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Abstract 

Background  Cellular and molecular changes occur during aging, decreasing organ function. The aging process 
was measured by several biomarkers, including DNA methylation (DNAm), an epigenetic change regulating gene 
expression, which is highly accurate at predicting biological age. DNAm is heritable and therefore varies between dif‑
ferent populations.

Aim  To assess blood DNA methylation changes as epigenetic clocks in the male and female Egyptian population. 
Pyrosequencing was used to measure the methylation of nine CpG sites in blood samples from 100 healthy Egyptians 
(18–69 years) using a cross-sectional study. Two age predicted models based on the ELOVL2 gene were compared 
in three age categories and correlated in all age groups despite decreasing accuracy with increasing age.

Results  The mean absolute deviation (MAD) using the 1st and 2nd age predicted models for 18–40 years was 1.06 
and 2.7, respectively; for 41–60 years, it was 4.4 and 3.8, respectively; and for > 60 years, it was 7.7 and 7.0, respectively. 
No significant differences in DNA methylation were found between the sexes.

Conclusion  DNA methylation of the ELOVL2 gene can be used as an accurate biomarker for age estimation. Addi‑
tionally, this method has the potential to be more accurate than traditional methods of age estimation.

Keywords  Aging, DNA methylation, ELOVL2, Egyptian individuals

Introduction
Aging has attracted curiosity and provoked imagination 
throughout history. Because of the subconscious fear of 
aging accompanying morbidity and mortality, a novel 
aging measure is sought to differentiate a person’s risk for 
a variety of health outcomes. Although age is measured 
chronologically, it inaccurately correlates with biological 
age, which reflects an individual’s health status; therefore, 

considerable effort is made to find reliable biomarkers for 
aging [1, 2].

DNAm levels have been used as a biomarker for biolog-
ical age. DNAm-based age is also known as "epigenetic 
age" or "epigenetic clock". Epigenetics refers to heritable 
gene function changes that cannot be explained by DNA 
sequence changes [3]. The epigenome is defined as the 
complete description of all chemical modifications to 
DNA that regulate gene expression within the genome. A 
number of epigenetic factors control transcription, such 
as DNA methylation and histone modifications, which 
monitor protein synthesis. The epigenetic pattern is pre-
served throughout generations in the same way that the 
DNA sequence is inherited. However, during an individ-
ual’s lifetime, they can be altered or modified over time. 
However, these changes are reversible and occur without 
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alterations to the primary DNA sequence. Environmental 
exposures can modify epigenetics, such as nutrition, life-
style, and smoking [4, 5].

DNAm relationship with the aging process, which var-
ies throughout life, is vital for understanding the molecu-
lar mechanisms of normal and premature aging. This is 
also vital for their application to predicting an individu-
al’s age. Aging is the slow, complex, and time-dependent 
decline of multiple biological and physiological functions. 
Aging has profound implications for death risk. Aging is 
also associated with increased risk for several chronic 
diseases; therefore, measuring the aging rate is critical for 
clinical, basic, and observational research. Persons of the 
same chronological age may vary in their aging rate, sug-
gesting that chronological age is a poor representation of 
biological aging [6].

Biological aging can be predicted through DNA meth-
ylation levels. This primarily affects cytosines and is 
followed by guanines in a 5′–3′ direction in the DNA 
double helix. This process results in the addition of a 
methyl group (–CH3) to their 5′ carbon (C5), which 
varies over time. These specific 5′–3′ cytosine-guanine 
methylation sites in DNA are called "CpG" dinucleotides 
[7, 8].

Methylation of specific CpG sites of many genes, 
such as ELOVL2, FHL2, and PENK, correlates with age. 
Among them, ELOVL2 is a very promising biomarker 
for age prediction. It shows a strong correlation with the 
age-progressive increase in methylation levels through-
out maturation and aging. The ELOVL2 gene is found on 
the p arm of chromosome 6. It encodes ELOVL2, which 
is a transmembrane protein involved in the synthesis of 
polyunsaturated fatty acids (PUFA), which are involved 
in many crucial biological functions, including energy 
production, modulation of the inflammation response, 
and maintenance of cell membrane integrity. ELOVL2 is 
hypermethylated in the elderly as it shows a progressive 
increase in methylation levels throughout maturation 
and aging [9–11].

Prior studies have evaluated the applicability of esti-
mating biological age using age-associated CpG sites in 
humans [12, 13]. But none of these studies were con-
ducted on the Egyptian population, considering our dif-
ferent lifestyles compared with the European population 
and their corresponding studies. In this study, we used 
genome-wide methylation data on Egyptians to identify 
epigenomic changes with age. It is imperative to study 
methylation changes with age, to understand the biologi-
cal processes associated with aging and the role of epige-
netics in susceptibility to age-related diseases.

The aim of our study was to assess blood DNA meth-
ylation changes as epigenetic clocks. Furthermore, blood 
DNA methylation can help to identify the suspect of 

unknown blood samples in a medico-legal case, decreas-
ing the number of people in the search range.

Methods
All study subjects signed a written, informed consent. 
The study protocol was approved by Al-Azhar Univer-
sity’s Local Ethical Committee. Healthy volunteers were 
recruited et al.-Azhar University and the Theodor Bilharz 
Research Institute for this study.

Study subjects
This study was conducted on 100 healthy Egyptian par-
ticipants, including 57 males and 43 females, with ages 
ranging from 18 to 69. The participants were divided into 
three groups as follows: Group 1 with individuals aged 
between 18 ando 40 years (35 participants, 20 males, and 
15 females), Group 2 with individuals aged between 41 to 
60 years (34 participants, 21 males, and 13 females), and 
Group 3 with individuals aged over 60 years (31 partici-
pants, 15 males, and 16 females).

Healthy participants were included after investigations 
for complete blood count (CBC), chemistry, and hepati-
tis markers. Patients with chronic diseases, individuals 
having an infection within the two weeks prior to blood 
sample collection, and individuals who received any vac-
cinations within the two weeks prior to blood sample col-
lection were excluded.

A volume of seven milliliters of peripheral venous 
blood samples was collected in vacutainer tubes from 
each participant under complete aseptic conditions. 
Blood samples were divided into two tubes: a plain tube 
(2 mL) for routine chemistry investigations and an EDTA 
tube (5  mL). The EDTA samples were centrifuged at 
1000g for 10 min. The buffy coat was separated and fro-
zen in aliquots at − 80 °C for further molecular assays.

DNA extraction
DNA extraction was performed to isolate DNA using the 
En-Mag Core®-nucleic acid extraction kit according to 
the manufacturer protocol.

Bisulfite conversion
Four hundred nanograms of genomic DNA were used 
to convert unmethylated cytosines to uracils leaving 
5-methylcytosine residues unaffected using Thermo Sci-
entific™ Epi JET™ Bisulfite Conversion Kits (Qiagen) 
according to the manufacturer’s instructions. In every 
assay, internal control is included to ensure that the input 
target sequence has been bisulfite modified successfully.

PCR amplification of DNA
PCR was conducted in a SimpliAmp thermal cycler 
with bisulfite-treated DNA as a template. The DNA 
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template (1  μl) and ELOVL2 primer (0.2  μM) were 
mixed with bisulfite-treated DNA (20 ng), and the vol-
ume was adjusted to 30  μl. Table  1 lists the ELOVL2 
PCR primer.

PCR was performed using thermal cycling conditions 
including an initial denaturation step performed for 
10  min. at 95  °C, followed by 50 cycles of 30  s dena-
turation at 95 °C, 30 s annealing at 60 °C (primer time 
minus 5  °C), and 30  s elongation at 72  °C. The final 
step included 5  min. elongation at 72  °C and resulted 
in more than 10 million copies of template DNA being 
generated after 25–35 cycles.

DNA pyrosequencing
To prepare for pyrosequencing, 10  μL of each PCR 
product sample was purified and processed using 
the primer listed in Table  1. The technical steps were 
done according to the previous published method [13]. 
Briefly, streptavidin sepharose High Performance col-
umns (manufactured by GE Healthcare, USA) were 
utilized to bind PCR products. The biotinylated PCR 
products were then purified using the Sepharose beads, 
washed, and denatured with a 0.2  M NaOH solution. 
After denaturation, the samples were rewashed using 
the Pyrosequencing Vacuum Prep Tool (manufactured 
by Qiagen) according to the instructions provided by 
the manufacturer. Pyrosequencing primers (Table  1) 
were annealed to the PCR products, and the PSQ96 
HS System (manufactured by QiagenF Inc., USA) was 
used to sequence the samples as per the manufactur-
er’s instructions. The methylation status of each locus 
was analyzed as a T/C single-nucleotide polymorphism 
(SNP) using Q-CpG software (manufactured by Qia-
gen). The methylation scores were calculated as the 
percentage of methylated alleles at each CpG site, with 
each locus being analyzed individually divided by the 
total number of methylated and unmethylated alleles. 
The rates of methylation were determined by comput-
ing the percentage of methylation at the CpG sites of 
every gene. The Pyromark Gold Q96 SQA Reagents 
(Qiagen) were used for DNA methylation analysis in 

accordance with the manufacturer’s instructions on the 
Pyomark Q96 instrument.

ELOVL fatty acid elongase 2 chromosome location

CpG1: Chr6:11,044,661.
CpG2: Chr6:11,044,655.
CpG3: Chr6:11,044,647.
CpG4: Chr6:11,044,644.
CpG5: Chr6:11,044,642.
CpG6: Chr6:11,044,640.
CpG7: Chr6:11,044,634.
CpG8: Chr6:11,044,628.
CpG9: Chr6:11,044,625.

Data analysis
Two formulas were used to obtain the intact result:

1. Zbiec-Piekarsa 1 model: − 42.8393176902677 + 0.6
3266203860581 × ELOVL2 (CpG5) + 0.87747474261286
6 × ELOVL2 (CpG7) [14]

2. Sukawutthiya model: − 25.9 + 0.7 (CpG6) + 0.6 
(CpG9) [9]

Statistical analysis
All statistical analysis and graphical representations were 
performed using MS Excel (Microsoft) for calculation of 
MAD and RMSE and Minitab 18 software for ANOVA. 
All continuous data were evaluated for normal distribu-
tion or homogeneous variances. Data are presented as a 
mean and standard error of mean (± SEM) for quantita-
tive parametric data with a 95% confidence interval (CI).

For each of the three age groups, the accuracy of age 
prediction was evaluated by the mean absolute devia-
tion (MAD) and the root mean square error (RMSE) 
and the correlation analyses were assessed using the 
Pearson R correlation coefficient (r) and coefficient of 
determination (R2). p values were also calculated for 
each formula in each group with P < 0.05 considered 
statistically significant and P < 0.001 highly significant.

Mean absolute deviation (MAD) differences between 
different genders (males and females) and p value was 
calculated for each group.

MAD =
� Predicted age−Chronological age

n

RMSE =
� Predicted age− Chronological age 2

n

Table 1  ELOVL2 primer sequences are denoted in the 5′–3′ 
direction. Biotin labels (-bio) are indicated at the 5′-end of the 
respective forward or reverse primers

Primer Sequence (5′–3′)

Forward GGA​GGG​GAG​TAG​GGT​AAG​TGA-bio

Reverse ACC​ATT​TCC​CCC​TAA​TAT​ATA​CTT​CA

Sequence ACA​ACC​AAT​AAA​TAT​TCC​TAA​AAC​T
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Results
The study subjects were examined for full laboratory 
investigations to ensure that they are healthy within nor-
mal values. The methylation data were derived from the 
amplification of CpG islands within the ELOVL2 gene 
using bisulfite conversion-pyrosequencing. The methyl-
ated CpG sites investigated were nine CpG sites (Table 2). 
The linear correlation between age and the DNA meth-
ylation level of the CpG sites on ELOVL2 gene was meas-
ured using the two formulas (Zbiec-Piekarska 1 and 
Sukawutthiya age prediction models) as follows:

Zbiec-Piekarska 1 model

Sukawutthiya model

DNA methylation of the ELOVL2 gene was proved to be 
significantly correlated with age (P < 0.001). The ELOVL2 
gene showed nine CpG sites with the strongest positive 
correlations and significant hypermethylation linearity 
with chronological age. The individuals were divided into 
three age groups. Then, the age was predicted of each 
individual in each group by using age prediction model 
formulas using nine CpG sites in the ELOVL2 gene.

The correlation in the group 1 (18–40  years) was dis-
covered of R = 0.96, R2 = 0.93, mean absolute devia-
tion (MAD) = 1.05898917, and root mean square error 
(RMSE) = 1.70815873 (P < 0.001) using the Zbiec-Piekar-
ska 1 formula in this age group (Fig. 1A). These data con-
firmed the positive correlation between the predicted age 
and the chronological age from 18 to 40  years (Table  3 
and 4). However, when using the Sukawutthiya formula 
in this age group, a correlation was found of R = 0.86, 

(1)

− 42.8393176902677+ 0.63266203860581× ELOVL2 (CpG5)

+ 0.877474742612866× ELOVL2(CpG7)

(2)−25.9+ (0.7CpG6)+ (0.6CpG9)

R2 = 0.74, MAD = 2.70142857, and RMSE = 3.29759609 
(P < 0.001) (Fig. 1B).

When using the Zbiec-Piekarska 1 formula in group 
2 (41–60  years), a correlation was observed of R = 0.72, 
R2 = 0.52, MAD = 4.43809221, and RMSE = 5.32826265 
(P < 0.001) (Fig. 1C). Also, when using the Sukawutthiya 
formula in this age group, a correlation was observed of 
R = 0.65, R2 = 0.42, MAD = 3.825, and RMSE = 5.42830409 
(P < 0.001) (Fig. 1D).

By applying the Zbiec-Piekarska 1 formula in group 
3 (> 60  years), a correlation was observed of R = 0.60, 
R2 = 0.40, MAD = 7.68415232, and RMSE = 8.3539714 
(P < 0.001) (Fig. 1E). Moreover, by applying the Sukawut-
thiya formula to this age group, a correlation was 
observed of R = 0.62, R2 = 0.38, MAD = 6.97774194, and 
RMSE = 7.58755241 (P < 0.001) (Fig. 1F).

All age groups were inferred from data, calculated 
by both models, showed strong positive correlations 
between DNA hypermethylation and age. When com-
paring predicted age with chronological age categories 
to assess age estimations with correlation coefficient 
(R) = 0.83 and mean absolute deviation (MAD) = 4.45, we 
found different accuracies.

The predicted age and the chronological age categories 
differences in males and females were compared in all age 
groups. The MAD using Zbiec-Piekarsa 1 model (MAD 
1) and the Sukawutthiya model (MAD 2) was 5.2 and 4.9 
for males, and 3.6 and 4.1 for females, respectively.

In group 1, there were 20 male and 15 female partici-
pants with MAD1 of 1.4 and MAD2 of 2.9 and MAD1 
of 0.6 and MAD2 of 2.3, respectively. In group 2, there 
were 21 male and 13 female participants with MAD1 of 
4.6 and MAD2 of 3.6 and MAD1 of 4.16 and MAD2 of 
4.2, respectively. In group 3, there were 15 male and 16 
female participants with MAD1 of 9.6 and MAD2 of 8.2 
and MAD1 of 5.9 and MAD2 of 5.8, respectively.

Table 2  Correlation analysis of CpG sites in the ELOVL2 gene and chromosomal coordinates of nine CpGs at ELOVL2 (Elongation of 
Very Long Chain Fatty Acids-Like 2) gene DNA methylation loci

Map coordinates refer to the genomic positions in human reference genome 38 (GRCh38)

R—correlation coefficient, R2(adj)—adjusted R2 (coefficient of determination), SE—standard error, CpG—5′-cytosine–phosphate–guanine-3′, Chr—chromosome

Gene Site Assay location GRCh38 R R2(adj) SE P value

ELOVL2 CpG1 Intron 1 Chr6:11044628 0.785 0.61 9.7 4.08 × 10−22

CpG2 Intron 1 Chr6:11044631 0.687 0.47 11.4 2.84 × 10−15

CpG3 Intron 1 Chr6:11044634 0.682 0.46 11.5 5.93 × 10−15

CpG4 Intron 1 Chr6:11044640 0.897 0.80 6.9 2.0 × 10−36

CpG5 Intron 1 Chr6:11044642 0.926 0.85 5.9 2.91 × 10−43

CpG6 Intron 1 Chr6:11044644 0.921 0.84 6.1 6.73 × 10−42

CpG7 Intron 1 Chr6:11044647 0.918 0.84 6.2 4.80 × 10−41

CpG8 Intron 1 Chr6:11044655 0.806 0.65 9.3 4.54 × 10−24

CpG9 Intron 1 Chr6:11044661 0.881 0.77 7.4 1.37 × 10−33
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Discussion
DNA methylation is highly divergent between popula-
tions. This divergence may be mainly due to differences 
in allele frequencies and complex epistasis or gene and 
environment interactions. Although DNA methylation is 
a very stable epigenetic mark, numerous environmental 
influences have been associated with variation in DNA 
methylation and other epigenetic marks. These include 
nutritional factors, exposure to environmental pollut-
ants, and the social environment [15, 16].
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Fig. 1  Chronological age versus predicted age for group 1, 2, and 3 using the Zbiec–Piekarsa 1 formula (A, C, E) and the Sukawutthiya formula (B, 
D, F)

Table 3  Comparison between 1st and 2nd age prediction 
models using MAD

Age 1st Age predicted 
model

2nd age predicted 
model

p

18–40 years 1.06 2.7 0.0001

40–60 years 4.4 3.8 0.47

 > 60 years 7.7 7.0 0.39

Gender (sexes) Male (4.8) Male (4.6) 0.79

Female (3.6) Female (4.2) 0.38
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In the current study, results showed high correlation 
between DNA methylation changes in all nine CpG sites 
of ELOVL2 gene with aging. Paprazzo et  al. [17] con-
firmed that ELOVL2 was highly correlated with age and 
showed hypermethylation of nine CpG sites with aging 
from blood samples. Similar results were observed by 
Correia Dias et  al. [12] who reported that the ELOVL2 
locus exhibited highly significant values for all selected 
CpG sites reflecting that DNA methylation changes are 
strongly correlated with aging across all nine CpGs in 
blood samples. Also, these findings are in accordance 
with those published by Daunay et al. [18] who found a 
strong correlation between DNAm of seven CpGs and 
the chronological age of all individuals in the blood sam-
ple. Bacalini et  al. [19] previously reported DNA meth-
ylation of ELOVL2 CpG islands from whole-blood DNA 
samples was strongly correlated with age and demon-
strated hypermethylation with age but using different 
CpG sites (CpG 11,12,13,14). Al-Ghanmy et al. [13] con-
firmed that ELOVL2 was highly correlated with age and 
showed hypermethylation of nine CpG sites with aging 
from blood samples.

This study revealed that DNA methylation is positively 
correlated with chronological age in all age groups. This 
is in agreement with other similar studies regarding the 
positive correlation of DNA methylation and age [20, 
21]. Likewise, a study by Gensous et al. [20] found a high 
correlation between predicted ages and chronological 
ages of 278 healthy individuals of ages between 20 and 
80 years old.

In a study conducted by Bernabeu et al. [22] on donors 
from Scotland aged between 18 and 99  years, correla-
tion analysis indicated a strong link between predicted 
and chronological age. Other studies have also reported 
a significant positive correlation between the DNA meth-
ylation of ELOVL2 and age [23]. Similarly, nonparametric 
correlation analysis showed a high correlation between 
predicted and chronological age, confirming the positive 
correlation of DNA methylation of ELOVL2 and age [24]. 

Additionally, correlation analysis using Zbiec-Piekar-
ska 1 age prediction models from blood samples of 100 
French donors between 19 and 65  years of age found a 
strong correlation between predicted and chronological 
age [18]. These results demonstrate that DNA methyla-
tion of ELOVL2 gene is a reliable biomarker for predict-
ing chronological age. These findings are consistent with 
previous studies that have shown a robust correlation 
between DNA methylation and age.

According to the study data, the level of age-related 
methylation was highest in the age group of 18–40 years, 
then decreasing in the 40–60 age group, and lowest in the 
group over 60  years old. This finding is consistent with 
a recent study that found age-related methylation to be 
highest in the age group of 1–20 years, then decreasing 
in the 21–40 age group, with a further decrease in the 
41–60 age group and the lowest in the 61–80 age group. 
The last group, aged 81–100  years, had a lower level of 
age-related methylation [25]. Similar observations that 
the difference between predicted and chronological age 
was the largest for people more than 60  years old and 
the smallest for individuals aged less than 20  years old, 
and accuracy between DNAm and aging decreased with 
increasing age [26].

No significant difference in DNA methylation between 
males and females was revealed in this study. This was 
also observed in other studies that gender had no effect 
on age prediction accuracy from blood sample [18]. Also, 
there were no significant differences in methylation lev-
els between men and women for any CpG marker [13]. 
Gender effects did not impact the accuracy of model pre-
diction with insignificant differences between males and 
females with a tendency to slightly overestimate male 
age. Recent study stated that although men predicted 
higher ages than women, sex did not influence age pre-
diction [27]. This study findings indicated that gender 
effects did not have a significant influence on the accu-
racy of age prediction. Thus, the model was found to be 
unbiased toward gender.

Table 4  Correlation results in the three studied groups using different models

R—correlation coefficient (R = 0.70–1 represents very strong relationship, R = 0.40–0.69 represents strong relationship, R = 0.30–0.39 represents moderate relationship, 
R = 0.20–0.29 represents weak relationship, R = 0.01–0.19 represents no or negligible relationship, R = 0 represents no relationship), R2 (adj)—adjusted R2 (coefficient of 
determination), MAD—mean absolute deviation, RMSE—root mean square error

Age (years) Zbiec–Piekarska 1 model Sukawutthiya model

R R2 MAD RMSE R R2 MAD RMSE

18–40 0.96 0.93 1.1 1.7 0.86 0.74 2.7 3.3

41–60 0.72 0.52 4.4 5.3 0.65 0.42 3.8 5.4

 > 60 0.6 0.4 7.7 8.4 0.62 0.38 7 7.6

Male 0.77 0.59 5.2 6.15 0.54 0.29 4.9 5.95

Female 0.61 0.37 3.6 5.04 0.52 0.27 4.1 5.18
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In the current study, each group was separately exam-
ined for the impact of gender revealing no significant dif-
ferences in methylation levels between men and women 
in groups 1 compared to group 2. Group 3 revealed sig-
nificant difference in methylation levels between men 
and women, with men showing more methylation denot-
ing increased biological age. These results may suggest 
one of the reasons why men live for fewer years than 
women [28]. No similar reports could be reached con-
cerning these results.

The paper has two main limitations. Firstly, a larger 
sample size should have been considered, including indi-
viduals of extreme age to conduct a more comprehensive 
survey of the Egyptian population. Secondly, a longitu-
dinal study would have been more suitable than a cross-
sectional study in revealing the factors that influence 
biological aging, but it was limited due to subject compli-
ance [29]. The study’s raw data of all groups was provided 
in the Excel sheet of the Additional file 1.

Conclusion
ELOVL2 gene can be used for prediction of age as it is 
significantly highly correlated with chronological age. 
There is a high correlation between DNA methylation 
changes in all nine CpG sites with aging. There is more 
probability to get accurate age prediction in younger 
ages. Zbiec-Piekarska 1 formula is more strongly corre-
lated with chronological age in ages 18–60 years. Zbiec-
Piekarska 1 formula is more accurate with chronological 
age in ages 18–40  years. Sukawutthiya formula is more 
strongly correlated with chronological age in ages above 
60  years. Sukawutthiya formula is more accurate with 
chronological age in ages above 40 years. Younger people 
tend to have fewer health issues and lead healthier life-
styles, which means that the Zbiec-Piekarska 1 formula 
is more accurate for them. As people age, their lifestyles 
and physical health can change, which means that the 
Sukawutthiya formula is better able to take these factors 
into account and provide a more accurate prediction.

In conclusion, these findings indicate that DNA meth-
ylation of ELOVL2 could be used as an accurate bio-
marker for age estimation. Additionally, this method 
may  have the potential to be more accurate than tradi-
tional methods of age estimation.
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