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Abstract 

Background Ehlers–Danlos syndrome (EDS), osteogenesis imperfecta (OI), and cutis laxa (CL) are three rare and het-
erogeneous connective tissue disorders. Patients with these syndromes have similar manifestations and unpredictable 
prognosis, making a misdiagnosis highly probable. Some of their subtypes are inherited in autosomal recessive pat-
terns, so they are expected to be prevalent in populations like Iran, where consanguineous marriages are common. In 
the current work, a cohort of Iranian patients with overlapping phenotypes of the EDS/OI/CL and their mutation spec-
trum was defined. Based on this, in silico analysis was conducted to anticipate further probable genetic variations. 
Pathogenicity of EDS, OI, and CL variants in Iranian patients was evaluated using Web servers. A protein interaction 
network was created by String database and visualized using a Python-based library. The Iranome database was used 
to predict other genetic mutations in all reported genes of EDS, OI, and CL syndromes.

Results In the EDS/OI/CL overlap phenotype, 32 variants in 18 genes have been involved. At least 59% of patients 
were from families with consanguineous marriages. Interaction analysis showed that COL1A1, COL1A2, CRTAP, LEPRE1, 
PLOD1, and ADAMTS2 have the most significant impact within the protein network of EDS/OI/CL overlap phenotype. 
Analyzing the Iranome database revealed 46 variants of EDS, OI, and CL genes potentially disease causing.

Conclusion The overlapping phenotype of EDS, OI, and CL syndromes requires genetic testing (e.g., whole-exome 
sequencing) to reveal respective variants, which helps to diagnose more accurately and manage the disease more 
effectively. Particularly in populations with high rates of consanguineous marriages, such as Iran, genetic screening 
plays a crucial role in premarital and prenatal counseling to prevent the transmission of these rare connective tissue 
disorders.
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Background
Hereditary connective tissue disorders (HCTD) com-
prise a heterogeneous and pleiotropic group of genetic 
conditions with structural and functional disruptions in 
extracellular matrix (ECM) components. Dermal, ocu-
lar, and musculoskeletal manifestations, along with heart 
and lung defects, contribute to the burden of HCTDs 
[2]. From an epidemiological perspective, every HCTD 
is a rare disease, but combined, they are a notable part 
of human congenital disorders [9]. Studying these syn-
dromes enhances our understanding of the nature of 
connective tissue (CT) and has the potential to lead to 
more effective treatments. Connective tissue is one of the 
mesodermal germ layer derivatives that exist in almost 
every part of the body. It connects biological structures 
and establishes the framework necessary for the normal 
functioning of organs. This tissue comprises three basic 
parts: soft CT, which surrounds internal organs; hard 
CT, including bone and cartilage; and liquid CT, which 
is blood. Extracellular matrix in CT consists of four com-
ponents: collagens, elastic fibers, glycoproteins, and gly-
cosaminoglycans [8, 30].

Collagens are fibrillary proteins that account for one-
third of the human body’s total protein. There are five 
types of classical fibrillary collagen: types I, II, III, V, and 
XI, which are different helical conformations of alpha-
chain polypeptide strands coiling around each other. The 
alpha chain is made of an amino acid triplet repeat gly-
cine-X–Y, where X and Y are commonly hydroxyproline 
and proline [12, 36]. While collagen fibrils are responsi-
ble for the strength of the structures, their resiliency is 
provided by elastic fibers. The process of elastin forma-
tion, also referred to as elastogenesis, is complex and 
not yet fully understood. Microfibers are the main build-
ing blocks of elastic fibers. They are a polymerized scaf-
fold of fibrillins, a large protein with a molecular weight 
of 150  kDa [45]. Collagen, elastic fiber, and other ECM 
components like fibronectin and laminin interact to per-
form tissue morphogenesis, cell adhesion, migration, or 
differentiation.

Clinical management of HCTDs is faced with three 
challenges [35]: (1) Ambiguity: The ubiquitous presence 
of connective tissue throughout the human body con-
tributes to the challenge of defining and observing the 
phenotypes of HCTDs in various organs. (2) Variability: 
patients with the same diagnosis of an HCTD can differ, 
even in intra-familial cases. (3) Unpredictability: pheno-
types of an individual with an HCTD can change over 
the lifetime, and also they might have temporal manifes-
tations.  Therefore, a misdiagnosis at the early stages is 
highly probable.

Based on which component of ECM is dysregulated, 
HCTDs are categorized into two major classes: colla-
genopathies, including Ehlers–Danlos syndrome (EDS), 
osteogenesis imperfecta (OI), Alport syndrome, and 
chondrodysplasias. And elastinopathies, including cutis 
laxa (CL), Marfan syndrome, and pseudoxanthoma 
elasticum (PXE).  These diseases are phenotypically 
varied and genetically heterogeneous. These diseases 
exhibit a wide range of phenotypic variations and 
genetic heterogeneity. A total of 20, 16, and 13 genes 
have been responsible for EDS, OI, and CL syndromes, 
up to now.

Ehlers–Danlos syndrome is a soft HTCD character-
ized by skin hyperextensibility, joint hypermobility, bone 
fragility and osteoporosis, atrophic scars, loose skin, and 
cardiovascular problems like mitral valve prolapse [28]. 
The prevalence of different subtypes is about 1 in 5000 to 
1 in 20,000. Based on a 2017 international classification, 
classical EDS, arthrocalasis EDS, and cardiac valvular 
EDS are the three main subtypes of the syndrome [27].

Osteogenesis imperfecta has a prevalence of 1 in 20,000 
live births. It mostly manifests with growth defects, bone 
fragility, osteopenia, dentinogenesis imperfecta, and 
blueish sclera. Up to 90 percent of IO cases are due to 
mutations in COL1A1 and COL1A2. These two are also 
responsible for many EDS cases [24]. The initial step in 
diagnosing these two syndromes is identifying their 
similar clinical signs, which makes it challenging to pro-
vide follow-up care and genetic counseling. There is an 
extremely rare condition called EDS/OI overlap, which 
affects approximately 1 in every 1,000,000 individuals 
(based on Orphanet data). It was first described in 2013 
when patients with combined symptoms were reported. 
Molecular analysis of this overlap revealed an association 
with N-terminal mutations in type 1 collagen [33].

An abnormal synthesis of elastic fibers can result in CL 
syndrome, characterized primarily by loose and redun-
dant skin, developmental emphysema, cardiovascular 
issues like aortic aneurysm, hernia, delayed growth, and 
fragile bones. In some CL cases, patients mimic manifes-
tations of EDS with similar skin hyper-elasticity, scarring, 
and joint laxity [13]. Furthermore, CL cases with muta-
tions in RIN2 and ELN exhibit phenotypic similarities to 
EDS patients, including sparse hair and alopecia. [14, 48].

Genetic defects in CT components mostly manifest 
as phenotypic traits. In these three disorders, in addi-
tion to the CT nature, intermediate clinical phenotypes 
(e.g., blueish sclera in EDS and IO and bone fragility in 
all three) increase the probability of misdiagnosis. Con-
sanguineous marriage (marriage between relatives) is 
commonly performed in Iran. The general rate of that is 
38.6% throughout the country [44]. Thus, it has received 
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great attention as a potential risk factor for many genetic-
influenced health outcomes, especially autosomal reces-
sive (AR) disorders.

According to NORD’s database (https:// rared iseas 
es. org/), CL, ESD, and OI have various subtypes and 
inheritance patterns. For CL, subdivisions are as fol-
lows: acquired cutis laxa, ALDH18A1-related cutis 
laxa, ATP6V0A2-related cutis laxa, autosomal domi-
nant cutis laxa (ADCL), autosomal recessive cutis laxa 
type 1A (ARCL1A), autosomal recessive cutis laxa 
type 1B (ARCL1B), autosomal recessive cutis laxa type 
1C (ARCL1C), autosomal recessive cutis laxa type 
2A (ARCL2A), autosomal recessive cutis laxa type 
2B (ARCL2B), autosomal recessive cutis laxa type 3, 

Debre-type cutis laxa, EFEMP2-related cutis laxa, ELN-
related cutis laxa, geroderma osteodyplasticum, LTBP4-
related cutis laxa, MACS syndrome, PYCR1-related cutis 
laxa, RIN2-related cutis laxa, Urban–Rifkin–Davis syn-
drome, wrinkly skin syndrome. Most cases of autosomal 
dominant cutis laxa are caused by mutations in the elastin 
(ELN) gene and are also known as ELN-related cutis laxa 
or autosomal dominant cutis laxa type 1 (ADCL1). One 
case, classified as autosomal dominant cutis laxa type 
2 (ADCL2), was caused by a mutation in the fibulin-5 
(FBLN5) gene. Ehlers–Danlos syndrome subdivisions are 
as follows: classic EDS, classical-like EDS, cardiac valvu-
lar EDS, vascular EDS, hypermobile EDS, anthrochalasia 
EDS, dermatosparaxis EDS, kyphoscoliotic EDS, brittle 

Fig. 1 Genes involved in overlap phenotype of EDS, OI, and CL demonstrated on their respective chromosomal region. None are located 
on chromosomes 4, 13, 16, 18, 21, and Y, while chromosomes 11 and 17 host five genes

https://rarediseases.org/
https://rarediseases.org/
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cornea syndrome, spondylodysplastic EDS, musculocon-
tractural EDS, myopathic EDS, periodontal EDS. Among 
these syndromes, classical-like, cardiac valvular, dermat-
osparaxis, and kyphoscoliotic types are inherited in an 
AR manner. Myopathic EDS has both AD and AR inher-
itance, while the remaining types are AD.

Osteogenesis imperfecta types I to XXI are subtypes 
of OI. Types I to V exhibit AD inheritance, while the 
remaining types are inherited in an AR manner. These 
three rare HCTDs have multiple AR subtypes, which 
are another complexity next to their clinical overlap. As 
depicted in Fig.  1, a total of 45 genes have been identi-
fied globally to be associated with the overlapping pheno-
type of EDS, OI, and CL. About half are on chromosomes 
1, 11, 12, and 17. Details like function, related pathway, 
and ontology of these genes are listed in Table 1. The aim 
of this study is to address the clinical and genetic com-
plexities of the overlapping phenotypes of Ehlers–Danlos 
syndrome (EDS), osteogenesis imperfecta (OI), and cutis 
laxa (CL). The research question seeks to determine the 
extent to which specific genetic variants contribute to 
the clinical features of these disorders within the Iranian 
population, which is characterized by a high consanguin-
eous marriage rate [16, 49]. It is hypothesized that a clear 
genetic basis of these diseases can aid in the develop-
ment of more precise diagnostic and therapeutic strate-
gies like whole-exome sequencing or RNA therapeutics 
[5, 22]. The genetic diversity of the Iranian population is 
leveraged in this study to fill a critical knowledge gap in 
understanding the pathogenesis of these syndromes and 
to propose potential targets for intervention in popula-
tions with similar genetic backgrounds.

Methods
Data collection
Investigation of EDS, IO, and CL patients in Iranian 
patients to draw a spectrum of their mutation was per-
formed in a systematic search. For that purpose, the 
keywords ‘osteogenesis imperfecta,’ ‘ehlers danlos,’ and 
‘cutis laxa’ along with ‘Iran’ (or Iranian) in both English 

and Farsi were used. PUBMED, Web of Science, Sco-
pus, Cochrane Library databases, Google Scholar, and 
Scientific Information Database (SID, an Iranian medi-
cal database) were used as search engines. The search 
for data was up to March 2023, and there was no more 
restriction. Afterward, the manuscripts were filtered to 
reach the ones in which genetic tests reported the vari-
ants. Also, duplicated ones were removed. Moreover, 
the HGMD Professional 2021.4 database was utilized for 
each gene to evaluate the number and types of mutations.

In silico prediction of pathogenicity and stability of single 
nucleotide variants
The obtained spectrum of gene mutations of Iranian 
patients with EDS, CL, and OI was analyzed by in silico 
tools to predict their pathogenicity and protein stability. 
For that purpose, ACMG (https:// frank lin. genoox. com/ 
clini cal- db), CADD (https:// cadd. gs. washi ngton. edu/), 
SIFT (https:// sift. bii.a- star. edu. sg/), polyphen-2 (http:// 
genet ics. bwh. harva rd. edu/ pph2/), and Fathmm (http:// 
fathmm. bioco mpute. org. uk/) were used. Also, the effect 
of missense variants on protein stability was evaluated 
using I-Mutant 2.0 (https:// foldi ng. biofo ld. org/i- mutant/ 
i- mutan t2.0. html) and MUpro (https:// mupro. prote 
omics. ics. uci. edu/) Web servers. Moreover, the manu-
scripts were mined and the reported effects of splice site, 
deletion, and duplication variants.

Protein interaction analysis using NetworkX Python 
package
The NetworkX package (https:// github. com/ netwo 
rkx/ netwo rkx), a Python language-based library, was 
employed to explore and visualize complex networks 
[59]. The protein interaction data set was obtained from 
the STRING database, according to the latest NGS panel 
for each syndrome. Subsequently, a list of 50 proteins was 
created. Our model of pairwise relations between pro-
teins of this package was based on the graph theory per-
spective of NetworkX.

Fig. 2 Diagram of Data Collection. In most studies, lack of genetic evaluation was observed

https://franklin.genoox.com/clinical-db
https://franklin.genoox.com/clinical-db
https://cadd.gs.washington.edu/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://fathmm.biocompute.org.uk/
http://fathmm.biocompute.org.uk/
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://mupro.proteomics.ics.uci.edu/
https://mupro.proteomics.ics.uci.edu/
https://github.com/networkx/networkx
https://github.com/networkx/networkx
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Table 2 Review of Revealed Genes and Variants in Iranian Patients with EDS, OI, or CL Syndromes, up to November 2022

Syndrome Gene Mutation 
(N = novel)

Protein Reported 
disorder

Number 
of 
patients

Type of 
marriage

Genetic test Study

CL FBLN5 c.679 T > C p.Ser227Pro Autosomal 
recessive cutis 
laxa

1 Consanguine-
ous

PCR/ direct 
sequencing

Elahi et al. [11]

PYCR1 c.345delC p.Arg116fs Autosomal 
recessive cutis 
laxa type 2B

1 Consanguine-
ous

PCR/ direct 
sequencing

Nouri et al. [46]

FBLN5 c.544G > C (N) p.Ala182Pro Autosomal 
recessive cutis 
laxa

2 Consanguine-
ous

WES Gharesouran et al. 
[15]

GGCX c.373 + 3G > T (N) p.Phe73_
Gly125del

Cutis laxa 5 Undeclared WES Kariminejad et al. 
[28]

LTBP4 c.533-1G > A NA Autosomal 
recessive cutis 
laxa type 1C

1 Undeclared WES Mazaheri et al. [36]

FBLN5 c.907C > T (N) p. Gln303X Autosomal 
recessive cutis 
laxa type A1

1 Consanguine-
ous

WES Malakan Rad et al. 
[48]

PYCR1 C.797G > A p.Arg266Gln Autosomal 
recessive cutis 
laxa type 2

1 Consanguine-
ous

PCR/ direct 
sequencing

Rahmati et al. [49]

PYCR1 c.722C > A p.Ala241Asp Autosomal 
recessive cutis 
laxa type 2B

1 Consanguine-
ous

WES Nikfar et al. [45]

PYCR1 c.566C > T p.Ala189Val Autosomal 
recessive cutis 
laxa type 2B

5 Consanguine-
ous

Whole-genome 
sequencing

Vahidnezhad et al. 
[61]

RIN2 c.2251dup (N) Leu751Profs*9 RIN2 syndrome 1 Consanguine-
ous

WES Kameli et al. [26]

ATP6V0A2 c.1936_2055del p.E646_685del Autosomal 
recessive cutis 
laxa type 2

1 Undeclared PCR/ direct 
sequencing

Hucthagowder 
et al. [24]

GSN c.654G > A p.Asp187Asn Gelsolin amyloi-
dosis

1 Undeclared Undeclared Shokouhi et al. [3]

ATP6V1E1 c.383 T > C p.Leu128Pro Cutis laxa 2 Undeclared WES Van Damme et al. 
[8]

EDS PLOD1 c.1302 C > G (N) p.Thr434X Ehlers–Danlos 
syndrome 
type VI

1 Consanguine-
ous

WES Kariminejad et al. 
[27]

B3GALT6 c.619G > C p.Asp207His Recessive 
Ehlers–Danlos

1 Consanguine-
ous

PCR/ direct 
sequencing

Malfait et al. [35]

B3GALT6 c.619G > C p.Asp207His Recessive 
Ehlers–Danlos

1 Non-consan-
guineous

B3GALT6 c.649G > A p.Gly217Ser Recessive 
Ehlers–Danlos

1 Non-consan-
guineous

B3GALT6 c.323_344del // 
c.619G > C

p.
Ala108Glyfs ∗ 163 
// p.Asp207His

Recessive 
Ehlers–Danlos

2 Non-consan-
guineous

ADAMTS2 c.669_670dupG (N) p.
(Pro224Argfs*24)

Ehlers–Danlos 
syndrome

1 Consanguine-
ous

PCR/ direct 
sequencing

Van Damme et al. 
[7]

FKBP14 c.143 T > A (N) p.(Met48Lys) Kyphoscoliotic 
Ehlers–Danlos 
syndrome

1 Consanguine-
ous

PCR/ direct 
sequencing

Giunta et al. [16]
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Prediction of probable damaging variants using Iranome 
database
The reported genes of CL, EDS, and OI syndromes were 
evaluated using the Iranome Genomic Database (http:// 
www. irano me. ir/) to predict probable damaging variants. 
This database was established by whole-exome sequenc-
ing (WES) data of 800 healthy Iranian individuals from 
eight major Iranian populations, including Iranian Arabs, 
Azeris, Persians, Lurs, Baluchs, Persian Gulf Islanders, 
Kurds, and Turkmen. Iranome discovered more than 
1,500,000 variants, more than 300,000 of which were 
novel  [7, 31]. The pathogenicity of these variants was 
investigated using six tools, including SIFT, Polyphen2, 

MutationTaster, MutationAssessor, FATHMM, and 
FATHMM MKL, as listed on the Iranome Website. Here, 
the missense heterozygous alleles of all reported EDS, 
OI, and CL genes in the database were obtained; then, 
inclusion and exclusion criteria were established to pre-
dict which variant has the most probability of causing 
one of the three syndromes. The criteria are as follows: A 
variant with A) three or more times predicted as damag-
ing via the six mentioned Web servers. B) More than 10 
number of heterozygotes. C) CADD score of 20 or more.

Table 2 (continued)

Syndrome Gene Mutation 
(N = novel)

Protein Reported 
disorder

Number 
of 
patients

Type of 
marriage

Genetic test Study

FKBP14 c.2 T > G NA Kyphoscoliotic 
Ehlers–Danlos 
syndrome

1 Undeclared WES Colman et al. [6]

PLOD1 c.1471–1 G > A NA Kyphoscoliotic 
Ehlers–Danlos 
syndrome

1 Consanguine-
ous

PCR/ direct 
sequencing

Rohrbach et al. 
[52]

COL3A1 c.2194G > A p.Gly732Arg Vascular 
Ehlers–Danlos 
syndrome

1 Consanguine-
ous

WES Colman et al. [5]

B3GALT6 c.545A > G p.Tyr182Cys Spondylodys-
plastic Ehlers–
Danlos

1 Consanguine-
ous

WES Van Damme et al. 
[9]

OI FKBP10 c.976delA (N) p.
Met326Trpfs ∗ 39

Osteogenesis 
imperfecta type 
XI (Bruck syn-
drome)

1 Consanguine-
ous

WES Seyedhassani et al. 
[55]

COL1A1 c.2298 T > C (N) p.Thr766Thr Osteogenesis 
imperfecta

1 Consanguine-
ous

WES Talebi et al. [59]

COL1A1 c.3313delA (p.Arg-
1105GlufsX3

Osteogenesis 
imperfecta

1 Non-consan-
guineous

Conformation-
sensitive gel 
electrophoresis 
(CSGE)

Nwosu et al. [47]

GLUT2 C.685_701del (N) p.A229QfsX19 Osteogenesis 
imperfecta/
Fancoli–Bickel 
syndrome

1 Undeclared WES Shafaghati et al. 
[56]

FKBP10 c.1257-2A > G // 
IVS7-2A > G (N)

p.H420PfsX12 Osteogenesis 
imperfecta type 
XI (Bruck syn-
drome)

1 Consanguine-
ous

WES Maghami et al. 
[32]

COL1A2 c.14929-
14930TG > GT

NA Osteogenesis 
imperfecta

1 Undeclared PCR Moshref et al. [41]

FKBP10 c.204delCinsAAA 
(N)

p.His68Glnfs*92 Osteogenesis 
imperfecta type 
XI (Bruck syn-
drome)

1 Consanguine-
ous

WES Moravej et al. [39]

MESD c.676C > T p.Arg226 ∗ Osteogenesis 
imperfecta type 
XX

1 Undeclared WES Tran et al. [60]

http://www.iranome.ir/
http://www.iranome.ir/
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Results
Data collection
Based on initial keyword research in the six search 
engines, 416, 1593, and 1748 manuscripts were found for 
CL, EDS, and IO, respectively. Further in-detailed min-
ing of papers and removing duplicated studies revealed 
that in 13, 8, and 8 manuscripts, homozygous variants of 
cases with CL, EDS, and IO were reported (Fig. 2). Sta-
tistically, 32 variants were found in 18 genes as a result 
of genetic tests in 43 patients. The novelty status of vari-
ants, reported disorders, applied genetic test, and type of 
marriage are summarized in Table 2. HGMD Professional 
2021.4 database also revealed that most of the mutations 
in these genes are missense/nonsense, splicing, and small 
deletion (Table 3).

Pathogenicity and stability of EDS/OI/CL overlap 
phenotype variants
The results of both pathogenicity and stability analysis by 
Web servers are listed in Table  4, divided into two sec-
tions—one for missense variants and another for splice 
site, deletion, and duplication variants. From eight OI 
variants, only one is missense (COL1A1: c.2298T > C). 
Three CL and one EDS variants were inconsistent with 
the reported phenotype. FBLN5: c.544G > C was found 
in two patients and, according to I-Mutant 2.0, has a 
positive effect on protein stability. The Web server also 
reported the same effect for PYCR1: c.722C > A. One 

patient with CL type 2 had PYCR1: c.797G > A, which 
was identified as benign by Polyphen2. It also reported 
FKBP14: c.143T > A as a benign variant in an EDS patient.

Protein interaction analysis using NetworkX Python 
package
A list of 50 proteins involved in EDS/OI/CL overlap phe-
notype was created using NetworkX. Figure 3 shows an 
undirected weighted graph in which the nodes and edges 
represent proteins and their interactions, respectively, so 
that each edge’s length shows the interaction score. The 
degree of the graph (defined as the average number of 
edges connected to each node) equals 4.47. NetworkX 
package applied the concept of ’betweenness centrality’ 
to the graph. It is a measure in graph theory to demon-
strate which nodes are more important (or their absence 
causes more disruption in the network) based on the 
shortest paths. In this graph, the size of the nodes indi-
cates the betweenness centrality. Also, a color range 
from dark green to white indicates the degree; greener 
nodes have more degrees (more connected edges) and 
bigger nodes have more impact on the network. More-
over, an edge with more width and greener color shows 
more interaction scores between a pair of proteins. The 
graph shows that COL1A1, COLA1A2, CRTAP, LEPRE1, 
PLOD1, and ADAMTS2 have the biggest impact on the 
protein network of the overlapping phenotype.

Table 3 Types of Mutations in Genes Involved in Overlap Phenotype of EDS/OI/CL in Iran, According to the HGMD database

Gene Missense/
nonsense

Splicing Regulatory Small deletions Small 
insertions

Small indels Gross 
deletions

Gross 
insertions

Complex Repeat Total

Mutations

ADAMTS6 6 1 – – – – – – – – 7

ATP6V0A2 20 10 – 18 7 – 3 1 – – 59

ATP6V1E1 2 – – – – – – – – – 2

B3GALT6 32 – – 7 1 1 3 2 – – 46

COL1A1 617 274 4 275 83 19 30 4 2 – 1308

COL1A2 523 69 – 28 19 6 19 2 1 2 669

FBLN5 26 – – 1 – – – 1 – – 28

FKBP14 3 – – 5 2 – – – – – 10

GGCX 52 10 – 5 1 1 – – – 1 70

SLC2A2 44 21 7 18 5 4 – 1 1 – 101

GSN 25 1 – 2 3 1 1 – – – 33

LTBP4 17 4 – 7 6 1 – 1 – – 36

MESD 1 – – 3 1 – – – 1 – 6

PLOD1 30 8 – 9 5 – 5 2 1 – 60

PYCR1 33 7 – 5 1 – 2 – – – 48

RIN2 2 – – 3 2 – – – – – 7
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Iranome database reveals 46 probable disease-causing 
variants for EDS, OI and CL
A total number of 46 genes were investigated using the 
Iranome Database. They were previously reported to be 
related to CL, EDS, and OI syndromes. Searching a gene 
in Iranome provides all discovered variants—deletion, 
duplication, splice region, intronic, and single-nucleotide 
variants. Later on, missense variants of each gene were 
selected for further evaluation. Missense variants with 

more than 10 heterozygotes, a CADD score of at least 20 
(which indicates the variant is one of the 1% most del-
eterious variants in the genome) [41], and at least three 
times reported as damaging in pathogenicity Web serv-
ers are considered as probable damaging variants. From 
all evaluated genes, 46 variants in 18 genes were found 
to have a probable damaging effect. They are listed in 
Table  5, along with populations with the most and the 
least frequency of the alleles in Iran.

Fig. 3 Protein Interaction Network in EDS/OI/CL Overlap Phenotype. Using NetworkX Python Library, an Undirected Unweighted Graph 
is Visualized Based on the Betweenness Centrality
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Table 5 Probable Disease-Causing Variants of EDS/OI/CL Overlap Phenotype based on Iranome Database

Syndrome Gene Variant Number of 
heterozygotes

CADD score N of 6 
damaging 
prediction

Population with the least 
frequency of allele

Population with the least 
frequency of allele

OI P3H1 (LEPRE1) c.1045G > A 77 31 6 Persian (0.025) Persian (0.025)

SERPINF1 c.395C > G 52 22 3 Baloch (0.005) Lur (0.055)

CL GSN c.385G > A 47 34 5 N/A Turkmen (0.075)

GSN c.1688C > G 67 21.8 4 N/A Azeri (0.07)

ATP6V0A2 c.440C > T 10 23.3 3 N/A Persian Gulf Islander (0.045)

ATP6V0A2 c.2438C > T 55 35 6 Lur, Persian, Turkmen 
(0.015)

Arab, Azeri, Persian Gulf 
Islander (0.07)

ALD18A1 c.1115C > A 68 24.8 4 Baloch (0.005) Arab, Kurd (0.065)

ALD18A1 c.896C > T 177 25.4 3 Baloch (0.06) Kurd (0.18)

LTBP4 c.1903C > G 10 29.6 4 N/A Turkmen (0.03)

LTBP4 c.3419C > T 388 20.7 - Kurd (0.36) Baloch (0.525)

LTBP4 c.4496A > T 23 23.4 - Turkmen (0) Arab (0.04)

GORAB c.958G > A 400 25.9 - Persian Gulf Islander (0.36) Turkmen (0.575)

PYCR1 c.685C > T 127 28.2 5 Persian Gulf Islander (0.45( Persian (0.135)

ATP7A c.2299G > C 185 26.7 5 Arab (0.285) Persian Gulf Islander (0.45(

RIN2 c.232G > A 13 28.4 5 Baloch (0) Lur (0.02)

RIN2 c.1789G > A 14 28..4 5 Baloch (0) Lur (0.02)

EDS COL3A1 c.1804C > A 23 23.2 4 Lur (0) Arab, Azeri, Persian Gulf 
Islander, Turkmen (0.02)

COL3A1 c.2002C > A 10 23.5 6 Persian, Persian gulf 
Islander (0)

Azeri, Kurd, Lur, Turkmen 
(0.01)

PLOD1 c.391G > A 31 23.1 5 Turkmen (0.005) Persian Gulf Islander (0.04)

PLOD1 c.1675C > T 10 24.2 4 Lur, Turkmen (0) Azeri (0.015)

TNXB c.12547G > A 76 33 5 Turkmen (0.01515) Persian Gulf Islander (0.1222)

TNXB c.12520G > A 89 31 6 Persian (0.0641) Tukrmen (0.25)

TNXB c.12224G > A 14 34 6 Baloch, Turkmen (0) Lur (0.02)

TNXB c.12170A > T 335 22.4 4 Baloch (0.18) Azeri (0.43)

TNXB c.11962C > A 32 23.5 4 Persian, Turkmen (0) Persian Gulf Islander (0.1316)

TNXB c.11539G > A 29 24.9 3 Turkmen (0) Azeri (0.05618)

TNXB c.10723 T > C 261 23.7 4 Turkmen (0.135) Persian Gulf Islander (0.22)

TNXB c.8740G > A 11 33 5 Arab, Lur, Azeri, Persian, 
Persian Gulf Islander (0)

Baloch (0.045)

TNXB c.8542G > A 16 28.7 5 Persian Gulf Islander, Turk-
men (0)

Baloch (0.05)

TNXB c.8111G > A 80 26.7 4 Arab (0.025) Baloch (0.115)

TNXB c.7235C > T 73 29.5 5 Arab (0.025) Baloch (0.115)

TNXB c.6379G > A 298 25.3 3 Turkmen (0.1758) Baloch (0.385)

TNXB c.2485G > A 18 25.4 3 Persian Gulf Islander (0) Arab, Lur, Persian (0.2)

TNXB c.607G > A 140 24 4 Persian Gulf Islander (0.08) Arab (0.135)

COL5A2 c.1081A > C 41 23.7 3 Kurd, Lur (0.015) Arab (0.05)

COL5A2 c.1378C > T 22 24.6 3 Azeri (0) Arab, Persian, Persian Gulf 
Islander (0.2)
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Discussion
Due to the clinical overlap between CL, EDS, and OI, it 
is difficult to provide proper follow-up care and genetic 
counseling. Their similar phenotypes increase the likeli-
hood of misdiagnosis. The phenotypic overlap is likely 
due to the functional roles and interactions of genes asso-
ciated with these syndromes. Consequently, traditional 
clinical guidelines and methods are no longer sufficient 
to differentiate between them. Whole-exome sequenc-
ing (WES) has the potential to enhance diagnostic capa-
bilities significantly. This widely used next-generation 
sequencing (NGS) method is cost-effective, requires 
fewer sequencing reagents, and enables faster bioinfor-
matic analysis compared to whole genome sequencing. 
Data collection revealed that genetic tests such as WES 
are rarely conducted in case studies, despite their poten-
tial to facilitate more precise diagnosis and more effec-
tive patient management. This study included 43 patients 
exhibiting the overlap phenotype of EDS/OI/CL, with 
a total of 32 genetic variants. Among these unrelated 
families, the rate of consanguineous marriage (CMR) 
was approximately 59%, with 12.5% reporting non-con-
sanguineous marriages and 28.5% not disclosing their 
marital status. Out of the 32 variants identified, 12 were 
previously unreported and considered novel. In approxi-
mately 94% of cases, a sequencing method (direct, whole 
exome, or whole genome) was employed, successfully 
identifying the genetic variant. Figure 4 provides a graph-
ical representation of all the reported variants in this 
cohort. Variants of PYCR1 (a protein that helps mito-
chondrial proper functioning and synthesis of proline), 
B3GALT6  (an enzyme essential for the manufacturing 

of ECM components), FKBPs (a family of chaperons that 
perform folding on proline-containing proteins), FBLN5 
(which has a variety of roles in ECM and also play a role 
in arteries development), and collagen genes were identi-
fied in more patients than others. There were 8, 6, 5, and 
4 patients with mutations in PYCR1, B3GALT6 , FKBPs, 
and collagen genes, respectively. The result of NetworkX 
interaction analysis also showed that these genes, along 
with ADAMTS2, COL1A1, COLA1A2, CRTAP, LEPRE1, 
FBLN5, ATP6V0A2, and PLOD1, have the most impact 
on their protein network. In addition to the direct roles 
these genes play in the production and structure of con-
nective tissues, they also exert regulatory influence over 
each other’s expression and function. This intricate net-
work of regulatory interactions highlights the complex-
ity of connective tissue homeostasis and the challenges 
in pinpointing the specific genetic defect responsible for 
each case. PYCR1, a transcription factor, orchestrates the 
expression of genes involved in collagen synthesis and 
remodeling. Mutations in PYCR1 are linked to hyper-
mobile Ehlers–Danlos syndrome (hEDS), characterized 
by loose joints and hyperextensibility, as well as Cutis 
Laxa type 2B [42]. B3GALT6, encoding beta-galactoside 
3-O-acetyltransferase, contributes to the synthesis of 
glycosaminoglycans (GAGs), essential components of 
the extracellular matrix. Deficiencies in B3GALT6 lead 
to brittle bone disease with severe skin, joint, and eye 
involvement (BBSJI), demonstrating the intricate rela-
tionship between GAGs and connective tissue health 
[37]. FKBPs, a family of heat shock protein (HSP) bind-
ers, safeguard cells from stress-induced damage. Muta-
tions in FKBP genes are associated with Ehlers–Danlos 

Table 5 (continued)

Syndrome Gene Variant Number of 
heterozygotes

CADD score N of 6 
damaging 
prediction

Population with the least 
frequency of allele

Population with the least 
frequency of allele

COL5A2 c.1535 T > C 21 22.8 3 Persian Gulf Islander (0) Kurd (0.035)

COL5A2 c.2498C > T 22 25.9 6 Persian Gulf Islander (0) Kurd (0.04)

COL5A1 c.4135C > T 14 25.8 5 Baloch, Lur (0) Kurd (0.2)

COL5A1 c.1588G > A 61 24.9 4 Persian Gulf Islander (0.2) Persian (0.07)

DSE c.158C > T 68 28.5 3 Baloch (0.02) Turkmen (0.07)

DSE c.266G > A 12 19.57 4 Persian, Kurd (0) Arab, Baloch (0.015)

DSE c.901A > G 41 23.6 3 Turkmen (0.01) Arab, Baloch (0.05)

C1S c.356G > A 138 25.1 5 Baloch (0.035) Kurd (0.12)

COL12A1 c.9172G > A 345 27.8 6 Baloch (0.57) Turkmen (0.69)

COL12A1 c.6479A > T 35 26.8 5 Baloch (0) Kurd (0.045)
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syndrome type VII, highlighting the importance of HSPs 
in connective tissue homeostasis [58]. ADAMTS2, encod-
ing a collagen-cleaving enzyme, regulates collagen fiber 
degradation, influencing tissue flexibility and strength. 
Mutations in ADAMTS2 are linked to classical Ehlers–
Danlos syndrome (cEDS), characterized by hyperexten-
sibility, easy bruising, and fragile skin [3]. COL1A1 and 
COLA1A2, encoding the alpha 1 and alpha 2 chains of 
type I collagen, the most abundant type of collagen in 
the body, are essential for connective tissue integrity. 
Mutations in these genes are associated with various 
EDS subtypes, including cEDS, dermatosparaxis, and 
osteogenesis imperfecta type VI, emphasizing the critical 
role of type I collagen in connective tissue function [18]. 

Moreover, our investigation of all reported EDS, OI, and 
CL genes using the Iranome database reveals 46 variants 
that are dormant in heterozygous carriers with different 
frequencies in each ethnic group. Considering the high 
CMR in the country, it is probable for these heterozygous 
variants to rise in the next generation as a homozygous 
form, especially for populations with a high frequency of 
disease-causing alleles [1, 15]. For example, Baloch, Ira-
nian Arab, and Kurd populations have the highest allele 
frequency for more than 6 variants of EDS. In this regard, 
carrier screening could be an effective strategy to prevent 
the birth of affected offspring [23]. Also, less than 1 per-
cent of reported patients have undergone genetic study. 
This fact, which limited our cohort number, necessitates 

Fig. 4 Schematic Illustration of Genes and Variants Involved in EDS/OI/CL Overlapping Phenotype. (Red lines show the position of variants 
at the protein domains)
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performing genetic tests on more patients in future 
studies.

The literature data on EDS, OI, and CL overlap phe-
notypes are limited and may have some biases, as 
studies may have been conducted in specific popula-
tions or may have focused on particular clinical pres-
entations. Future studies should aim to recruit more 
diverse patient cohorts and utilize standardized clini-
cal diagnostic criteria to enhance the generalizability of 
findings.

While in silico tools and databases can serve as valu-
able resources for identifying potential disease-causing 
variants, it is crucial to acknowledge their limitations. 
These tools are still under development and may not 
always accurately predict pathogenicity, particularly 
for rare or novel variants. The reliability of these pre-
dictions can be enhanced by validation through experi-
mental data, such as functional studies or animal 
models. It is important to note that the present study 
primarily encompasses the Iranian population. There-
fore, the findings may not be entirely representative of 
other ethnic or geographical groups. Future research 
endeavors should aim to investigate these phenotypes 
in a broader range of populations to enhance the uni-
versality and applicability of the results. This will con-
tribute to a more comprehensive understanding of 
EDS, OI, and CL overlap phenotypes across diverse 
populations.
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