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Abstract 

Background According to the increasing trend of COPD, the timely diagnosis and treatment of the disease can 
reduce the high costs to the health systems. Therefore, by biological calculation methods, signaling pathways 
and genes involved in this disease can be obtained and used to design drugs and other treatment methods. By using 
biological calculations, we determined that curcumin can affect this disease and its genes and signaling pathways. 
Our goal in this study was to find the genes by which curcumin exerts its effect and can maintain the function of cor-
ticosteroids against oxidizing agents.

Results By finding the genes, it is possible to find precisely the pathways by which curcumin works, which can be 
used to design other drugs that cause these pathways and minimize their side effects. This study considers healthy 
samples (with/without curcumin) and oxygen-free radicals (with/without curcumin). Finally, statistical algorithms 
extract meaningful genes as effective biomarkers to investigate curcumin’s effects and signaling pathways in COPD. 
The results show that the genes finally obtained as the most critical genes confirmed by the literature are effective 
in COPD. Finally, curcumin was input in SwissTargetPrediction to identify potential protein receptors. We used LigPlot+ 
software to visualize the receptor–ligand binding result provided by iGEMDOCK.

Conclusions The data showed that the most significant genes in each group have been confirmed in other studies 
to be effective in this disease, and protein–protein interaction networks can be established between them to investi-
gate their roles.

Keywords Chronic obstructive pulmonary disease, Curcumin, Gene modules, Mathematical models, Biological 
pathways, Bio-computation

Introduction
Chronic bronchitis and pulmonary emphysema are two 
primary components of chronic obstructive pulmonary 
disease (COPD) [1], a significant global health bur-
den ranks statistically third in terms of causes of death 
worldwide, and its incidence is steadily increasing [2]. 
The pathophysiology of this disease shows that airflow 
restriction is due to the destruction of small airways 
and the parenchyma of the lungs, which causes bal-
ance disorders between protease and antiprotease in 
the lung. The disease has four stages that are classified 
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from mild to severe. COPD patients commonly strug-
gle with symptoms such as whooping cough, shortness 
of breath, and wheezing. Available approaches to con-
trolling the disease include preventing illness progres-
sion, maintaining signs, and improving the exercise 
tolerance test (ETT). The essential and fundamental 
step is to quit smoking. This disease uses beta-agonists, 
anticholinergics, methylxanthines such as theophylline, 
and corticosteroids. One of the most critical challenges 
for controlling disease attacks is air pollution and lung 
infections [1]. The literature has ample evidence of the 
genetic role in the development of lung carcinoma. 
It is worth noting that the two diseases, lung cancer 
and COPD, share several genetic mechanisms; these 
include, i. inflammation, where both conditions involve 
chronic inflammation in the lungs, and it can lead to 
cellular damage and mutations; ii. transformed mesen-
chymal cells can contribute to the development of both 
lung cancer and COPD; iii. lung tissues are susceptible 
to oxidative stress, which can result in DNA damage 
and increase the risk of cancer and COPD; iv. the for-
mation of new blood vessels in the lungs can promote 
the growth and spread of cancer cells, as well as con-
tribute to the development of COPD; v. impaired DNA 
repair mechanisms can increase the risk of genetic 
mutations and cancer in both lung tissues; vi. cell pro-
liferation can lead to the development of both lung can-
cer and COPD. These common genetic mechanisms 
highlight the close relationship between lung cancer 
and COPD, and suggest potential targets for thera-
peutic interventions. Considering the mechanism of 
inflammation, inhaling cigarette smoke or other carcin-
ogens exposes the body to a weakened immune system 
associated with increased inflammation, all of which 
lead to the formation and progression of tumors, spe-
cifically COPD [3].

Increased oxidative stress through the generation of 
free radicals is one of the results of the smoking-related 
contributing factors; in other words, it, in turn, increases 
ROS production of ROS (reactive oxygen species) by 
lung epithelial cells [4]. Phytochemicals from the Cur-
cuma longa roots include curcumin, which is naturally 
polyphenolic [5]. This plant belongs to the Zingiber-
aceae family and is native to Southeast Asia. Turmeric, 
with various pharmacological properties, contains a 
group of substances known as curcumin, including cur-
cumin, dimethoxy curcumin, and methoxy-curcumin. 
Curcumin, with medicinal properties, is the main active 
ingredient in curcuminoids. The yellow color of turmeric 
and its therapeutic effects are related to the existence of 
curcumin [6]. Regarding the placement of curcumin in 
the pharmacological drug groups, it belongs to the group 
of anti-inflammatory substances with a non-steroidal 

structure. In addition to its non-inflammatory effects, 
curcumin has analgesic, antipyretic, and platelet inhibi-
tory effects [7].

Curcumin has antioxidant activity that can reduce the 
body’s ROS. This property of curcumin is due to its excel-
lent electron transfer capacity due to its unique structure 
and various functional groups such as β-diketone and 
several π electrons. They can connect two phenyl rings 
[8]. Because genes are the potential source of many dis-
eases, identifying and investigating significant biomark-
ers involved in chronic obstructive pulmonary disease 
using curcumin may increase the patient’s chances of 
survival since early detection and treatment can ben-
efit recurrence prevention. The use and analysis of gene 
expression data are essential in biomarker determination. 
Therefore, identifying genes with statistically significant 
expression values compared to other genes and assess-
ing the signaling pathways are paramount. In this experi-
ment, we want to find out the genes involved in COPD 
using different periods classified in other groups of sam-
ples by comparing them in the existence or absence of 
curcumin and taking into account the standard and high 
ROS levels. In the author’s opinion, this work is a first, 
enabling further research and the development of effec-
tive treatments based on genes and pathways associated 
with COPD to be addressed in further studies.

Methods
The flowchart of the process of answering the research 
question is summarized in Fig. 1.

Source of microarray data sets
In this study, we obtained gene expression data from the 
Gene Expression Omnibus database (GEO), a publicly 
accessible repository of gene expression information 
maintained by the National Center for Biotechnology 
Information (NCBI). Specifically, we retrieved GSE10896 
with platform GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array-based microarray dataset, from the 
GEO database. This platform offers a comprehensive 
analysis of genome expression, allowing for the detec-
tion of subtle changes in gene expression levels across 
different samples. By leveraging the resources of the 
GSE and the Affymetrix platform, we aimed to gen-
erate valuable insights into the complex mechanisms 
underlying specific biological processes and diseases. To 
assess the effects of curcumin, 24 samples are divided 
into eight groups to compare the possible significant 
gene expression levels at different conditions. The eight 
groups include group 1, naive_untreated_4h versus 
naive_curcumin_4h, group 2, naive_untreated_4h versus 
ROS_curcumin_4h, group 3, naive_curcumin_4h versus 
ROS_untreated_4h, group 4, ROS_untreated_4h versus 
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Fig. 1 The schematic flowchart of the research process starting from selection of the GEO microarray dataset to final post processing stages
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ROS_curcumin_4h, group 5, naive_untreated_18h versus 
naive_curcumin_18h, group 6, naive_untreated_18h ver-
sus ROS_curcumin_18h, group 7, naive_curcumin_18h 
versus ROS_untreated_18h, group 8, ROS_untreated_18h 
versus ROS_curcumin_18h.

In the GSE10896 dataset, a specific cell line U937 
was employed for investigative purposes. This cell line 
was allegedly derived from histiocytic lymphoma sam-
ples taken from a 37-year-old male individual and was 
intended to elucidate the behavior and differentiation of 
monocytes.

Different genes expressed between groups (DEG)
The BRB-Array Tools (version 4.6.1stable) develop-
ment team, led by Dr. Richard Simon, has developed 
an analysis tool that can be used to identify noteworthy 
and differentially expressed genes. The steps in this tool 
included entering the GEO dataset, filtering genes by 
applying the |log(fold change)|≥ 1 option, normalizing 
with the quantile normalization option, and categorizing 
the most important DEGs. Due to inspecting even small 
changes of curcumin effects on gene expression levels, 
the cutoff for fold change was set to 1. This tool organized 
genes according to their intensity of expression using the 
MAS5 algorithm. The results obtained from DEGs were 
significant, considering p < 0.05.

DEGs priority
Based on evidence from the literature, the DEGs dis-
cussed in the previous section were ranked using the 
GeneCards [9] and ToPPGene [10] websites. Through 
150 online sites and keywords, the GeneCards database 
(https:// genec ards. org) was used to find genes associated 
with a given disease, based on the training group’s defi-
nitions. The terms "COPD" and "chronic obstructive pul-
monary disease" were included in the keywords searched 
in this context. ToPPGene was used to rank the imported 
gene list and compare it with the train gene list to deter-
mine the gene(s) associated with COPD that was signifi-
cantly differentially expressed (p-values less than 0.05). 
The test group was scored and ranked using the train 
group’s similarity scores based on fuzzy and Pearson cor-
relation measurement computations on the ToPPGene 
website.

Ontology and functional analysis of genes
In this section, we evaluate the ontology of genes through 
the DAVID version 6.8, a comprehensive information 
tool available for free at http:// david. abcc. ncifc rf. gov/ 
summa ry. jsp. It presents an extensive examination of 
differentially expressed genes (DEGs) and their involve-
ment in KEGG signaling pathways, covering an assess-
ment of their biological processes (BP) containing several 

chemical reactions, cellular components (CC) with vari-
ous complex biomolecules, and molecular functions 
demonstrating activities of a target macromolecular with 
others (MF) [9, 10]. EASE score threshold was set to 0.1 
by default.

Constructed network of protein–protein interactions
The constricted network of protein–protein interaction 
among the DEGs obtained from the previous steps helped 
find the interconnections among corresponding proteins 
through existing search tools. The search tool included 
STRING version 11.5 and GeneMANIA. In the STRING 
database, which contains data relating to protein–protein 
interactions, there are currently over 67 million proteins 
derived from nearly fourteen thousand distinct organ-
isms. In August 2021, the database had accumulated 
over twenty million interactions between these proteins, 
representing a tremendous amount of data on protein–
protein interactions. In the development of this tool, a 
comprehensive integration of GO, KEGG, Biocarta, and 
Reactome has been accomplished. With seamless infor-
mation exchange between these databases, these path-
ways and networks can be identified more efficiently. 
IntAct, MINT, PID, BIND, DIP, GRID, HPRD, and IntAct 
are some of the prominent databases and initiatives that 
are affiliated with the tool. The tool can access a wealth 
of biological data and knowledge through these collabo-
rations. In the protein–protein interaction network, the 
proteins obtained were represented by their nodes and 
the corresponding protein–protein relationships [11]. 
The GeneMANIA website at http:// www. genem ania. org 
was used to examine the functional possibilities of genes, 
analyze gene groups, and prioritize them for functional 
measurement. The website used genomics and proteom-
ics information to link imported genes to similar genes 
in terms of functionality. Also, its search engine included 
a wealth of data on the functional roles of genes from 
the GEO, BioGRID, Pathway Commons, and I2D (Inter-
logous Interaction Database) databases. Additionally, the 
default cutoff score for STRING was 0.4, and no thresh-
olds were available for GeneMANIA.

Relationship between curcumin efficacy and its structural 
components
PubChem, a comprehensive public access chemical 
compendium maintained by NCBI, was searched for 
the structural formula and SMILES code of curcumin 
[12]. Generally, strings of SMILES code could be used to 
determine structural similarity obtained from PubChem 
and the ADME forecasting tool using SwissADME 
online websites [13–15] and SwissTargetPrediction 
[16]. By calculating numerous factors, such as physico-
chemical descriptors, ADME-relative parameters, and 

https://genecards.org
http://david.abcc.ncifcrf.gov/summary.jsp
http://david.abcc.ncifcrf.gov/summary.jsp
http://www.genemania.org
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pharmacokinetic properties and effects similar to medi-
cines and studying the medicinal chemistry of SMILES 
structure, we employed the SwissADME web server for 
drug creation and detection. A general theory of simi-
larity states that two molecules with similar properties 
(thresholds of similarity of 0.65 in 2D and 0.85 in 3D) are 
likely to be similar. We have statistically quantified that 
bioactive molecules with similar targets will likely share 
them under the SwissTargetPrediction. Subsequently, 
through the analysis of a dataset comprising 370,000 
active molecules with known targets, the most closely 
related molecules were identified for a given query mol-
ecule. This was achieved by employing a sophisticated 
computational approach that enabled the identification 
of the most similar molecules based on their shared tar-
get proteins. Target molecules with the highest similarity 
to the query molecule are predicted targets. Moreover, in 
SwissTargetPrediction, those targets with similar binding 
properties to similar structure queries were selected with 
a probability criterion over 0.50 for molecular docking 
purposes.

Molecular docking
In the first step, probability values were used to deter-
mine which receptors are most likely to be targeted by 
curcumin in treating COPD. To validate the predicted 
targets, we employed molecular docking techniques. In 
this process, we utilized the protein data bank (PDB) or 
Research Coordination Center for Biological Systems 
accessible from https:// www. rcsb. org/) to obtain the 
studied proteins structures, which provided a molecular 
framework for docking simulations. Water molecule was 
removed from the structure. With the help of OpenBa-
bel (v.3.1.1) software (https:// github. com/ openb abel/ 
openb abel), the verified curcumin structure obtained 
from ZINC15 (http:// zinc15. docki ng. org/) was converted 
to.mol2 format. With default parameters, docking was 
done with iGEMDOCK (version 2.1) [17]. Using Lig-
Plot+ software (version 2.2.8), the identified low-energy 
receptors were visualized.

Results
In the first phase of this research, the significant genes of 
the studied groups were obtained using BRB-ArrayTools. 
Different genes expressed between the samples in each 
group are obtained and labeled upregulation/downregu-
lation based on fold change values. Since ignoring each 
gene can affect the final result, all genes with fold changes 
more significant than one in the microarray dataset are 
considered. For example, 67 different expressed genes 
are obtained between the two samples in group 6, of 
which 12 are upregulated and 55 are downregulated. The 
detailed results are summarized in Table 1.

Next, the effective genes found in the clinically pub-
lished literature on COPD patients at GeneCards.org 
were compared with the significant genes derived by 
BRB-Array Tools, and their expressions were obtained 
between two comparing samples in each group. Then, the 
ToppGene prediction server ranked the input test dataset 
(i.e., genes obtained from BRB-Array Tools) based on the 
training dataset (i.e., the clinically confirmed genes from 
GeneCards.org) for all compared groups in each step; 
however, one of the groups did not contain a consider-
able number of essential genes. The p-value was consid-
ered lower than 0.05 to select significant genes at this 
stage. Among the DEGs identified at this stage for each 
group, groups one to six contain one, six, three, one, four, 
six, and twelve genes, respectively, as shown in Table 2. 
The gene list was reduced, and groups 7 and 8 remained 
unchanged.

Based on the output of the DAVID bioinformatics 
tool, eight groups of prioritized genes are analyzed bio-
logically and functionally. The processes in which these 
molecules are involved can be divided into BP, CC, MF, 
and KEGG signaling pathways. We have inserted genes 
with a p-value below 0.05 into this website so that they 
can be analyzed. For example, genes with mRNA positive 

Table 1 The number of DEGs obtained from analysis in BRB_
Array tools

Group No. DEGs Upregulated Downregulated

1 26 26 0

2 58 35 23

3 36 18 18

4 23 10 13

5 44 25 19

6 67 12 55

7 2 0 2

8 4 3 1

Table 2 The final number of DEGs after prioritization in 
TOPPGene website

Group No. DEGs Upregulated Downregulated

1 25 25 0

2 52 30 22

3 35 18 17

4 19 10 9

5 38 21 17

6 55 8 47

7 2 0 2

8 4 3 1

https://www.rcsb.org/
https://github.com/openbabel/openbabel
https://github.com/openbabel/openbabel
http://zinc15.docking.org/
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regulation function in biological processing have practi-
cal expressions in catabolic processing, positive regu-
lation of cytokine expression, and development of 
skeletal muscle tissue. Considering the cellular compo-
nents, some genes affect extracellular space, the Golgi 
apparatus, and cell connections. In terms of molecular 
functions, there are genes with DNA binding activity, 
GDP binding, and 3’-UTR binding mRNA binding. The 
KEGG signaling pathway analysis shows that various 
genes play a role in histidine metabolism, serotonergic 
synapses, and the regulation of lipolysis in adipocytes 
(Fig. 2).

Utilizing the GeneMANIA website, the p-values less 
than 0.05 for the resulting genes in each protein–pro-
tein interaction network are illustrated (Fig. 3). In group 
7, there are no data because there were no genes with 
p-value < 0.05. The images’ purple, blue, yellow, and green 
lines (i.e., Fig.  3) mean coexpression, colocalization, 
shared protein domains, and genetic interactions.

PPI networks are generated for eight groups using 
Cytoscape software and the STRING database. Further-
more, genes with a p-value of less than 0.05 were entered 
into Cytoscape software to determine their interconnec-
tion relationships and identify genes using the cytohubba 
algorithm. The results show that in groups one to eight 
except seven, there are 16 nodes and one edge, 24 nodes 
and two edges, 22 nodes and one edge, eight nodes and 
no edge, 16 nodes and four edges, 25 nodes and four 
edges and two nodes and 0 edges; however, group 7 did 
not have results. Among the genes with higher interac-
tions in PPI networks using eight groups, in group one, 
TCF3 and TCF7L1 were both upregulated with degree 1; 
in group two, SPON1, ADAMTS9, GABRA5 and NPTN 
were downregulated, and all had degree 1, in group three, 
TLE1 was upregulated, and ASCL1 was downregulated. 
Both had degree 1. In group five, HDC, SLC15A4 and 
HTR7 were downregulated, and MAOA was upregulated. 
In contrast, their degrees were 3, 1, 2 and 2, respectively, 
and in group six, UBE2A, RC3H1, HNRNPR, SLC1A2, 
GABRB2, ABHD5 and RAB18 were all downregulated, 
and their degrees were 1, 2, 1, 1, 1, 1 and 1, respectively 
(Table 3).

In biochemical networks, degrees 1, 2, 3, etc., classify 
the order in which protein–protein interactions occur: 
1. First-degree interactions—Direct physical interactions 
between two proteins, such as enzymes and substrates. 
The proteins interact directly. Two proteins indirectly 

Fig. 2 The outcomes for BP (red), CC (blue), MF (green), KEGG 
signaling pathway (orange) enrichment analysis for target groups 
one, two, three, five, and six. The remaining groups four, seven, 
and eight did not present any enrichment analysis
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interact through an intermediate protein. For example, 
it is unclear whether protein A binds protein B or pro-
tein C directly. In addition, protein A indirectly affects 
the activity of protein C. 3. Third-degree interactions. In 
this case, two proteins (A and D) interact through a path 
involving two intermediate proteins (A–B, B–C, C–D). 
As a result, the functionally associated proteins A and D 
involve three steps. Two proteins that interact n-degrees 
indicate that they are linked by n-1 intermediate pro-
teins, creating a chain of functional associations between 
the end proteins. In large protein functional networks 
within the cell, we can map the connectivity of indirect 
interactions and associations by analyzing these degrees 
of separation. To better understand information flow, 
network concepts like hubs, modules, and shortest paths 
take advantage of these interactions. They better under-
stand how protein signaling has been interconnected and 
how signals propagate.

A molecular weight (MW) of 368.38  g/mol was 
observed by SwissADME, indicating curcumin’s abil-
ity to absorb and distribute efficiently. The main feature 
of curcumin is that it forms hydrogen bonds with water 
molecules and accepts hydrogen bonds, which sug-
gest that it enhances the solubility of water molecules 
through both donors and acceptors of hydrogen bonds. 
Approximately half of curcumin administered after oral 
administration reaches the systemic circulation, accord-
ing to a study indicating 0.55 percent oral bioavailabil-
ity. A lower topological polar surface area (TPSA) value 

indicates a low likelihood of curcumin interacting with 
membranes and moving across biological barriers. The 
absorption percentage of curcumin was impressively 
high at 93.06%, demonstrating the drug’s excellent abil-
ity to penetrate the body. According to the findings pre-
sented, curcumin exhibits noteworthy oral bioavailability 
and solubility, rendering it a potentially valuable drug 
candidate. Studying the relationship between the effec-
tiveness of curcumin and its structural components in 
the SwissTargetPrediction section, 101 curcumin target 
proteins were identified, among which enzymes, oxi-
doreductases, and isomerases had the highest probability 
values. Among 101 target proteins, monoamine oxidase 
A from the class of oxidoreductases, beta-amyloid A4 
protein from the cell membrane category, histone acetyl-
transferase P300 from the Writer category, prostaglandin 
E synthase from the enzyme category, Toll-like receptor 
(TLR7/TLR9) from the toll-like and ll-1 receptors, beta-
secretase one from the protease, and DNA topoisomer-
ase II alpha from isomerase, with a probability of more 
than 50% were determined. This study also demonstrated 
curcumin’s anti-inflammatory and antioxidant properties 
through the evidence from the literature presented in the 
next section.

In the SwissTargetPrediction analysis, the receptors 
mentioned earlier played a role in curcumin’s impact on 
COPD. As listed in Table 4, we selected potential targets 
with their PDB IDs: 2BXR, 6UWP, 6GYR, 4BPM, 3WPF, 
6ZJZ, 6OD6, 3QX3. Our next step involved docking eight 

Fig. 3 The PPI networks constructed for a group 1, b group 2, c group 3, d group 4, e group 5, f group 6, and g group 8 propose the identified 
effected genes by other possible interacted genes
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Table 3 The list of genes interacted with each other in PPI network from GeneMANIA

Groups Gene symbol Gene Name Signaling pathways References

Group 1 TCF3 Transcriptional factor 3 Wnt signaling pathway [18]

TCF7L1 Transcription Factor 7 Like 1 Wnt signaling pathway [19]

SUN5 Sad1 And UNC84 Domain Containing 5 – [20]

FAAP100 FA Core Complex Associated Protein 100 Fanconi anemia pathway (Repair of damaged DNA) [21]

AGXT Alanine–Glyoxylate And Serine–Pyruvate Aminotrans-
ferase

Metabolic pathways [22]

SMAD6 SMAD Family Member 6 TGF-beta signaling pathway [23]

GSK3A Glycogen Synthase Kinase 3 Alpha Chemokine signaling pathway [24]

NEUROD4 Neuronal Differentiation 4 Notch signaling pathway [25]

ST14 ST14 Transmembrane Serine Protease Matriptase Glycosaminoglycan biosynthesis—chondroitin sulfate 
/ dermatan sulfate Pathway

[26]

Group 2 SPON1 Spondin 1 Apoptotic pathways in synovial fibroblasts and CREB 
pathway

[27]

ADAMTS9 ADAM Metallopeptidase With Thrombospondin Type 
1 Motif 9

Metabolism of proteins pathway [28]

GABRA5 Gamma-Aminobutyric Acid Type A Receptor Subunit 
Alpha5

Akt signaling [29]

SLC6A15 Solute Carrier Family 6 Member 15 Nuclear receptors meta-pathway [30]

SIPA1L3 Signal Induced Proliferation Associated 1 Like 3 Rap1 signaling pathway [31]

GPC5 Glypican 5 Glycosaminoglycan metabolism [32]

KLF7 Kruppel Like Factor 7 Adipogenesis pathway [33]

CDK12 Cyclin Dependent Kinase 12 Cell cycle [34]

ENO3 Enolase 3 Glycosaminoglycan metabolism [35]

NPTN Neuroplastin Akt Signaling [36]

HTATIP2 HIV-1 Tat Interactive Protein 2 Cytoskeletal signaling [37]

IL7 Interleukin 7 PI3K-Akt signaling pathway [38]

JAK-STAT signaling pathway

Group 3 BLK BLK Proto-Oncogene, Src Family Tyrosine Kinase MAPK-Erk pathway [39]

NF-kappaB signaling

ADAMTS18 ADAM Metallopeptidase With Thrombospondin Type 
1 Motif 18

Metabolism of proteins [40]

CEP89 Centrosomal Protein 89 Organelle biogenesis and maintenance [41]

SULF1 Sulfatase 1 – [42]

ABCB9 ATP Binding Cassette Subfamily B Member 9 Transport of inorganic cations/anions and amino 
acids/oligopeptides

[43]

STAG3 Stromal Antigen 3 Cell cycle, mitotic [44]

RER1 Retention In Endoplasmic Reticulum Sorting Receptor 
1

– [45]

ASCL1 Achaete-Scute Family BHLH Transcription Factor 1 Signal transduction [46]

Signaling by NTRKs

DAAM1 Dishevelled Associated Activator Of Morphogenesis 1 Wnt signaling pathway [47]

Signaling by Rho GTPases

TLE1 TLE Family Member 1, Transcriptional Corepressor Wnt/Hedgehog/Notch signaling pathways [48]

Group 4 ZDHHC9 Zinc Finger DHHC-Type Palmitoyltransferase 9 RAF/MAP kinase cascade [49]

ACAA2 Acetyl-CoA Acyltransferase 2 Metabolic pathways [50]
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target proteins with curcumin, a potentially active mol-
ecule. Stable conformations have lower binding ener-
gies. Our assessment of the binding level was based on 
the quantitative fitness value. Predicted poses in a bind-
ing site are evaluated according to their fitness. In iGEM-
DOCK, fitness is computed as the product of van der 
Waal, hydrogen bonding, and electrostatic energy [17]. 
We used LigPlot+ to visualize protein–ligand interac-
tions (Fig.  4)  and the  potential receptors along with 
their molecular docking results are proposed in Table 4.

Discussion
Currently, the incidence and mortality of COPD, an 
inflammatory disease caused mainly by daily smok-
ing, is continuously growing globally. COPD is a seri-
ous health problem and a danger to human life [76–78]. 
Studies on curcumin’s pharmacological effects have 
gained momentum since  its molecular structure 
(C21H20O6) was discovered as difluorocarbonyl meth-
ane in 1910 [79]. It has also been shown that curcumin, 

Table 3 (continued)

Groups Gene symbol Gene Name Signaling pathways References

Group 5 SLC15A4 Solute Carrier Family 15 Member 4 Innate immune system [51]

HTR7 5-Hydroxytryptamine Receptor 7 Ras signaling pathway [52]

DNAH1 Dynein Axonemal Heavy Chain 1 – [53]

ELK1 ETS Transcription Factor ELK1 MAPK signaling pathway [54]

ErbB signaling pathway

RSPO3 R-Spondin 3 Wnt signaling pathway [40]

mTOR Signaling pathway

ELF3 E74 Like ETS Transcription Factor 3 Pre-NOTCH expression and Processing [55]

PHF21A PHD Finger Protein 21A Chromatin organization [56]

HDC Histidine Decarboxylase Histidine metabolism [57]

CA12 Carbonic Anhydrase 12 Reversible hydration of carbon dioxide [58]

SEC61B SEC61 Translocon Subunit Beta Phagosome [59]

Antigen processing-cross presentation

MAOA Monoamine Oxidase A Cytokine signaling in Immune system [60]

RC3H1 Ring Finger And CCCH-Type Domains 1 – [61]

Group 6 HM13 Histocompatibility Minor 13 Cellular response to chemical stress [62]

HNRNPR Heterogeneous Nuclear Ribonucleoprotein R Translational control [63]

SLC1A2 Solute Carrier Family 1 Member 2 Glutamatergic synapse [64]

SCN3A Sodium Voltage-Gated Channel Alpha Subunit 3 Activation of cAMP-Dependent PKA [65]

FOXP1 Forkhead Box P1 MicroRNAs in cancer [66]

Wnt/Hedgehog/Notch

Signaling pathways

UNC5B Unc-5 Netrin Receptor B Apoptosis signaling pathway [67]

RAB18 RAB18, Member RAS Oncogene Family Innate immune system [68]

ABHD5 Abhydrolase Domain Containing 5, Lysophosphatidic 
Acid Acyltransferase

Lipid metabolism pathway [69]

GABRB2 Gamma-Aminobutyric Acid Type A Receptor Subunit 
Beta2

NF-kappaB pathway [70]

Akt pathway

SNX1 Sorting Nexin 1 Posttranslational regulation of adherens junction 
stability and disassembly

[71]

SVIL Supervillin Coregulation of androgen receptor activity [72]

UBE2A Ubiquitin Conjugating Enzyme E2 A Ubiquitination cascade [73]

Group 8 OTP Orthopedia Homeobox – [74]

NT5C2 5’-Nucleotidase, Cytosolic II Metabolism of nucleotides [75]
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an organic polyphenol produced from turmeric, a 
member of the ginger family, helps treat COPD [79].

Only 25% of people who smoke will get COPD, despite 
smoking being the leading cause of COPD cases [80]. 
Despite this, most smokers do not end up with COPD, 
and a significant number of people with COPD have 
never smoked. It suggests that COPD is a complex 
degenerative disease [81]. When compared with smokers 
who do not have COPD, those who have COPD and who 

smoke have an elevated risk of developing lung cancer 
that ranges from 1.3 to 4.9 times higher [80].

Further research findings demonstrated that curcumin 
alleviated emphysema and helped restore structural 
integrity to the alveolar epithelium of rats suffering from 
COPD [77, 81]. Individuals with chronic obstructive pul-
monary disease (COPD) who received curcumin had 
more favorable body weight and respiratory rates than 
those who received a control treatment [81]. In a study 

Table 4 The list of potential receptors and molecular docking results of iGEMDOCK and  LigPlot+ using curcumin compound

Compound PDB ID Energy VDW Hbond Amino acids

Monoamine oxidase A 2BXR − 111.84 − 91.71 − 20.13 Gly214, Arg206, Ser209, Gln215, Glu216, Ile207, Trp441, Phe352, Tyr407, 
Tyr444

Beta amyloid A4 protein 6UWP − 93.5364 − 65.1122 − 28.4242 Tyr198, Gly34, Asp32, Ser10, Ile226, Ile118, Asp228, Gly11, Tyr14, Ser229, 
Gly13, Gln12, Leu30, Gly230, Ile110

Histone acetyltransferase p300 6GYR − 114.445 − 96.8397 − 17.6049 Trp1436, Tyr1446, Cys1438, Ser1396, Ile1395, Ser1400, Phe1467, His1402, 
Leu1398, Tyr1466, Tyr1414, Thr1411

Prostaglandin E synthase 4BPM − 80.2304 − 63.7593 − 16.4711 Aln133, Gln34, Tyr130, Arg126

Toll-like receptor 9 (TLR9) 3WPF − 78.7357 − 58.5542 − 20.1815 Lue707, Val731, Glu730, Thr754, Lys781, Leu756

Toll-like receptor 7 (TLR7) 6ZJZ − 120.603 − 107.651 − 12.9516 Gly351, Pro498, Ile496, Gln519, Lys350, Phe495, Ala518, Tyr348, Val378, 
Tyr348, Gln525, Phe494, Phe568

Beta-secretase 1 6OD6 − 88.0633 − 76.9457 − 11.1176 Phe109, Lys107, Ile110, Phe108, Gln73, Tyr71, Gly230, Asp228, Gly34, 
Asp32

DNA topoisomerase II alpha 3QX3 − 91.0505 − 74.6289 − 16.4216 Glu777, Tyr821, Arg820, Gly776, Gln778, Arg503, Gly478, Asp479, Leu502

Fig. 4 Ligplot.+ output of the interactions at the receptor–ligand (curcumin) interface in a 2BXR, b 6UWP, c 6GYR, d 4BPM, e 3WPF, f 6ZJZ, g 6OD6 
and h 3QX3
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examining the effects of curcumin on COPD, the BALF 
total cell count was notably decreased without curcumin 
treatment [81]. On the other hand, it is yet uncertain 
whether oral curcumin may help with COPD-related 
mitochondrial dysfunction [77].

Patients with COPD can be restored to corticoster-
oid resistance with curcumin by inhibiting HDAC2 
expression and revising histone modifications [82]. So, 
curcumin is an important regulator of chronic airway 
inflammation in COPD and inhibits an increase in pro-
inflammatory chemokines in AEC II isolated from COPD 
rats [82].

As oral curcumin bioavailability is limited, more bio-
available curcumin may have a greater impact on COPD 
rats [77]. In COPD rats with skeletal muscle injury, cur-
cumin treatment improved mitochondrial structure and 
increased mitochondrial enzyme activity [77].

Around 40% of people with COPD have mitering and 
dysfunction of their skeletal muscles [77].

Rats with COPD whose skeletal muscles were treated 
with curcumin had dramatically reduced levels of IL-6 
and TNF-α [77]. Curcumin-treated COPD individuals 
showed a significant difference in their alveolar epithe-
lial cell death rate from COPD model subjects in terms of 
apoptosis rates [81]. The reason for using curcumin as a 
preventive agent is that chronic inflammation and oxida-
tive stress are involved in COPD [81].

The hypothesis is that Theracurmin®, a highly absorb-
able curcumin with increased bioavailability using a med-
ication delivery method, reduces inflammation in people 
with moderate COPD [78]. According to the literature, 
curcumin may be beneficial in stopping arteriosclerosis 
by lowering AT-LDL levels, which have been shown to 
drop considerably after therapy with Theracurmin® [78].

Research has shown that curcumin may reduce inflam-
mation in the patients’ airways through affecting the 
nuclear factor kappa-light-chain-enhancer of activated B 
cells and hence the gene expression values of cyclooxyge-
nase-2 [76].

Curcumin can also slow lung cancer development in 
patients with high-risk COPD by prolonging the prema-
lignant period [80]. These discoveries might lead to new 
therapeutic development approaches to treating COPD 
[76, 83].

Through a bio-computational approach, the study 
investigates how curcumin inhibits the progression of 
COPD by regulating genes and biological pathways. And 
COPD is a progressive chronic obstructive lung disease 
[1]. Patients with mild-to-moderate COPD are more 
likely to die of lung cancer; those with severe COPD are 
more likely to die of respiratory failure. According to 
studies, 46 to 60% of lung cancer patients also had COPD. 
According to current understanding, the growth of lung 

cancer is closely linked to a person’s genetics [3]. It has 
already been discussed that COPD is a disease character-
ized by oxidative stress, and ROS has a significant role in 
that development and progression [4]. As a result, sub-
stances that contain antioxidants in their structure can 
be considered a treatment for this chronic disease. Cur-
cumin can be an antioxidant and anticancer due to its 
structure and functional groups [8]. This study used a 
microarray dataset consisting of 24 samples divided into 
eight groups at two different time intervals of 4 and 18 h.

In addition, the 4-h and 18-h groups were compared 
using BRB-ArrayTools, where significant genes are iden-
tified through statistical analysis to obtain more accu-
rate results. This study used several integrated groups, 
pre-processing algorithms, and normalization and filter-
ing approaches to obtain differentially expressed genes 
(DEGs) for eight groups. To find effective genes in treat-
ing this disease with curcumin, the DEGs between the 
compared groups in which curcumin is present and the 
ROS enzyme is active are more important than those in 
healthy groups not treated with curcumin. In this study, 
it was determined that groups 2 and 6 experienced sig-
nificant differences in gene expression over the period of 
4 and 18 h, with particular differences observed in gene 
expression between those groups. The results show that 
these genes are significantly expressed and can be effec-
tive in the curcumin process in this disease. In the next 
stage, analyses on gene ontology and the KEGG pathway 
of DEGs were performed using the DAVID web server 
to determine the function of those genes involved in 
oxidative stress and carcinogenesis. In this stage, genes 
with a p-value < 0.05 were evaluated regarding BP, CC, 
MF and KEGG signaling pathways, and the results were 
presented in the results section. When the GeneMANIA 
and Cytoscape stages are performed, interconnections 
between genes are obtained; they indicate extensive con-
nections between these genes, which may be involved in 
the effects of curcumin on gene expression levels in this 
disease. The STRING database also analyzed the PPI net-
work and revealed several hub genes for eight groups. 
The clinical and experimental studies in the literature 
were used to validate gene biomarkers. Group 1 has two 
TCF3 and TCF7L1 genes; group 2 has four ADAMTS9, 
SPON1, GABRA5 and NPTN genes; group 3 has two 
TLE1 and ASCL1 genes; group 5 has four HDC, MAOA, 
HTR7 and SLC15A4 genes, group 6 has seven RC3H1, 
UBEPRA, HN genes, SLC1A2, GABRB2, ABHD5 and 
RAB18 were the most important among the target genes. 
No significant genes were found in groups 4, 7, and 8, 
possibly due to the proximity and lack of differences in 
the genes expressed. In the phase of curcumin efficacy 
with its structural components identified in the Swis-
sTargetPrediction section, 101 proteins were obtained, of 
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which oxidoreductases and enzymes had the highest per-
centages (Fig. 5), and the rest of the proteins with similar 
rates were classified accordingly. For example, monoam-
ine oxidase A and prostaglandin E synthase were present 
in the enzyme group with a probability of more than 50%, 
and the effect of these proteins on COPD has been shown 
in other articles (Table 5).

Curcumin may lower depression via interacting with 
serotonin and dopamine systems [101, 102]. Dopamine 
and serotonin release are affected by curcumin’s mono-
amine oxidase inhibition [103]. Additionally, curcumin 
inhibits monoamine oxidases A and B, whereas Tetra-
benazine reduces VMAT-2, which affects depressed 
motivation. Oral or intraventricular curcumin may 
reduce these effects. [104, 105].

Curcumin modulates cellular targets and effects, sug-
gesting COPD therapy potential [106]. To prevent COPD, 

it regulates Th17 and Treg balance, inflammation, and 
anti-inflammatory factors [107]. For corticosteroid-
resistant COPD patients, curcumin seems promising. 
Because of this novel advantage, curcumin may treat 
COPD by alleviating corticosteroid resistance symptoms 
[108]. Curcumin may directly affect beta-amyloid protein 
formation, which may affect Alzheimer’s disease progres-
sion [109]. The reduction in plasma beta-amyloid protein 
levels suggests a connection between curcumin and the 
A4 receptor [109].

Through altering COPD and Alzheimer’s disorders, 
curcumin inhibited liver cancer and signaling pathways 
[110]. Curcumin inhibits breast cancer cell growth and 
induces death via modulating signaling pathways which 
makes scientists believe curcumin may cure cancer and 
COPD [111].

Curcumin also has an effect on the p300 receptor, 
which is a transcription factor that acetylates histones 
and transcription factors (HAT), including GATA4. This 
receptor is known to affect gene expression and cell func-
tion, including COPD [112–114]. Curcumin has been 
shown to decrease p300 HAT activity, which causes 
heart failure and hypertrophy by acetylating histones and 
GATA4 [112–114]. Additionally, curcumin was shown 
to reduce p300 HAT activity in animal models, reducing 
heart failure and cardiac hypertrophy [115, 116].

It was shown that curcumin inhibited the activity of 
p300 HAT in cancer and neuropathic pain models, which 
suggests that it has a wide range of potential therapeu-
tic applications [117, 118]. In COPD, curcumin reduces 
p300 HAT activity, may affect major pathophysiological 
variables such as gene expression related to inflamma-
tion, tissue remodeling, corticosteroid resistance, and 
renal ischemia–reperfusion [119]. So, by targeting the 
p300 HAT receptor, researchers may overcome COPD 
corticosteroid resistance and reduce inflammation and 
fibrosis [119].Fig. 5 The predicted potential receptors for the curcumin structure

Table 5 The potential receptors functional for curcumin predicted by SwissTargetPrediction

Receptors Function Probability References

Monoamine oxidase A Functional in cell signaling and oxidative injury 1.00 [84, 85]

Beta amyloid A4 protein Transition metal ion binding and inflammation 1.00 [86]

Histon acetyltransferase P300 Reduces pro-inflammatory gene expression and inhibits 
histone deacetylases

1.00 [87, 88]

Prostaglandin E synthase Ameliorates acute lung injury in mice 1.00 [89, 90]

Toll-like receptor (TLR7/TLR9) Protective self-defense mechanisms 1.00 [91, 92]

Beta-secretase 1 Formation of amyloid-β 0.80 [93]

DNA topoisomerase II alpha Cell cycle progression 0.50 [94, 95]

Glyoxalase I Reduces oxidative stress and inflammation 0.24 [96]

Nuclear factor erythroid 2-related factor 2 Protective role against apoptosis 0.22 [97, 98]

Arachidonate 5lipoxygenase Reduces inflammation 0.22 [99, 100]
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On the other hand, in patients with COPD, interact-
ing with the prostaglandin E synthase (PGES) recep-
tor may result in inhibiting microsomal prostaglandin E 
synthase-1, secreting pro-inflammatory prostaglandin 
E2 (PGE2). As a result, inhibition of mPGES-1 enhances 
its anti-inflammatory capabilities and possible treatment 
against cancer and chronic inflammation [89].

Curcumin inhibits IL-1β, reducing mPGES-1 produc-
tion, a crucial enzyme in the inflammatory response. This 
is done by inhibiting Egr-1 and other signaling pathways. 
Thus, curcumin may modulate mPGES enzyme expres-
sion and activity [120]. Curcumin has been studied fur-
ther in relation to the prostaglandin E receptor EP4, 
which is implicated in PGE2 activity [121]. Both the pros-
taglandin E synthase and the PGE2 signaling pathways, 
which are both regulated by curcumin, may be attribut-
able to inflammation and tissue damage.

According to the sources, curcumin may treat COPD 
via Toll-like receptors 9 and 7. For decades, TLR acti-
vation has been recognized to initiate innate immune 
responses [122]. In asthma and COPD-related chronic 
inflammation, TLR9 and TLR7 may inappropriately trig-
ger immunological responses [123].

In numerous diseases, curcumin regulates TLR expres-
sion and activation. TLR4 downregulation by curcumin 
decreases inflammatory cytokines and adhesion mol-
ecules in atherosclerotic plaques [124]. Curcumin also 
reduces TLR4 expression while increasing TLR2 expres-
sion in resting microglia [125] and may contribute to its 
anti-atherosclerosis activities [126].

TLRs, including as TLR9 and TLR7, have been impli-
cated in the immunopathology of stable COPD [127]. 
Furthermore, in COPD, TLR2 gene expression is highly 
related to the amount of neutrophils in sputum [128]. 
TLR4 has also been linked to COPD-induced inflamma-
tion [129]. In addition, the researchers reported TLR4 
polymorphisms have been linked to both tuberculosis 
and COPD [130].

Curcumin, the principal active element in turmeric, 
has been demonstrated in several studies to have anti-
inflammatory and antioxidant effects. However, it is chal-
lenging to link curcumin’s interactions with a variety of 
protein targets to its possible therapeutic benefits which 
might be important for treating COPD; (i) the enzyme 
CA12, which guards the body from free radical damage, 
may be activated by curcumin. Patients with COPD may 
have less lung tissue damage from damaging oxidative 
stress if CA12 activation is present, (ii) this compound 
may reduce COPD-related lung inflammation by con-
trolling pro-inflammatory cytokines and enhance lung 
function by modifying NF-κB activity, reducing exces-
sive inflammation. (iii) Histone deacetylases (HDACs), 
which affect chromatin structure and inflammation, were 

downregulated by curcumin. By inhibiting HDAC, corti-
costeroids may cure COPD longer, while curcumin may 
slow lung fibrosis. On the other hand, MicroRNAs regu-
late a wide range of gene networks, which has a signifi-
cant impact on COPD severity.

To understand the intricate relationship between 
genetic predisposition and COPD progression/treat-
ment, one must analyze the patient’s genetic profile. By 
doing so, one may better understand COPD develop-
ment processes and therapy effectiveness. This infor-
mation may help personalize treatment and improve 
patient outcomes by adjusting therapies to genetics. 
Numerous genetic investigations have found COPD 
susceptibility genes, such as α1-antitrypsin deficiency, 
smoking-induced CFTR failure, and newly discovered 
genes [131–133]. Genes linked to the pathophysiology of 
COPD have been linked to the condition’s possible asso-
ciation and provide unique insights into the development 
and severity of the disease [132]. Additionally, the pre-
vention and treatment of COPD depend on the identifi-
cation and prioritization of COPD candidate genes [134]. 
Immune-related gene research has also revealed putative 
COPD mechanisms and diagnostic biomarkers, resulting 
in a better knowledge of the disease’s management [135].

In the research, there were significant variations in the 
expression of genes linked to stress response, inflamma-
tion, and cell death [136]. Biological medicines targeting 
particular pathological characteristics and disease endo-
types may be used to treat COPD [137]. Studying the 
genetic overlap between COPD and asthma has discov-
ered SNPs linked to their development or therapy [138].

In addition, there has been debate over the role of indi-
vidual susceptibility or genetic variables in the develop-
ment of COPD, which shows that the disease may be 
affected by genetic polymorphisms and interactions 
between genes and the environment [139]. Furthermore, 
it has been shown that certain genetic variants are associ-
ated with the severity of the advancement of COPD ill-
ness. This finding provides evidence of the possible effect 
that genetic differences might have on the progression of 
the disease [140, 141].

Natural polyphenol curcumin from Curcuma may 
treat COPD due to its anti-inflammatory character-
istics. By suppressing NLRP3, a key component of the 
NLRP3 inflammasome, IL-1β release is decreased and 
inflammation is avoided [142]. Curcumin suppresses 
NF-κB signaling and COX-2, reducing lung remod-
eling and inflammation in mice with cigarette-induced 
COPD [76]. Moreover, curcumin regulates SIRT1 to 
modify autophagy and endoplasmic reticulum stress in 
rats, improving COPD [107]. Additionally, curcumin 
inhibits oxidative stress in human nasal fibroblasts via 
activating the Nrf2/HO-1 pathway by preventing its 
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oxidation [143]. Curcumin may be beneficial for respir-
atory diseases, according to some research. It may also 
lower blood levels of low-density lipoprotein, a sign of 
atherosclerosis, which may help with COPD symptoms 
[144].

In summary, curcumin targets COPD-related anti-
inflammatory and antioxidant protein factors. More clin-
ical studies are needed to prove curcumin’s effectiveness 
and understand how it activates its main pathways in 
COPD patients. Lung cell protein indicators affected by 
curcumin may help optimize future therapies.

Conclusions
Chronic obstructive pulmonary disease (COPD) imposes 
a growing health and economic burden globally. Finding 
better prevention and treatment options is important. 
Curcumin is a natural compound with anti-inflammatory 
and antioxidant properties that may have therapeutic 
potential for treating COPD. This study used a bioin-
formatics approach to analyze gene expression data and 
identify genes and pathways affected by curcumin treat-
ment in COPD model cell lines. Several differentially 
expressed genes and pathways were identified previously 
implicated in COPD pathogenesis or shown to be modu-
lated by curcumin. Protein–protein interaction network 
analysis revealed connections between the identified 
genes and highlighted some hub genes that may be key 
targets of curcumin. Literature mining provided evidence 
to support the roles of some of the identified genes and 
pathways in COPD and as targets of curcumin. Molecu-
lar docking analysis indicated potential binding inter-
actions between curcumin and some protein targets 
involved in inflammation and oxidative stress pathways 
underlying COPD. Further clinical research is needed to 
confirm curcumin’s therapeutic efficacy and mechanisms 
in COPD patients. This bioinformatics study concludes 
that curcumin modulates multiple genes and pathways 
involved in COPD pathogenesis, warranting further 
investigation of its therapeutic potential.
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