 
modulation of oxygen transport, energy conversion, 
and oxidative intracellular metabolism. Although cop-
per serves a fundamental role in many biosynthetic 
processes [5], it is controversial that copper imbal-
ance features prominently in angiogenesis, oxidative 
stress, and deficiency of energy metabolism, suggesting 
its potential in exploring novel therapies for ischemic 
stroke [6, 7]. Cuproptosis, identified by a study in Sci-
ence, is a novel form of programmed cell death different 
from pyroptosis, apoptosis, ferroptosis, and necropto-
sis [8]. The copper-induced cell death is closely related 
to the enzymatic function of protein-lipid acylation in 
the tricarboxylic acid (TCA) cycle. Possible mecha-
nisms of cuproptosis may involve mitochondrial stress, 
abnormal copper metabolism, and some key enzymes 
(e.g., FDX1) [9]. Although cuproptosis was initially 
widely applied in cancer research, increasing studies 
have shown that it is also linked to neurological dis-
eases such as Wilson’s disease, Alzheimer’s disease, and 
traumatic brain injury [10–12]. Recent studies found 
that plasma copper was linked to a higher risk of AIS 
and that excess copper ions in drinking water could be 
a risk factor for stroke [13]. So far, a growing number 
of studies have centered on identifying biomarkers of 
cuproptosis at multiple levels, ranging from morphol-
ogy, biochemistry, and genetics [14]. Huuskonen et  al. 
[15] found that the copper complex CuII might be a 
strong candidate for treating AIS with potential inflam-
mation-modulating capacity. Preliminary evidence sug-
gested that aberrant Cu/Se and Cu/Zn molar ratios 
could be important indicators of nutritional status and 
oxidative stress levels in AIS patients [16]. Neverthe-
less, exploring the reliable biomarkers and intrinsic 

regulatory axes related to cuproptosis in AIS remains a 
tremendous challenge.

Non-coding RNAs mainly include circular RNAs (cir-
cRNAs), long non-coding RNAs (lncRNAs), and micro-
RNAs (miRNAs), which modulate protein coding via 
multiple mechanisms. This is essential in acute inflam-
mation and pathophysiologic recovery after AIS [17, 
18]. The competing endogenous RNA (ceRNA) theory 
suggests that circRNAs have miRNA binding sites and 
could compete against mRNA-bound miRNAs to estab-
lish ceRNA networks, thus suppressing the regulation 
of target genes by miRNAs. For example, circSCMH1, 
a ceRNA for MeCP2, was found to release repression 
of MeCP2 target gene transcription, inhibit peripheral 
immune cell infiltration and glial activation, enhance 
neuronal plasticity, and improve cerebral recovery after 
stroke in both monkeys and mice [19]. A previous study 
revealed that circHIPK3 could modulate stroke-induced 
mitochondrial dysfunction and apoptosis in mice via 
SIRT1/CDK5R1 sponging miR-148b-3p [20]. How-
ever, the specific mechanism of ceRNA in AIS remains 
complicated.

Neuroinflammation is one of the driving causes of the 
pathophysiological process of AIS [21]. During brain tis-
sue apoptosis, necrosis, or injury, non-coding RNAs are 
released from immune, neuronal cells, and other mesen-
chyme mainly along with extracellular vesicles and may 
transit to targeted cells to induce gene translation and 
transcription [22]. Previous research has emphasized the 
critical role of the mRNAs in AIS. However, there are 
no reports on the cuproptosis-related ceRNA network 
involved in the neuroinflammation of AIS. In this work, 
we intended to explore the role of cuproptosis from the 
perspectives of inflammation and ceRNA in AIS and to 
provide a novel insight into the pathogenesis and diagno-
sis of AIS.

Methods and materials
Dataset collection and pre‑processing
First, we downloaded the raw mRNA, miRNA, and cir-
cRNA expression profiles from the online GEO database 
(www.​ncbi.​nlm.​nih.​gov/​geo). We used "ischemic stroke" 
as a keyword and restricted "Homo sapiens" and "series." 
The inclusion criteria were as below: (1) a minimum of 
three people in each group, same race; (2) the samples 
contained a group of AIS patients and healthy controls 
without stroke aged 18  years or older; (3) admission 
within 24 h of onset; (4) with expression data of plasma 
or whole blood. The discovery dataset GSE58294, which 
included mRNA expression matrices of 23 normal con-
trols and 69 AIS samples, was used to construct the 
ceRNA network. In contrast, GSE16561 and GSE22255 
mRNA datasets were used as the validation datasets. 

http://www.ncbi.nlm.nih.gov/geo
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Specific information about these datasets is presented 
in Table 1. The original data were first modified into an 
expression matrix and normalized with the “limma” 
package [23]. Afterward, batch effects were removed 
by the “sva” R package [24]. Additionally, 46 cuprop-
tosis-related genes (CuRGs), listed in Additional file  1: 
Table S1, were acquired based on previous studies [8].

Detection of DEGs and DECuRGs
The “limma” and “edgeR” packages were applied to deter-
mine the differential expression of miRNAs, circRNAs, 
and mRNAs between AIS samples and normal controls, 
with the criteria set to |log2fold change (FC)|≥ 1.0, 1.0, 
0.5, respectively, false discovery rate (FDR) < 0.05 [25]. 
We included the differentially expressed mRNAs (DEm-
RNAs) that overlapped with CuRGs as DECuRGs for 
further analysis. The “pheatmap” and “ggpubr” packages 
were used for the visualization of volcanoes, heatmaps, 
and boxplots of DEGs.

Correlation analysis of DECuRGs
To explore the associations between these DECuRGs, 
we conducted a correlation coefficients analysis on the 
expression of DECuRGs. P-values < 0.05 indicated sig-
nificant correlations according to the Spearman rank 
correlation [26]. The results were visualized using the 
"tidyverse" and "corrplot" R packages.

Construction of ceRNA networks in AIS
To investigate the intrinsic regulatory mechanism of 
DECuRGs, we established circRNAs-miRNAs-mRNAs 
ceRNA networks in AIS. At first, miRNAs response ele-
ments (MREs) of these DEcircRNAs were identified 
by the online CSCD database (http://​gb.​whu.​edu.​cn/​
CSCD/). Only interactions supported by conclusive evi-
dence (qPCR, western blotting, and reporter analysis) 
were included in this study. We then took the overlap-
ping genes between MREs and DEmiRNAs for the fol-
lowing analysis step. Then, target mRNAs of overlapping 
DEmiRNAs were projected by three databases: miRDB 

(https://​www.​mirba​se.​org/), TargetScan (http://​www.​
targe​tscan.​org/), and miRTarBase (http://​mirta​rbase.​
cuhk.​edu.​cn/​php/​index.​php). To improve the reliabil-
ity and robustness of the predictions, we cross-analyzed 
the results obtained from the three databases men-
tioned above. We matched the DEmRNAs, DECuRGs, 
and target genes, and only the data of the correspond-
ing miRNAs and the intersecting mRNAs were retained 
for further study. The Venn diagrams were plotted to 
visualize the overlapping DEmiRNAs, DEmRNAs, and 
DECuRGs. Finally, the circRNAs-miRNAs-mRNAs net-
work and DECuRGs-related ceRNA network were estab-
lished via the Cytoscape software (version 3.8.3).

GeneCards
The GeneCards Database (https://​www.​genec​ards.​
org/) is a center of excellence for the complete annota-
tion of genes. It can merge and extract gene annotation 
data from more than 80 data repositories, including 
well-known entities such as BioGPS and GTEx [27]. To 
identify potential links between key nodes in the ceRNA 
networks and the peripheral blood immune system, we 
utilized the wealth of information available in the GTEx 
and BioGPS databases. This was achieved using the 
online tool GeneCards, which facilitates access to gene 
expression scores within the blood, allowing for the iden-
tity of genes highly correlated with AIS [28].

Functional annotations and pathways analysis
The “Metascape” database [29], Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [30], and Gene Ontology 
(GO) analyses based on the “clusterProfiler” package 
were applied to make a detailed investigation of the bio-
logical mechanisms of DECuRGs. GO functional analysis 
classifies gene functions into three main groups: molec-
ular function (MF), biological process (BP), and cell 
component (CC). False discovery rate (FDR) < 0.05 was 
defined as a criterion for statistical significance.

Table 1  The specific information of datasets in this study

AIS, Acute ischemic stroke

Dataset Platform Normal 
samples

AIS samples Type

GSE195442 GPL31275 (Agilent-085499_SBC human ceRNA microarray) 10 10 Circular RNAs (plasma)

GSE86291 GPL18402 (Agilent-046064 Unrestricted_Human_miRNA_
V19.0_Microarray)

4 7 MicroRNAs (plasma)

GSE58294 GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) 23 69 Messenger RNAs (whole blood)

GSE16561 GPL6883 (Illumina HumanRef-8 v3.0 expression beadchip) 24 39 Messenger RNAs (whole blood)

GSE22255 GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) 20 20 Messenger RNAs (whole blood)

http://gb.whu.edu.cn/CSCD/
http://gb.whu.edu.cn/CSCD/
https://www.mirbase.org/
http://www.targetscan.org/
http://www.targetscan.org/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://mirtarbase.cuhk.edu.cn/php/index.php
https://www.genecards.org/
https://www.genecards.org/
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Construction of a PPI network and selection of key 
DECuRGs
To explore the functional associations between these 
DECuRGs, the STRING online database (https://​string-​
db.​org/) was applied to estimate interactions among the 
above DECuRGs [31]. Only genes with an interaction 
score above 0.700 (high confidence) were selected for the 
PPI network. The results were finally visualized with the 
Cytoscape software (version 3.8.3). We then applied the 
topology MCC and DMNC algorithms in the cytoHubba 
plugin to determine the top 10 genes (Table 2) in the PPI 
network.

Consensus clustering for AIS samples
To comprehensively understand the role of cuproptosis 
in AIS, we conducted unsupervised clustering, using the 
k-means algorithm, to classify 69 AIS samples into dis-
tinct molecular groups based on the expression matrix of 
the ten key DECuRGs mentioned above [32]. The num-
ber of potential clusters (k) was between 2 and 9 to avoid 
generating too many useless clusters, and the most suit-
able number of clusters was evaluated by a combination 
of consistency clustering score (> 0.9), principal compo-
nent analysis (PCA), and cumulative distribution func-
tion (CDF) curves.

Immune infiltration characteristics
CIBERSORT is a deconvolution technique for estimating 
the composition of immune infiltrating cells in samples 
based on RNA sequence data [33]. We investigated the 
relative abundances of immune infiltrating cells accord-
ing to the transcription profiles. The percentage of all 
immune infiltrating cells in each sample sums to 1. To 
further investigate the associations between AIS-related 
immune infiltrating cells and cuproptosis-related genes 
in the peripheral blood, we conducted the Spearman 
analysis to estimate the coefficients between DECuRGs 

expression and the proportions of immune cells. A 
p-value < 0.05 meant a significant correlation. We also 
explored the immune characteristics in different cuprop-
tosis-related molecular groups. The final results were vis-
ualized using the “corrplot” and “ggpubr” packages.

Gene set variation analysis (GSVA)
GSVA was conducted using the “GSEABase” and “GSVA” 
packages to clarify the variations in the set of enriched 
genes between different molecular groups. The gene sets 
were analyzed using the “c2.cp.kegg.symbols.gmt” file 
from the online MSigDB database. Using the "limma" R 
package, we compared the groups’ differential biological 
features and pathways by comparing GSVA scores. The t 
value above two was regarded as statistically significant.

Weighted gene co‑expression network analysis (WGCNA)
The clustering of samples was conducted to validate the 
associations between clinical features and the expression 
matrix based on the grouping information. Co-expres-
sion modules in the GSE58294 dataset were identified 
using the “WGCNA” package [34]. Soft power values 
were filtered by the WGCNA algorithm in building the 
modules. When the independence was 0.9, the appro-
priate value was identified. We then established the 
weighted adjacency matrices and converted them to top-
ological overlap matrices (TOM). Correlations between 
clinical traits and module eigengene were used to assess 
module-trait associations. Each module was given a ran-
domized color. Gene significance (GS) was the associa-
tions among expression profiles and module phenotypes. 
Module membership (MM) was described as the rela-
tionship of each module eigengene and expression pro-
files. The filtering standards for hub genes were MM ≥ 0.8 
and GS ≥ 0.5.

Table 2  Detailed information of the 10 critical DECuRGs

DECuRGs differentially expressed cuproptosis-related genes

Gene Full name Role |logFC| P-value

DLD Dihydrolipoamide dehydrogenase Marker 0.775090 0.008

DLAT Dihydrolipoamide S-acetyltransferase Marker 0.609848 0.006

ATP7B ATPase copper transporting beta Marker 0.591289 < 0.001

SCO1 Synthesis of cytochrome C Oxidase 1 Marker 0.522479 0.046

COX11 Cytochrome c oxidase copper chaperone COX11 Suppressor 0.632915 0.037

SOD1 Superoxide dismutase 1 Suppressor 0.586206 < 0.001

SLC31A1 Solute carrier family 31 member 1 Marker 0.706957 < 0.001

SCO2 Synthesis of cytochrome C oxidase 2 Marker 0.578579 < 0.001

MTF1 Metal regulatory transcription factor 1 Marker 0.801954 < 0.001

CCS Copper chaperone for superoxide dismutase Suppressor 0.651379 < 0.001

https://string-db.org/
https://string-db.org/
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Construction of the risk model using machine learning 
techniques
Based on the filtered hub genes, we used the “DALEX” 
and “caret” packages to construct machine learning 
models [35]. To enhance the reliability of diagnosing 
AIS, we compared the prediction performance of four 
algorithms, namely eXtreme Gradient Boosting (XGB), 
Random Forest Model (RF), Generalized Linear Model 
(GLM), and Support Vector Machine Model (SVM). In 
brief, XGB automatically chooses the optimal number 
of characteristics out of all collected attributes depend-
ing on their weights for predicting a particular outcome 
[36]. RF is an aggregated machine-learning technique 
that requires no specific regression model to be speci-
fied [37]. SVM is a robust classifier tool widely applied 
for cancer subtype delineation or genome classifica-
tion [38]. GLM is an advanced version of the multiple 
logistic regression model and provides the flexibility to 
assess the associations between continuous independ-
ent features and normally distributed dependent char-
acteristics [39]. The expression profiles of AIS were 
classified randomly into a test set (30%) and a training 
set (70%). All four machine learning modules oper-
ated at default arguments and were evaluated by five-
fold cross-validation. Consequently, the model with the 
optimal performance was identified, and the top 5 most 
significant variables were chosen to construct a nomo-
gram. Each predictive gene has a corresponding point. 
The “total points” represented the risk of AIS. Subse-
quent calibration curves and decision curve analysis 
(DCA) were applied to estimate the diagnostic power of 
this risk model.

External validation
Two independent blood datasets, GSE16561 and 
GSE22255, were utilized to verify the diagnostic accuracy 
of our risk model. We then applied the “pROC” package 
to display the areas below the receiver operating char-
acteristic (ROC) curves. Moreover, we conducted a cor-
relation analysis to explore the associations between the 
expression levels of these five predictors and age.

Statistics
All graphical work and statistical analyses were processed 
with the R software (version 4.2.2) and the packages 
mentioned above. Student’s t-test examined the differ-
ences between the two sets. The Bonferroni method was 
used to correct p-values when samples were large and 
multiple comparisons were required. The Spearman cor-
relation analysis was applied to explore the associations, 
and the Bartlett testing was used to assess the variance 

homogeneity. Significant differences were considered at 
P < 0.05 for each analysis.

Results
DEGs and dysregulated cuproptosis‑related genes
A total of 201 DEcircRNAs were directly identi-
fied between AIS samples and healthy controls in the 
GSE195442 dataset, including 78 downregulated and 123 
upregulated circRNAs. Meanwhile, ten downregulated 
DEmiRNAs were screened in the GSE86291 dataset. 
Based on the differential analysis of the GSE58294 data-
set, 710 DEmRNAs were identified, including 360 upreg-
ulated and 350 downregulated mRNAs. We displayed 
the results in the form of volcano plots in Fig. 1A–C. The 
heatmaps of DEGs are shown in Fig.  1D–F. Due to the 
large number of DEmRNAs and DEcircRNAs, we only 
showed the top 50 most significant genes.

To investigate the functions of cuproptosis-related 
genes in the pathogenesis of AIS, we comprehensively 
assessed the expression of 46 CuRGs in the 710 DEmR-
NAs and identified 26 DECuRGs. The expression levels of 
these genes were shown in the form of box graphs and 
heatmaps (Fig. 2A, B). Additionally, we conducted a cor-
relation analysis to investigate whether DECuRGs inter-
acted with each other in the occurrence of AIS. Some 
gene pairs, like COX11 and MAP2K2, showed a robust 
antagonistic effect (coefficient = −0.63), while pairs 
like DLD and DLAT showed a synergistic action (coef-
ficient = 0.71). Moreover, both CD274 and SCO2 were 
found to be associated with most of the other DECuRGs 
(Fig.  2C). The correlation network further revealed the 
close relationship between these DECuRGs (Fig. 2D).

The cuproptosis‑related ceRNA network
To increase the confidence of this analysis, we only kept 
the overlapping interaction pairs of the prediction data-
sets and constructed a circRNA-mediated ceRNA net-
work using the Cytoscape software. The Venn diagrams 
showed that 7 of 10 DEmiRNAs in the GSE86291 data-
set matched the miRNAs response elements (MREs) 
in the GSE195442 (Fig.  3A). The prediction of TargetS-
can, miRDB, and miRTarBase databases showed that 7 
DEmiRNAs might combine with 2852 target mRNAs. 
We then incorporated these 2852 mRNAs with the 710 
DEmRNAs and the 26 DECuRGs, retaining 105 over-
lapped DEmRNAs and only 7 overlapping DECuRGs 
(Fig. 3B, C). Finally, 59 mRNAs, 6 miRNAs, and 12 cir-
cRNAs constituted a competing endogenous RNA 
network (Fig.  3D). More importantly, MTF1-hsa-miR-
765-hsa_circ_0040760/0068531 and UBE2D2-hsa-miR-
4769-3P-hsa_circ_008-5199 axes were identified as the 
cuproptosis-related ceRNA complexes (Fig. 3E).
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Exploration of the key nodes
We searched the GeneCard database for key nodes 
(MTF1, miR-765, UBE2D2, miR-4769-3P, and matching 
circRNAs) to determine their expression in each system. 
The results showed their high expression levels in the 
immune system, especially the blood (Additional file  4: 
Figure S1A–D). GTEx analysis also revealed high bulk 
tissue gene expressions for these critical nodes in the 
whole blood (Additional file 5: Figure S2A–D). We con-
cluded that the two ceRNA axes were closely associated 
with AIS in light of these findings.

Functional enrichment analysis of DECuRGs
We then performed bio-functional and enrichment path-
way analysis of DECuRGs using the Metascape data-
base, KEGG, and GO enrichment tools. The Metascape 
analysis uncovered these genes principally participated 
in copper homeostasis, cellular response to stimuli, 
and regulation of pyruvate dehydrogenase (Fig.  4A, B). 
Similarly, GO results revealed that the DECuRGs were 

primarily enriched in the cell copper ion homeostasis 
(BP), mitochondrial matrix (CC), and copper ion bind-
ing (MF) (Fig. 4C and Additional file 2: Table S2). KEGG 
enrichment identified ten markedly enhanced pathways, 
and the top 3 most significant pathways were the HIF-1 
signaling pathway, TCA cycle, and central carbon metab-
olism in cancer (Fig. 4D and Additional file 3: Table S3). 
Most of the enriched pathways were consistent with pre-
vious studies on stroke and cuproptosis [40, 41], suggest-
ing the reliability of our analysis.

PPI network and key DECuRGs
We first uploaded the 26 DECuRGs into the online 
STRING database and obtained a complex of 24 co-
genes. Afterward, using the Cytoscape software, we 
established a PPI network carrying 61 cross-talk based 
on the 24 DECuRGs (Fig.  5A). The cytoHubba was 
applied to detect key nodes in this network based on the 
built-in algorithms. We identified a highly connected net-
work consisting of 10 critical DECuRGs (SLC31A1, CCS, 

Fig. 1  Differential expression analysis. A Volcano map showing the DEcircRNAs in the GSE195422 dataset. B Volcanic plot displaying the DEmiRNAs 
from the GSE86291 dataset. C Volcano map exhibiting the DEmRNAs in the GSE58294 dataset; red and blue dots indicate up-and-downregulated 
genes between AIS samples and normal controls, respectively. Black dots denote genes that are not differentially expressed. Heatmaps 
for the DEcircRNAs (D), DEmiRNAs (E), and DEmRNAs (F). The color code indicates the gene expression abundance
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COX11, SCO1, SCO2, MTF1, ATP7B, SOD1, DLD, and 
DLAT) (Fig.  5B). Subsequent enrichment analyses also 
indicated that these genes remarkably participated in 
the cellular copper ion homeostasis (BP), mitochondrial 
matrix (CC), copper ion binding (MF), and TCA cycle, as 
were the 26 DECuRGs described above (Fig. 5C–F).

Screening for cuproptosis clusters in AIS
To further investigate the expression patterns of cuprop-
tosis in AIS, we performed an unsupervised cluster anal-
ysis to group 69 AIS samples according to the expression 
landscapes of 10 key DECuRGs. When k = 2, the number 
of clusters was most constant (Fig.  6A). The delta area 
graph displayed the relevant change in area under CDF 
curves (Fig.  6B). The maximum difference in the area 
happened between k = 2 and k = 4. The minimum con-
sensus index ranged from 0.2 to 0.6 in the CDF curves 
(Fig. 6C). As presented in Fig. 6D, the clustering consen-
sus score was higher than 0.9 only when the value of k 

was 2. Furthermore, the results of PCA revealed a dis-
tinct difference between the two groups (Fig. 6E). Com-
bining the above results, we eventually divided the 69 AIS 
samples into two groups, Cluster1 (N = 40) and Cluster2 
(N = 29). We then evaluated the differential expression of 
10 DECuRGs across the two groups. The findings showed 
that Cluster1 exhibited higher COX11, SCO1, ATP7B, 
DLD, and DLAT expression, while Cluster2 revealed 
enhanced expressions of SLC31A1, CCS, and SCO2 
(Fig. 6F, G).

Immune infiltration features in AIS
We obtained the profiles of immune infiltration in AIS 
samples by analyzing the expression of 21 immune infil-
trating cells with the CIBERSORT deconvolution algo-
rithm. The column chart indicated each sample’s content 
of different subtypes (Fig.  7A). The results showed that 
AIS patients were characterized by higher infiltra-
tion ratios of neutrophils, resting dendritic cells, M0 

Fig. 2  Dysregulated cuproptosis-related genes in the GSE58294 dataset. A Boxplots showing the expression of CuRGs between AIS and normal 
controls. *p < 0.05, **p < 0.01, ***p < 0.001. B Heatmap of the 26 DECuRGs between AIS samples and normal controls. C Correlation analysis 
of the 26 DECuRGs. The size of the pie graph represents the magnitude of the coefficient. Red and green denote positive and negative associations 
separately. D Correlation circular network of the 26 DECuRGs
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macrophages, follicular helper T cells, activated memory 
CD4+ T cells, and monocytes (Fig. 7B), indicating that an 
altered immune microenvironment could be implicated 
in the progress of AIS. Moreover, correlation analysis 
revealed that the levels of neutrophils were correlated 
with most of the DECuRGs among the 21 immune cell 
subtypes, suggesting a pivotal role in regulating cuprop-
tosis (Fig.  7C). Interestingly, among the 26 DECuRGs, 
the expression levels of MTF1 were most closely related 
to immune infiltrating cells. MTF1 and the levels of M0 
macrophages presented the most potent synergistic 
effect (coefficient = 0.64) but showed a distinct antago-
nistic effect with the levels of resting mast cells (coef-
ficient = −0.52). Combined with the results of ceRNA 
networks, we speculated that the MTF1-miR-765-
circ_0040760/0068531 axis was the potential cuprop-
tosis-related ceRNA complex with immune infiltration 

landscapes that could partially capture the microenviron-
ment status in AIS patients.

Furthermore, we investigated the immune characteris-
tics of the two cuproptosis clusters. The results revealed 
that the variations in the levels of immune-infiltrating 
cells between Cluster1 and Cluster2 were not as signifi-
cant (Fig.  7D). Cluster1 displayed higher ratios of naïve 
B cells, while Cluster2 showed a higher percentage of 
regulatory T cells (Fig.  7E). In addition, we performed 
the GSVA to investigate the differences in biological pro-
cesses in the two groups (Fig.  7F). The results showed 
that basal transcription factors, protein export, and ubiq-
uitin-mediated proteolysis were upregulated in Cluster2, 
while vascular smooth muscle contraction and sulfur 
metabolism were reinforced in Cluster1. Similarly, the 
discrepancy in immune-related pathways between these 
two clusters was insignificant.

Fig. 3  Construction of the cuproptosis-related ceRNA network. Venn diagrams displaying the seven diff miRNAs found in the intersection 
of GSE195422 and GSE86291 (A), 105 overlapped target diff mRNAs (B), seven overlapped genes between the DECuRGs and miRNAs-targeted 
mRNAs (C). D The construction of circRNA-mediated ceRNA network, including 12 DEcircRNAs (dark green triangle), 6 DEmiRNAs (light red 
V), and 59 DEmRNAs (dark blue ellipse). The lines denote their interactions. E The construction of cuproptosis-related ceRNA subnetwork via 3 
DEcircRNAs, 2 DEmiRNAs, and 2 DECuRGs (MTF1 and UBE2D2)
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Selection of cluster‑specific hub genes
To detect critical gene modules associated with cuprop-
tosis and AIS, we applied the WGCNA to build co-
expression blocks and networks between healthy controls 
and AIS samples. We evaluated the expression variance 
for each gene in the GSE58294 dataset. The top quartile 
of genes with the most prominent variations was then 
selected for further analysis. Cluster analysis of the sam-
ples was performed using the “flashClust” R package, and 
the findings are presented in Fig.  8A. Second, the most 
suitable power value was determined (Fig. 8B). When the 
power value of 5 was set, the scale-free degree was up to 
0.9, and co-expression modules with higher connectiv-
ity degrees were identified. Four co-expression modules 
of distinct colors were obtained, and interactions of the 
four modules were analyzed (Fig. 8C, D). Besides, genes 
from the four modules were used to analyze the adja-
cency and similarity of module co-expression with clini-
cal traits. Consequently, the turquoise module presented 

the highest association with AIS, containing 3369 genes 
(Fig.  8E). Finally, we drew a scatter plot of gene signifi-
cance (GS) versus module membership (MM) to identify 
the hub genes related to AIS in the turquoise module 
(Fig.  8F). We observed a direct positive association 
between MM and GS and obtained 254 hub genes (Addi-
tional file 4: Table S4) by setting the criteria as MM ≥ 0.8 
and GS ≥ 0.5.

Machine learning techniques
To screen hub genes with higher diagnostic values, we 
performed four validated machine learning algorithms 
(XGB, SVM, GLM, and RF) based on the profiles of 254 
hub genes in the AIS training cohort. Consequently, SVM 
and XGB models exhibited a lower root-mean-square 
of residual (Fig.  9A, B). The four models’ top ten most 
crucial feature genes were sorted according to the root-
mean-square error (Fig. 9C). In addition, we assessed the 
properties of the machine-learning techniques in the test 

Fig. 4  Functional enrichment analyses of the 26 DECuRGs. A Interaction relationship between the enriched terms. B Heatmap of the enriched 
terms. C Significant GO enrichment terms for the DECuRGs (MF, molecular function; CC, cellular component; BP, biological process). D KEGG 
enrichment pathway analysis of the DECuRGs
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cohort by computing the ROC curves (Fig. 9D). The SVM 
model performed best with the most significant area 
under the curves (AUC = 0.956). We then selected the top 
5 most essential genes (C10orf32, NUCB1, AX748267, 
MRPL28, and PPP1R15A) in the SVM model for further 
investigation.

Risk model development and validation
The five variables (C10orf32, NUCB1, AX748267, 
MRPL28, and PPP1R15A) were used to establish a nomo-
gram model to assess the risk of cuproptosis clustering 
in the 69 AIS samples (Fig. 10A). Subsequent DCA and 
calibration curves were applied to evaluate the diagnostic 
power of the model. The results of DCA indicated that 
the model was highly accurate and could inform clini-
cal decisions (Fig.  10B). Besides, the calibration curves 
showed that the actual AIS risk had a tiny error com-
pared to the ideal risk (Fig. 10C). Moreover, we verified 
the diagnostic model on two independent peripheral 

blood datasets (including AIS patients and normal con-
trols) using the ROC curve analysis. The AUC values for 
the GSE16561 and GSE22255 datasets were 0.958 and 
0.668, respectively, showing the models’ robustness and 
versatility (Fig.  10D, E). Based on the GSE22255 data-
set, we investigated the relationship between the levels 
of diagnostic genes and age, which was positively corre-
lated with AIS occurrence. We found that only NUCB1 
was negatively and significantly associated with age, 
R = −0.39, p = 0.015 (Fig. 10F–J), implying NUCB1 was a 
protective factor for ischemic cerebrovascular diseases.

Using the GSE16561 dataset to verify the hub genes
The five hub genes (C10orf32, NUCB1, AX748267, 
MRPL28, and PPP1R15A) were retrieved from the 
GSE16561 dataset. This dataset contained genetic infor-
mation of 24 healthy controls and 39 AIS patients. Con-
sequently, the gene AX748267 was not found in the 
GSE16561 dataset. We then analyzed the data of the 

Fig. 5  Protein–protein interaction analysis of the 26 DECuRGs. A PPI network comprising of 24 genes. Red dots indicate the upregulated genes, 
and blue dots denote the downregulated genes. B The ten hub genes using the cytoHubba plugin. The darker the red, the higher the degree 
of connection. GO enrichment analysis of the ten hub genes. C–E represent the part of biological process, cellular component, and molecular 
function separately. F Significantly enriched KEGG pathway terms
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other four genes by Student’s t-test. Results revealed that 
the expression of NUCB1 and PPP1R15A was signifi-
cantly upregulated in the AIS patients (Fig. 11), suggest-
ing the reliability of our analysis.

Discussion
Increasing research supports the involvement of cop-
per-related pathways in the etiopathogenesis of AIS 
and emphasizes the critical role of the inflammatory 
environment [15, 42]. Huuskonen et  al. found that cop-
per transport in the ischemic brain could regulate the 
inflammatory response, especially in myeloid cells. The 
complex Cu II also reduced the ratio of invasive mono-
cytes and preserved endogenous microglia from ischemic 
injury [15]. In a large European population-based cohort 
study, ceruloplasmin was the sole inflammation-sensitive 
protein significantly related to the incidence of atrial 

fibrillation after adjusting for confounding factors [43]. 
Nonetheless, the intrinsic mechanism of cuproptosis in 
AIS remains unclear since this novel form of cell death 
was first reported [8]. Currently, there is also a lack of 
validated diagnostic risk models in the clinical utility. 
Our study focused on the cuproptosis-related genes and 
overall regulatory ceRNA networks with immune infil-
tration features and proposed a cuproptosis-related risk 
model using multiple bioinformatics analyses.

As a novel post-transcriptional regulatory formation, 
ceRNA has considerable potential for disease study. 
Several studies suggest that ceRNA regulation networks 
may be involved in cancer, atherosclerosis, and other 
non-neoplastic diseases [44–46], which play an essen-
tial regulatory role in AIS. In this work, we system-
atically analyzed the expression profiling of mRNAs, 
miRNAs, and circRNAs between healthy controls and 

Fig. 6  Exploration of the cuproptosis-related clusters based on the ten key DECuRGs. A Consensus clustering matrices at k = 2. B Cumulative 
distribution function (CDF) relative change in area under the curves. C Consensus CDF curves. D The cluster-consensus score. E The PCA plot. The 
expression patterns of 10 key DECuRGs in the two clusters were presented as heatmap (F) and boxplot (G)
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AIS patients. The overlapping DEcircRNAs, DEmiR-
NAs, and DEmRNAs were identified from three inde-
pendent datasets, while a circRNA-mediated ceRNA 
network was constructed using bioinformatics. Further-
more, we screened 26 dysregulated CuRGs from the list 
of DEmRNAs, suggesting a pivotal role of CuRGs in the 
development of AIS. We then discovered significant syn-
ergistic or antagonistic effects of most DECuRGs, as evi-
denced by the interactions. The immune cell abundance 
was also altered between controls and AIS patients. AIS 
samples presented elevated infiltration levels of neutro-
phils, M0 macrophages, activated memory CD4+ T cells, 

follicular helper T cells, monocytes, and resting den-
dritic cells, consistent with previous research validated 
in experiments [47–49]. Numerous studies have shown 
the engagement of cuproptosis in immunity and neuro-
inflammation [50–52]. Of the 26 DECuRGs, MTF1 was 
most closely correlated with the immune infiltrating cells. 
M0 macrophages and MTF1 showed the most potent 
synergistic effects, while resting mast cells and MTF1 pre-
sented the greatest antagonistic effect. Depending on the 
activation status of macrophages (M1/M2), they could 
have a dual role in the tissue damage process of AIS [53]. 
M2 macrophages contribute to neuronal regeneration 

Fig. 7  The immune infiltration characteristics in AIS. A The relative percentage of immune infiltrating cells in each sample. B Boxplot showing 
the comparative abundance of 22 immune infiltrating cells between AIS samples and normal controls. C Spearman correlation analysis 
between the immune infiltrating cells and DECuRGs. D The relative proportions of immune infiltrated cells in the two clusters. E Discrepancies 
in the proportions of immune infiltrating cells among the two groups were shown in the bar graph. F Variations in bio-pathways between the two 
clusters ranked by the t-value of GSVA scores
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and repair, whereas M1 macrophages are thought to have 
destructive properties on neurons [54]. In contrast, mast 
cells are reportedly involved in collateral formation and 
arteriogenesis in AIS [55]. Furthermore, we speculated 
that the cuproptosis-related ceRNA axis, MTF1-miR-
765-circ_0040760/0068531, was associated with regulat-
ing the neuroinflammation in AIS. Both circ_0040760 
and circ_0068531 act as molecular sponges of miR-765 

and compete for binding with the upregulated MTF1. 
MiR-765 was reported to be implicated in inhibiting lipid 
metabolism in foam cell formation and oxidized LDL-
macrophage models [56]. Bima et al. identified the poten-
tial of miR-765 as a reverse blood biomarker for obesity 
[57]. Interestingly, high-throughput screening revealed 
that miR-765 might serve as a PCSK9 inhibitor, leading 
to lower plasma LDL cholesterol levels and prevention of 

Fig. 8  A Clustering tree drawn using the WGCNA algorithm; the y-axis indicates the clustering distance; each branch represents a sample. B 
Analysis of the most suitable soft power. C Gene dendrogram with the soft threshold and four modules. D Network heatmap plot of the four 
merged modules. E Module-trait relationships, with the turquoise module showing the highest association. F Scatter plot of module members 
(MM) versus gene importance (GS) within the turquoise module (cor = 0.87, p < 1e − 200)
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cardiovascular disease [58]. In mouse models, MTF1 was 
found to play a vital role in the maintenance and induc-
tion of inflammatory pain [59]. There were few reports 
on hsa_circ_0040760 and hsa_circ_0068531. Unfor-
tunately, the expression matrix of miRNAs in AIS was 

rarely seen in the GEO database. Therefore, further stud-
ies are required to confirm and explore our findings.

In the enrichment analyses, we applied three different 
methods to explore the biological functions. We found 
the 26 DECuRGs in AIS were primarily enriched in the 

Fig. 9  Comparison of the four machine learning techniques. A Inverse cumulative distribution of residuals in the four models. B Bar graph 
of residuals. C The feature importance created for the four models. D The ROC curves based on fivefold cross-validation in the test cohort
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cellular response to stimuli, copper homeostasis, and 
regulation of pyruvate dehydrogenase, which have been 
reported in previous studies regarding the immune regu-
lation of AIS [60–62]. The top 5 most enriched pathways 
of DECuRGs were the HIF-1 signaling pathway, central 
carbon metabolism in cancer, pyruvate metabolism, TCA 
cycle, and glycolysis. The findings suggest that the genes 
are particularly associated not only with the relevant 
cuproptosis-related pathways but are also engaged in 
other biological mechanisms, such as immune responses 
and oxidative stress [63–65]. This demonstrates that 
these DECuRGs serve distinct functions in specific envi-
ronments. There may be cross-talk between these bio-
pathways, consistent with previous reports revealing a 

significant interaction between cuproptosis and immune 
responses [50, 66]. In addition, we conducted a hub locus 
analysis to determine key nodes and found that MTF1 
was also the core node of the cuproptosis-related regu-
latory network. The gene MTF1 is an essential hypoxia-
sensitive transcription factor that might function in 
the neuroprotective effects mediated by remote limb 
ischemic postconditioning via activation of NCX1 [67]. 
Moreover, Youn et  al. [68] found that enhanced MTF1 
expression may help protect against cerebral ischemia, 
and hypothermia was an inductor of MT gene expression 
in brain endothelial cells. In mouse models of focal cer-
ebral ischemia, sevoflurane conferred neuroprotection by 
activating NO and peroxides to increase MT-1 and MT-2 

Fig. 10  Establishment and validation of the risk model. A Construction of the nomogram with the top 5 most significant variables. Establishment 
of the DCA (B) and calibration curves (C) to evaluate the efficiency of the nomogram. D, E External validation via the ROC curves analysis (F–J)
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expression and enhance the expression of MTF-1 in the 
nucleus [69]. All these findings are consistent with our 
results.

Based on the expression patterns of key nodes, we iden-
tified two distinct cuproptosis-related molecular groups 
in AIS patients. The expression levels of MTF1 were not 
significantly different between the two clusters. Cluster 
1 displayed higher levels of the critical DECuRGs abun-
dance. GSVA analysis showed that Cluster1 was mainly 
enriched in the vascular smooth muscle contraction, bio-
synthesis of unsaturated fatty acids, and sulfur metabo-
lism, while basal transcription factors and protein export 
characterized Cluster2. Combined with the immune infil-
tration analysis, we concluded that though the biological 
processes differed between the two cuproptosis-related 
groups, the intrinsic immune environment was not sig-
nificantly altered, possibly due to the small numbers of 
AIS samples. Therefore, further research is necessary to 
verify this finding.

Recently, machine learning techniques based on high-
precision imaging metrics and demographic methods 
have been increasingly employed to construct risk mod-
els in cerebrovascular diseases [70–72]. Several machine-
learning methods have been proposed for merging spatial 
transcriptome data with other data [73]. In this work, we 
first screened out the most significant module consisting 
of 254 hub genes using the WGCNA algorithm. We com-
prehensively assessed the performance of four machine 
learning methods. We developed an SVM-based model 
with the highest area under the curves (AUC = 0.956), 
indicating the satisfactory ability of this model to predict 
AIS risk. Afterward, we selected the top 5 most important 

variables (C10orf32, NUCB1, AX748267, MRPL28, and 
PPP1R15A) to construct a nomogram model. The DCA 
calibration curves demonstrated the independence of 
this 5-gene signature and ROC analysis (AUC = 0.958 and 
0.668). The AUC value of the GSE22255 dataset was rela-
tively lower. One plausible explanation could be that the 
experiment was performed in peripheral blood mononu-
clear cells, not whole blood.

Furthermore, we validated the five hub genes using 
the GSE16561 dataset. We found that only PPP1R15A 
and NUCB1 were statistically upregulated in the AIS 
samples, consistent with our results. This could be asso-
ciated with the small sample size of this dataset. The 
autophagy gene PPP1R15A was reported to be mark-
edly related to immune response activity in ischemic 
stroke [74]. Lelong et al. observed a strong early upreg-
ulation of PPP1R15A expression in the novel mouse 
models of monocular amaurosis fugax, which will help 
test novel neuroprotective drugs [75]. Nucleobindin 1 
(NUCB1) is a clearly defined Golgi protein whose func-
tion is related to G-protein signaling, immunity, and 
calcium homeostasis [76]. Studies have revealed that 
nestin-1-like peptides encoded by NUCB1 exert a pro-
tective role after cardiac muscle injury and also defend 
dopaminergic cells from neurotoxicity through anti-
apoptotic and anti-inflammatory mechanisms [77]. In 
the brain ischemia/reperfusion models of Wistar rats, 
nesfatin-1 had remarkable neuroprotective effects 
through inhibition of caspase-3 and microglia activa-
tion [78]. Age is the most influential non-interventional 
risk factor for AIS, and the incidence of AIS increases 
sharply with age. Among the five predictor genes, we 

Fig. 11  The expression of these four genes differed between AIS samples and normal controls. Of these, NUCB1 and PPP1R15A were considered 
statistically significant
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found that only NUCB1 was adversely correlated with 
age (R = −0.39, p = 0.015). Overall, this risk model was 
a promising indicator for evaluating AD subgroups and 
incidence risk.

To our knowledge, this study presented the first 
cuproptosis-involved model for AIS. However, there were 
still some limitations that should be admitted. Firstly, 
the cuproptosis-related genes enrolled in the study were 
primarily from prior research, and thus, many potential 
genes may have been excluded or omitted. Second, the 
gene expression profiling of selected datasets was tested 
under different conditions in different laboratories, which 
may bias the results. Third, the identified cuproptosis-
related ceRNA network and risk model required further 
experimental studies. One more major limitation was 
the lack of prospective AIS cohorts to verify the model’s 
stratification performance and risk role.

Conclusion
In summary, this study suggested that these cupropto-
sis-related genes and their interactions may be involved 
in the development of AIS. The key nodes and MTF1-
miR-765-circ_0040760/ 0068531 axis determined in this 
study may serve essential roles in regulating the above 
processes. We identified five hub genes, specifically 
PPP1R15A and NUCB1, as diagnostic features for iden-
tifying AIS. These findings may offer novel insights into 
the diagnosis and treatment of AIS.
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