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Pan-cancer analysis identified IGF2BP2 o

as a potential prognostic biomarker for multiple
tumor types
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Abstract

Background Insulin-like growth factor 2 (IGF2) mRNA-binding proteins 2 (IGF2BP2/IMP2), an RNA-binding protein
encoded by the IGF2BP2 gene, exerts its influence across diverse pathological pathways. While accumulating evi-
dence underscores the potential significance of IGF2BP2 in the tumorigenesis of specific cancers, a comprehensive
pan-cancer investigation into its role remains absent.

Methods Consequently, we conducted an exhaustive exploration employing a multitude of databases to elucidate
the plausible oncogenic implications of IGF2BP2. This encompassed a comprehensive scrutiny of its expression pro-
files, prognostic implications, association with cancer-associated fibroblast infiltration, biological functionality in dis-
tinct tumor contexts, and plausible correlations with drug sensitivities.

Results Our findings showed that IGF2BP2 was highly expressed in some types of cancers, but presented at low
levels in several cancer types. Furthermore, the role of IGF2BP2 in predicting prognosis exhibited a dichotomous
interplay across varied cancer types. Remarkably, observations unveiled the cancer-associated fibroblast infiltration
within specific tumors, notably encompassing breast invasive carcinoma of the luminal A subtype, kidney renal clear
cell carcinoma, ovarian serous cystadenocarcinoma, pheochromocytoma and paraganglioma, and prostate adenocar-
cinoma, and thymoma. Intriguingly, gene enrichment analyses spotlighted the co-expression of IGF2BP2 with genes
implicated in pivotal biological processes, including DNA replication and recombinational repair.

Conclusion Our investigation intricately unveils the potential of IGF2BP2 as a versatile prognostic biomarker
across diverse tumor categories. This study bridges existing knowledge gaps and augments the understanding

of IGF2BP2’s intricate involvement in tumorigenesis, underscoring its significance as a prospective avenue for thera-
peutic intervention.
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Introduction

Cancer stands as the foremost cause of mortality

worldwide [1], posing a formidable challenge to both
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Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) [2, 3], empowers the execution of pan-cancer
expression analyses. These analyses uncover common-
alities, distinctions in gene expression profiles, and
their associations with clinical outcomes [4].

Amidst this context, the human insulin-like growth
factor 2 (IGF2) mRNA-binding proteins 2 (IGF2BP2/
IMP2) encoded by the IGF2BP2 gene which is located
on chromosome 3q27, emerges as a multifaceted RNA-
binding protein orchestrating a plethora of biologi-
cal processes [5]. IGF2BP2, with a molecular mass of
66 kDa, is an oncofetal protein important for embry-
onic development and downregulated in normal adult
tissues, which functions by binding and stabilizing
mRNA to extend their half-life [6]. The multifunc-
tional role of IGF2BP2 has been substantiated by a
series of studies highlighting its participation in vital
cellular functions, encompassing cell polarization,
migration, morphology, metabolism, proliferation, and
differentiation [7]. Recent insights reveal IGF2BP2’s
role as an N6-methyladenosine (m6A) reader, inter-
acting with diverse RNA species to influence the
genesis and progression of cancers [8]. Beyond this,
IGF2BP2 emerges as an autonomous prognostic deter-
minant across a spectrum of cancer types, encompass-
ing acute myelocytic leukemia [9], breast cancer [10],
colorectal cancer [11], hepatocellular carcinoma [12],
oral squamous cell carcinoma [13], pancreatic cancer
[14], thyroid cancer [15], and many others. Moreover,
IGF2BP2’s influence extends to metabolic disorders
[16], such as diabetes [17] and obesity [18].

Nevertheless, prevailing investigations concerning
the role of IGF2BP2 have predominantly centered on
individual cancer types. To our present knowledge, a
comprehensive inquiry into the functional and clinical
significance of IGF2BP2 across the spectrum of pan-
cancer remains conspicuously absent. In this pursuit,
we methodically harness multiple databases to under-
take an exhaustive analysis encompassing IGF2BP2’s
expression profiles, prognostic implications, cancer-
associated fibroblast infiltration, biological functions
in the context of pan-cancer, and its plausible corre-
lations with drug sensitivities. In synthesis, our find-
ings unequivocally present IGF2BP2 as a prospective
prognostic indicator across an array of malignancies.
Notably, IGF2BP2 exerts its function via tumor micro-
environment (TME) and exhibits discernible associa-
tions with drug sensitivities. This comprehensive study
unlocks novel perspectives on IGF2BP2’s overarching
role in pan-cancer scenarios, offering potential thera-
peutic avenues for exploration.
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Materials and methods

Gene expression analysis of IGF2BP2

Initially, an IGF2BP2 mRNA expression plot was
meticulously plotted utilizing the Human Protein Atlas
(HPA) database (version 21) (https://www.proteinatl
as.org/) [19]. To elucidate gene conservation across
vertebrates, a comprehensive visualization was facili-
tated through the UCSC genome browser (http://www.
genome.ucsc.edu/cgi-bin/hgTracks) [20]. In tandem,
UCSC Xena datahubs (http://xena.ucsc.edu/) were
used to obtain RNA-seq datasets from the TCGA [21]
and the GTEx [3] repositories for a pan-cancer differ-
ential expression of IGF2BP2. After data processing,
there were 10,534 samples from TCGA and 7568 sam-
ples from GTEx included for analysis. Furthermore,
within the purview of the Tumor Immune Estima-
tion Resource version 2 (TIMER2) framework (http://
timer.cistrome.org/) [22], the “Gene_DE” module was
employed to scrutinize variations in IGF2BP2 expres-
sion between tumor and adjacent normal tissues across
diverse malignancies.

Correlation of IGF2BP2 expression with survival prognosis
The investigation encompassed the correlation between
IGF2BP2 mRNA expression and clinical endpoints,
namely overall survival (OS), disease-specific survival
(DSS), and progression-free interval (PFI). To discern
these relationships, we employed Cox proportional
hazard regression models and Kaplan—Meier sur-
vival analyses. For these analyses, the R software (ver-
sion 4.2.2) integrated the “survival, “survminer, and
“ggplot2” packages. A two-sided P value less than 0.05
was considered statistically significant.

Cancer-associated immune infiltration analysis

Using the “Immune” module of TIMER2.0 [23],
Extended Polydimensional Immunome Characteri-
zation (EPIC), Microenvironment Cell Populations-
counter (MCPCOUNTER), XCELL, and the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithms
were employed to investigate the correlation between
IGF2BP2 expression and cancer-associated fibroblast
infiltration. Spearman’s rank correlation test was used
to calculate partial correlation coefficients (cor) and
associated P values. The discerned outcomes were por-
trayed via a heatmap and scatter plots.

IGF2BP2-related gene enrichment analysis

The “Similar Gene Detection” module within GEPIA2
[24] was used to extract the top 100 IGF2BP2-associ-
ated target genes from the TCGA tumor datasets. These
genes exhibited patterns closely resembling IGF2BP2
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expression. Subsequently, the gene ontology (GO) path-
way enrichment analysis was performed in the R pack-
age “clusterProfiler” grounded on the aforementioned
100 genes. The results encompassing biological process
(BP), cellular component (CC), and molecular function
(MF) were portrayed through a bubble chart.

The STRING tool (version 11.5) (https://string-db.
org/) was used to establish a homo sapiens IGF2BP2 co-
expression network [25]. This endeavor adhered to these
parameters: (1) network type: full STRING network; (2)
meaning of network edges: evidence; (3) active interac-
tion sources: co-expression; (4) minimum required inter-
action score: low confidence (0.150); and (5) max number
of interactors to show: no more than 50 interactors.

Drug sensitivity analysis of IGF2BP2

For an intricate insight into the drug sensitivity of
IGF2BP2 across pan-cancer contexts, we engaged two
curated datasets labeled “RNA: RNA-seq” and “Com-
pound activity: DTP NCI-60” These datasets, procured
from the CellMiner " (Version 2022.3) [26], were piv-
otal in scrutinizing the responsiveness of IGF2BP2 to
diverse compounds (https://discover.nci.nih.gov/cellm
iner/home.do). To ensure the analytical robustness, drugs
approved by FDA or clinical trials were selected for anal-
ysis, which was processed with the R-packages “impute,’
“limma,” “ggplot2,” and “ggpubr” The most significant 16
outputs were presented in scatter plots.

Results

Expression of IGF2BP2 in pan-cancer

Within the confines of HPA and GTEx datasets, IGF2BP2
emerged as a gene characterized by modest tissue speci-
ficity, while demonstrating enrichment in retinal, small
intestinal, and placental contexts (Fig. 1A). Further-
more, it was found that IGF2BP2 was relatively con-
served among vertebrates (Fig. 1B). Then, the expression
of IGF2BP2 in pan-cancer was further explored through
the RNA-seq data obtained from TCGA and GTEx data-
bases. Except for those cancers without available normal
tissue data, significant expression differences of IGF2BP2
were noted in 28 types of cancers. Notably, IGF2BP2
exhibited pronounced overexpression in cancers such
as cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney renal papillary
cell carcinoma (KIRP), acute myeloid leukemia (LAML),
liver hepatocellular carcinoma (LIHC), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarci-
noma (OV), pancreatic adenocarcinoma (PAAD), rec-
tum adenocarcinoma (READ), skin cutaneous melanoma
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(SKCM), stomach adenocarcinoma (STAD), testicular
germ cell tumors (TGCT), thyroid carcinoma (THCA),
thymoma (THYM), and uterine carcinosarcoma (UCS)
(Fig. 1C). Conversely, reduced IGF2BP2 levels were dis-
cerned in tumor tissues relative to normal counterparts
in cancers including adrenocortical carcinoma (ACC),
breast invasive carcinoma (BRCA), lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC), kidney renal clear
cell carcinoma (KIRC), brain lower-grade glioma (LGG),
lung adenocarcinoma (LUAD), pheochromocytoma and
paraganglioma (PCPG), and prostate adenocarcinoma
(PRAD) (Fig. 1C). For the augment of our perspective,
we sought the expression blueprint of IGF2BP2 in human
pan-cancer scenarios through the TIMER database. This
exploration illuminated the upregulation of IGF2BP2 in
CHOL, COAD, ESCA, GBM, HNSC, KIRP, LIHC, LUSC,
STAD, and THCA. Conversely, IGF2BP2 was down-
regulated in BRCA, KIRC, PCPG, and PRAD (Fig. 1D).
These findings collectively posited IGF2BP2 as a poten-
tial promoter of carcinogenesis in some types of cancers,
prompting further clinical exploration.

Pan-cancer prognostic implications for IGF2BP2

To unveil the intricate interplay between IGF2BP2
expression levels and prognosis, rigorous Cox pro-
portional hazards modeling and Kaplan—Meier analy-
sis were executed across diverse cancers. Our findings
underscored that elevated IGF2BP2 expression was sig-
nificantly linked to shortened OS in the cases of BLCA
(»=0.005), HNSC (p=0.018), LAML (p=0.010), KIRC
(»p=0.023), LGG (p<0.0001), LUAD (p=0.013), MESO
(p=0.013), and PAAD (p=0.006), while tied to prolonged
OS in UVM (p=0.003) (Fig. 2). Furthermore, disease-
specific survival (DSS) analysis divulged that escalated
IGF2BP2 expression correlated with unfavorable out-
comes in cases of BLCA (p=0.009), KIRC (p<0.0001),
LGG (p<0.0001), LUAD (p=0.046), MESO (p=0.012),
and PAAD (p=0.004), while better outcome for patients
with UVM (p=0.001) (Fig. 3). Additionally, progression-
free interval (PFI) analysis uncovered that augmented
IGF2BP2 expression signaled a less favorable prognosis
for BLCA (p=0.034), KIRC (p<0.001), LGG (p<0.0001),
LUAD (p=0.023), and PCPG (p=0.029), while aligning
with a better prognosis for THYM (p=0.017) (Fig. 4). In
aggregate, these observations linked heightened IGF2BP2
expression with compromised prognosis across diverse
cancer categories.

Correlation between IGF2BP2 expression and immune
infiltration

Recent investigations have highlighted the pivotal role
of cancer-associated fibroblasts (CAFs) within the intri-
cate tumor microenvironment (TME), influencing the
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(Genotype-Tissue Expression). B IGF2BP2 gene conservation analysis among vertebrates visualized using the UCSC genome browser. C Differential

IGF2BP2 mRNA expression between TCGA tumors and GTEx normal tissues. D IGF2BP2 mRNA expression in different tumor types in TIMER2.

Fig. 1 Differential expression of IGF2BP2. A Consensus IGF2BP?2 tissue expression based on datasets of HPA (Human Protein Atlas) and GTEx
*p<0.05,**p<0.01,and **p<0.001
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Tumor N HR (95% CI) P value
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Fig. 2 Association between IGF2BP2 expression and overall survival (OS). A Forest plot of OS association with IGF2BP2 expression in 33 types
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Fig. 3 Association between IGF2BP2 expression and disease-specific survival (DSS). A Forest plot of DSS association with IGF2BP2 expression in 33
types of tumor. B-H Kaplan—Meier analysis of the association between IGF2BP2 expression and DSS
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Fig. 3 continued

regulation of tumor-infiltrating immune cells (TIICs) that
significantly shape cancer progression [27, 28]. In light
of this, we employed algorithms including EPIC, MCP-
COUNTER, XCELL, and TIDE to unravel potential con-
nections between CAF infiltration levels and IGF2BP2
expression across varying cancer types. Strikingly, our
findings consistently indicated statistically significant
positive associations between IGF2BP2 expression and
CAF infiltration in BRCA-LumA, KIRC, OV, PCPG,
PRAD, and THYM, as delineated through these four
algorithmic approaches (Fig. 5).

IGF2BP2-related gene enrichment analysis

To unravel the functional mechanisms underpinning
the role of IGF2BP2 in cancer genesis and progression,
we extracted and integrated the top 100 genes display-
ing expression profiles akin to IGF2BP2 across TCGA
tumor datasets. The consequential gene ontology (GO)
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enrichment analysis yielded a host of genes linked to cel-
lular biology of DNA including DNA replication, DNA-
dependent DNA replication, recombinational repair, and
more (Fig. 6A). These results were then cross-validated
by the STRING tool, identifying a spectrum of 50 genes
co-expressed with IGF2BP2, thus corroborating the find-
ings of the GO analysis. The interplay within this network
of genes is depicted in Fig. 6B.

Drug sensitivity of IGF2BP2 in pan-cancer

The potential correlation between drug sensitivity and
IGF2BP2 was further explored using the CellMiner™
database. Notably, IGF2BP2 expression was negatively
correlated with drug sensitivity of dexrazoxane, etopo-
side, SR16157, teniposide, raloxifene, M-AMSA, ful-
vestrant, XK-469, ribavirin, zalcitabine, bendamustine,
idarubicin, nitrogen mustard, tamoxifen, idoxuridine,
and mitoxantrone (Fig. 7). This observation underscored
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types from TCGA

the potential linkage between IGF2BP2 and chemoresist-
ance to various therapeutic agents, including widely used
treatments such as teniposide and ribavirin, commonly
employed in clinical contexts.

Discussion
The fusion of bioinformatics advancements and com-
prehensive molecular investigations has facilitated the
discernment of molecular biomarkers and their intricate
roles in pan-cancer scenarios [29, 30]. In this study, we
embarked on an analytical journey to illuminate the mul-
tifaceted role of IGF2BP2 in the context of oncogenesis
and prognostication across diverse malignancies.
IGF2BP2, co-existing within the IGF2BP family along-
side IGF2BP1 and IGF2BP3, constitutes a highly con-
served cluster of RNA-binding oncofetal proteins pivotal
in RNA stability, localization, and translation. Origi-
nally identified in 1999, IGF2BP2 anchors itself to the

5" untranslated regions (5'UTRs) of the translation-
ally modulated IGF-II reader mRNA [31]. Its structure
involves two RNA-recognizing motifs (RRMs) at the
N-terminal and four human heterogeneous nuclear ribo-
nucleoprotein (hnRNP)-K homology (KH) domains at
the C-terminal [32]. While early investigations predomi-
nantly focus on IGF2BP2’s correlation with type 2 diabe-
tes susceptibility [17], recent years have seen a surge in
studies spotlighting its aberrant expression’s nexus with
tumor onset and progression. Notably, studies involv-
ing IGF2BP2 knockout mice substantiated its pivotal
role in malignant tumor advancement [33]. Addition-
ally, IGF2BP2’s engagement in colorectal cancer prolif-
eration and survival via modulating RAF-1 degradation
through miR-195 was highlighted by Ye et al. [34], while
Mu et al. [35] pointed out its promotion of GBM pro-
gression via PI3K/AKT pathway activation through IGF2
regulation. Although these insights were invaluable, a



Zhou et al. Egyptian Journal of Medical Human Genetics (2024) 25:3

A DNA replication A .
DNA-dependent DNA replication - .

recombinational repair - .

double-strand break repair via | .
homologous recombination

dd

nuclear speck - ‘
nuclear membrane - [ )
condensed chromosome O

PML body O

o)

endonuclease activity, active with either
ribo- or deoxyribonucleic acids and ()
producing 5'-phosphomonoesters

ATP-dependent DNA helicase activity | @

single-stranded DNA-dependent ATPase activity | ®
single-stranded DNA-dependent | PY

ATP-dependent DNA helicase activity

EN

T T T T T T T
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

GeneRatio
B ) (BEEY S100A10

N

TAGLN

IGF2BP1

&/

\\ LIN28B

p.adjust

Page 11 of 15

Fig. 6 IGF2BP2-related gene enrichment analysis. A Gene ontology (GO) analysis of the top 100 genes co-expressed with IGF2BP2 obtained

by the GEPIA2. B Co-expression network of 50 genes co-expressed with IGF2BP2 obtained by the STRING tool
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comprehensive assessment of IGF2BP2’s implications
across diverse tumor types remained uncharted territory.
As such, we embarked on a systematic characterization
of IGF2BP2 across varied malignancies, evaluating its
distinctive characteristics encompassing gene expression,
prognostic implications, and immune infiltration.

Our findings corroborated previous studies, showcas-
ing IGF2BP2’s pervasive expression across diverse tis-
sues with modest specificity, yet indicating pronounced
presence within a spectrum of tumors. Aligned with
prior research, similar results were observed in cases of
COAD, ESCA, GBM, HNSC, LAML, LIHC, and PAAD
[9, 11, 12, 14, 36—39]. However, discrepancies emerged,
such as the contrasting discovery of IGF2BP2’s overex-
pression in BRCA accompanied by an augmented auto-
immune response [40]. Plausible explanations for these

disparities could encompass variations in study demo-
graphics, breast cancer subtypes, and genetic polymor-
phism [10, 41, 42]. Notably, divergent trends in IGF2BP2
expression between LUSC and LUAD warranted atten-
tion. The insights into IGF2BP2’s restraint of NSCLC
cell proliferation and invasion underscored the nuanced
roles within distinct NSCLC classifications [43, 44]. This
nuanced interplay within lung cancer subtypes signaled
the necessity for granular subtype-based analyses.

Our investigation delved deeper into the connection
between elevated IGF2BP2 expression and prognos-
tic outcomes. Survival analysis underscored that high
IGF2BP2 expression aligned with unfavorable prog-
nosis in BLCA, HNSC, KIRC, LAML, LGG, LUAD,
MESO, PAAD, and PCPG. This corroborated findings
offered by He et al. [9] who conducted a meta-analysis,
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establishing IGF2BP2 overexpression as a predictor of
poorer OS in LAML patients [HR=1.31(1.16-1.49);
p=0.00]. In parallel, Xu et al. found IGF2BP2 was an
independent predictor of adverse prognosis in pancre-
atic cancer [HR=2.395 (1.655-4.134); p<0.05] [14].
Notably, Barghash et al. [41] identified IGF2BP2 over-
expression as a hallmark of basal-like breast cancer
associated with shorter survival, unveiling its diverse
implications across cancer subtypes. Intriguingly, our
study revealed an unconventional scenario, wherein
high IGF2BP2 expression correlated with favorable
prognosis in UVM and THYM. The uniqueness of these
rare cancers precluded reference from existing stud-
ies. The paradox of the opposing effects of IGF2BP2
expression may be due to the context-specific manner
by which IGF2BP2 regulates cellular processes through
different regulatory networks. Elevated levels of
IGF2BP2 may promote antitumor immunity by mediat-
ing the infiltration of immunocytes, thereby contribut-
ing to favorable prognosis [45].

An evolving body of evidence underscored the poten-
tial of TME characteristics as predictive biomarkers for
immunotherapy responsiveness and clinical outcomes
[46]. Our observations suggested a positive correlation
between IGF2BP2 expression and infiltration of CAFs
in select tumor types. CAFs, pivotal stromal compo-
nents, secrete growth factors, inflammatory mediators,
and extracellular matrix (ECM) proteins critically impli-
cated in tumor initiation, progression, and metastasis
[47]. Recent work had demonstrated that CAFs were
associated with worse prognosis, therapeutic resistance,
and disease recurrence [48, 49]. It was also reported that
IGF2BP2 had an effect on various immune cell subtypes,
hinting at its potential role in hepatocellular carcinoma
(HCC) therapy [50]. Collectively, these results under-
scored IGF2BP2’s intricate role in cancer immunity and
its broad prognostic implications.

Our exploration uncovered a network of genes co-
expressed with IGF2BP2 across diverse tumors and tis-
sues, facilitated through GEPIA2. Furthermore, gene
enrichment analyses underscored IGF2BP2’s potential
impact on cancer etiology, particularly in DNA replica-
tion and recombinational repair processes. These data
were consistent with previously published articles, indi-
cating that the genes regulated by IGF2BP2 were mainly
enriched in cell proliferation [9]. Intriguingly, recent
research implicated the role of IGF2BP3 in DNA replica-
tion during the cell cycle [51], alluding to potential func-
tional interplay considering their co-expression. Such
insights paved the way for in-depth investigations into
the molecular functions of IGF2BP2.

Past decades witnessed intensive research on
IGF2BP1 and 3 as promising targets for chemotherapy
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development, with small-molecule inhibitors emerging
[7, 52]. Our findings aligned IGF2BP2 with chemoresist-
ance to multiple agents, which was a critical challenge
in cancer therapy. As reported, IGF2BP2 induced chem-
oresistance in GBM cells by inhibiting FOXO1-mediated
PID1 expression and promoted glioma progression [53].
A recent breakthrough highlighted the potential of a
small-molecule compound (CWI1-2) for IGF2BP2 inhi-
bition, displaying promising anti-leukemia effects [54].
This convergence of evidence underscored IGF2BP2’s
clinical significance and its potential as a therapeutic tar-
get, warranting rigorous exploration for future anti-can-
cer drug design.

While our study contributed new dimensions to the
understanding of IGF2BP2’s impact on diverse tumors,
certain limitations deserved attention. Sample size con-
straints for uncommon cancers might introduce bias or
batch effects. Our work provided preliminary insights
into IGF2BP2’s role in various cancers, yet further in vitro
and in vivo experimentation is imperative to elucidate its
precise biological function and underlying carcinogenic
mechanisms. As the journey into IGF2BP2’s complexities
continues, our findings lay the groundwork for informed,
targeted therapeutic strategies for the benefit of cancer
patients.

Conclusion

To summarize, our investigation underscores the preva-
lent overexpression of IGF2BP2 across a spectrum of
cancers, rendering it a promising candidate for prognos-
tic biomarkers in select cancer types. This study unveils
the intricate and varied involvement of IGF2BP2 in the
realm of pan-cancer, thereby furnishing a compelling
basis for refining therapeutic strategies to precisely tar-
get IGF2BP2, aligning with the goal of personalized treat-
ment approaches.
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