
Farooqui et al. 
Egyptian Journal of Medical Human Genetics           (2024) 25:23  
https://doi.org/10.1186/s43042-024-00491-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Egyptian Journal of Medical
Human Genetics

System biology approach to delineate 
expressional difference in the blood 
mononuclear cells between healthy and Turner 
syndrome individuals
Anam Farooqui1, Naaila Tamkeen2, Safia Tazyeen1, Sher Ali3 and Romana Ishrat1* 

Abstract 

Background  Turner syndrome (TS) is a rare disorder associated either with complete or partial loss of one X chro-
mosome in women. The information on the genotype–phenotype relationship in TS is inadequate. Comparing 
the healthy and Turner syndrome patients may help elucidate the mechanisms involved in TS pathophysiology. Gene 
expression differences between healthy and individuals with Turner syndrome were characterized using the systems-
biology approach of weighted gene coexpression network analysis (WGCNA) on 182 microarray peripheral mononu-
clear blood samples (PBMC).

Results  The coexpression networks of healthy and TS had scale-free topology that ensures network robustness. 
In the process, five modules were preserved between healthy and TS, which carry several genes common in each 
module. Two of them, SMCHD1 and PGK1, have already been reported to be involved in TS. Previously reported 
genes of TS, specifically, PTPN22, RPS4X, CSF2RA, and TIMP1, were missing in their respective modules. Dysfunc-
tion, differential expression, or absence of these genes could lead to a progressive disruption of molecular pathways 
leading to the pathophysiology of TS. Indeed, we observed a significant difference in the functions of these modules 
when compared within and across the healthy and TS samples. We identified four clusters in the PPI network con-
structed from the top 15 KME enriched in significant functions.

Conclusion  Overall, our work highlights the potential molecular functions, pathways, and molecular targets of TS 
that can be exploited therapeutically in the human healthcare system.
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Background
This era of genomic technologies provides an immense 
wealth of molecular information offering a remarkable 
opportunity for new target discovery [1]. The microarray 

gene expression data provides an understanding of the 
underlying system-level view of the disconcerted net-
works of the disease cells. This, in turn, allows recogni-
tion of the potentially responsible key genes or pathways 
that can be targeted therapeutically [2]. However, the 
identification of key molecular targets remains a chal-
lenge for syndromes whose pathophysiology is mainly 
due to global genomic imbalance rather than defect in 
a single gene. Turner syndrome (TS) is a rare disorder 
associated either with complete or partial loss of one X 
chromosome in women. Often the women with TS have 
mosaic karyotypes [3]. Comorbidities associated with 
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TS include short stature, absent or incomplete central 
puberty, ovarian dysgenesis, infertility, congenital mal-
formations of the heart, endocrine disorders such as 
type 1 and type 2 diabetes mellitus, osteoporosis, recur-
rent miscarriages, and autoimmune disorders [4]. A 
multidisciplinary approach to care is required because 
Turner syndrome can affect multiple organs at any stage 
of life [5].

Previously, we demonstrated that the TS networks, 
constructed from manually curated genes from lit-
erature searches and microarray gene expression data, 
carry scale-free hierarchical fractal attributes [6, 7]. This 
organization showed that the TS networks were dynamic 
and heterogeneous, suggesting this to be a compact and 
self-organized and had efficient information processing 
potential. We identified few key regulators and essential 
genes (interologs) from these TS networks that we envis-
age having potential as therapeutic targets.

Weighted gene coexpression network analysis 
(WGCNA) is another powerful approach that lets us 
identify the higher-order relationships among the genes 
built on their coexpression relationships, demarcat-
ing highly similar coexpressed genes into modules, and 
allowing a robust view of transcriptome organization [8]. 
Exploring TS through WGCNA may explain a whole new 
aspect of this syndrome, and this may shed light on the 
physiology and gene network perturbations that occur in 
TS.

Our present work highlights the potential molecu-
lar functions, pathways, and molecular targets when 
genomic data from TS and healthy women are compared 
with each other and analyzed at the level of gene coex-
pression modules. Integrating this type of data, in which 
a comparative analysis of modules of healthy and TS 

samples can be studied in response to relevant molecu-
lar perturbations, may further facilitate the identification 
and validation of novel molecular targets.

Methods
Data set acquisition
The raw gene expression data were downloaded from the 
GEO data repository (9) (http://​www.​ncbi.​nlm. nih.gov/
geo/). As we aimed to compile a wide set of comparable 
data, we collected as many relevant data sets as we could 
find. We then filtered out all barring a core collection of 
data sets that were similar enough to be used for bioin-
formatics comparison. We considered four inclusion cri-
teria. First, we considered only those data sets that were 
run on the Affymetrix platform HG-U133 Plus 2. Second, 
we included only those samples in each data set that were 
healthy (control) from human peripheral blood mononu-
clear Cells (PBMC). Third, only female samples were con-
sidered. And fourth, we made the correlations between 
genes more comparable across the studies by omitting 
all the data sets with fewer than five samples. Qualifying 
these inclusion criteria, a total of 12 data sets were con-
sidered for further analysis (Table  1). These expression 
data were combined, and prior to the analysis, batch cor-
rected. The genes detected by multiple probes were rep-
resented by their mean value. These expression data were 
then subjected to WGCNA analysis.

Data preprocessing
The datasets that we collected individually had a small 
sample size. Performing the statistical analysis individu-
ally on each series may not give robust results [19]. Thus, 
we performed a combined analysis of the collected gene 
expression data from different series (Table 1). However, 

Table 1  List of microarray series used in the study

S.n Series Platform Sample types Total number of 
samples

Samples used in 
the study

References

1 GSE90763 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 45 8 [9]

2 GSE46687 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 36 10 [4]

3 GSE26554 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 91 15 [10]

4 GSE34205 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 101 7 [11]

5 GSE22255 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 40 10 [12]

6 GSE21942 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 29 15 [13]

7 GSE17114 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 29 7 [12]

8 GSE19314 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 66 15 [14]

9 GSE27567 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 162 31 [15]

10 GSE22356 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 38 10 [16]

11 GSE13501 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 195 34 [17]

12 GSE42057 GPL570 [HG-U133_Plus_2] Peripheral blood mononuclear cell 136 20 [18]

Total number of Samples = 182

http://www.ncbi.nlm
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combining these datasets can lead to batch effects. So, 
we removed the batch effects between these datasets 
through the Empirical Bayes method (ComBat) [20] using 
the GeneSpring Software 14.9.1 (Agilent Technologies, 
Inc., Santa Clara, CA, USA). This algorithm adjusts the 
batch effect in microarray expression data. We assumed 
that the measured expression value of gene i in sample j 
of batch g can be expressed in a general form as follows:

Then, to remove the batch effect, we standardize it:

Here, xi is the average value of the expression value 
from gene i in all the samples; σ xi is the standard devia-
tion for xi of the expression value from gene i in all the 
samples.

Coexpression network construction: a system 
biology approach
Analyzing the coexpression patterns of the genes can 
provide an understanding of the underlying cellular pro-
cesses because the coordinated coexpression of the genes 
encodes interacting proteins [21]. Therefore, we used the 
collected data sets (Table  1) to construct the coexpres-
sion network following the protocols of WGCNA [8, 
22] to create a coexpression network of healthy humans 
(females) from PBMC samples. Separately, we again con-
structed a coexpression network of Turner syndrome 
patients from PBMC samples (GSE46687). We did this 
to get an overview of the comparison between healthy 
and TS patients from the perspective of a coexpression 
network.

To construct the gene coexpression network and iden-
tify its modules, we used the WGCNA (weighted gene 
coexpression network analysis) implemented in the R 
software package (http://​www.r-​proje​ct.​org/). We used 
the Pearson correlation coefficient as a coexpression 
measure for cluster analysis. In these networks, a node 
represents the gene expression profile of a given gene. 
Thus, nodes are connected only if they have a significant 
pairwise expression profile cutoff across the samples. 
In our study, for all the pairwise comparisons of gene 
expression, the absolute value of the Pearson correlation 
coefficient was calculated across all microarray samples, 
and the appropriate soft threshold power was chosen. 
Then, the Pearson correlation matrix was transformed 
into an adjacency matrix. An adjacency matrix is a matrix 
of connection strengths through a power function. Thus, 
the connection strength (adjacency)  aij  between gene 
expressions xi and xj is defined as:

(1)xij = x
′

ij + bxij + εxij

(2)x̂ij =
xij − xij

σ xi

As known, in general, all types of biological networks 
(gene expression networks) have been found to exhibit 
an approximate scale-free topology (2–6). Scale-free 
networks follow the power law and decay as P(k) ~ k−g, 
where g is some exponent. Depending on the graph, we 
used the scale-free topology criterion (β). It is expected 
that the weighted gene coexpression network has an 
advantage over the unweighted coexpression network 
as the former one is more robust and the continuous 
nature of the gene coexpression information is pre-
served in it. For weighted gene coexpression network, 
whole network connectivity  ki  of the  ith gene expres-
sion profile xi  is the sum of the connection strengths 
with all other genes in the network, i.e.,

where N refers to the set of network genes.
Then, modules were identified following the dynamic 

tree cut method. The modules are the groups of genes 
with high topological overlap (1, 7). Through this 
method, the spurious or isolated connections were 
excluded during module formation.

The topological overlap for weighted networks (7) is 
given by,

where an adjacency matrix is represented by,

We used the topological overlap dissimilarity meas-
ure (1—topological overlap matrix (TOM)) in an 
average linkage hierarchical clustering to define the 
modules as branches of the resulting dendrogram. The 
genes of the modules were then assigned the eigenval-
ues based on which the significant module eigengenes 
(ME) were identified in each module.

Functional and pathway enrichment
The functional enrichment analysis was conducted 
on the genes in the identified modules. GO biologi-
cal process term and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway analyses [23] were con-
ducted using DAVID online server [24]. Functional 
enrichment analysis was based on the cutoff value of 
Benjamini P-value < 0.05.

(3)aij = |cor(xi, xj)|
β

(4)ki =
j∈N,j�=i

|cor(xi, xj)|
β

(5)tij =

∑

u aiuauj + aij

min
(
∑

u aiu,
∑

u aju
)

+ 1− aij

(6)A =
[

aij
]

, 0 ≤ aij ≤ 1

http://www.r-project.org/
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PPI network of TS and MODULE identification
To further explore the significant genes of each mod-
ule in terms of protein–protein interactions, the top 15 
KME genes in each module were extracted. These genes 
were then entered into STRING database [25] to form 
the PPI network. The Cytoscape plug-in molecular com-
plex detection (MCODE) [26, 27] was used to analyze the 
most notable clustering module. Parameters for MCODE 
were set with Degree Cutoff as 2, Node Score Cutoff as 
0.2, K-Core as 2, and Max. Depth from Seed as 100. Thus, 
system biology approach may be exploited in human 
health care system including complex polygenic diseases.

Results
The workflow of the work presented here is illustrated in 
Fig. 1.

Data set acquisition and pre‑processing
By filtering the datasets with our inclusion criteria (men-
tioned in the methodology), we collected a total of 12 
microarray series which gave us 182 healthy PBMC 
female samples (see Table 1).

Module formation and characterization
Coexpression networks were generated using the 
weighted gene coexpression network (WGCNA) pack-
age, in which all the coexpressed genes were connected 
with varying correlation strengths. This was accom-
plished using soft thresholding, thereby preserving the 
continuous nature of the data set and eliminating the 
need to set an arbitrary correlation score cutoff. The soft 
threshold power β is a value used to power the correla-
tion of the genes to that threshold. It is assumed that rais-
ing the correlation to a power (β) will reduce the noise 
of the correlations in the adjacency matrix. To pick up 
one threshold, we used the pickSoftThreshold function, 
which calculates if the network resembles a scale-free 
graph, for each power. The lowest power that resulted in 
a scale-free topology is the one we used. In a scale-free 
network, small-degree nodes are the most abundant, but 

the frequency of high-degree nodes decreases relatively 
slowly. Thus, nodes that have degrees much higher than 
average, so-called hubs, exist. Because of the heterogene-
ity of scale-free networks, random node disruptions do 
not lead to a major loss of connectivity, but the loss of 
the hubs causes the breakdown of the network into iso-
lated clusters [28]. The biological networks are consid-
ered scale-free networks. This is the reason, in case of 
WGCNA, we selected that β value, which gives scale-free 
topology. The genes that had highly similar expression 
levels, clustered together [29]. Such highly correlated 
genes may shed light on the shared biological processes 
or shared regulatory mechanisms that could be targeted. 
Therefore, we performed combined global gene expres-
sion profiling on 182 patient samples from PBMCs Set 
1, n = 182 (combined 12 datasets in Table  1) and Set 2, 
n = 26 (only Turner syndrome samples in GSE46687)) 
and separately constructed a weighted gene coexpression 
network of Set 1 and Set 2 based on pairwise Pearson 
correlations between the expression profiles for the iden-
tification of gene modules. A gene module is a group of 
highly coexpressed genes. These modules were detected 
through unsupervised hierarchical clustering [30]. In a 
coexpression network, for fulfilling the property of scale-
free topology, the parameter β is considered very crucial. 
Most likely, the biological networks which are based on 
gene expression data are scale-free [31]. Therefore, β = 6 
(for Set 1) and β = 4 (for Set 2) were considered to obtain 
scale-free topology by the fit index greater than 0.87 and 
0.84, respectively. Figures 2 and 3 show the result of sev-
eral powers for finding a network with scale-free topol-
ogy properties of Sets 1 and 2, respectively. We found 
that the coexpression networks had a scale-free topology 
(Figs.  2C and 3C), which is believed to ensure network 
robustness and thus resisting random node attacks [32].

After identifying modules of coexpressed genes, 
each module in effect becomes a new network, and a 
new measure of connectivity (intramodular connectiv-
ity, or kin) is defined as the sum of a gene’s connection 
strengths with all other genes in its module. Intramodular 

A) TRANSCRIPTOMICS DATA B) COEXPRESSION NETWORK C) COMPARATIVE STUDY D) FUNCTIONAL AND PATHWAY 
ENRICHMENT

E) PROTEIN-PROTEIN INTERACTION
NETWORK

F) FUNCTIONAL AND PATHWAY 
ENRICHMENT

GEO Data Repository

12 GEO Datasets
 (182 samples)

2. Homo sapiens
3. Healthy (control) from PBMC
4. Only female samples considered 
5. Datasets < 5 samples were omitted 
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connectivity measures how connected, or coexpressed, 
a given gene is with respect to the genes of a particular 
module. The module network dendrogram, constructed 
by clustering ME distances, showed that modules with 
high Kin were positioned at the tip of the branches since 
they exhibit the highest interconnectedness with the rest 
of the module. After highly similar modules were merged, 
eleven gene expression modules were determined in 

Set 1 (Fig.  4A), and five gene expression modules were 
determined in Set 2 (Fig.  4B). The colors are assigned 
based on module size. Turquoise (others refer to it as 
cyan) colors the largest module, next comes blue, next 
brown, next yellow, then green, and so on. A gray color 
module is reserved for unassigned genes. Eigengenes, 
the first principal component of a cluster, is thought to 
be a representative of a cluster’s expression profile [22]. 
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To get a sense of how related the modules are, one can 
summarize each module by its first eigengene (referred 
to as principal components), and then correlate these 
module eigengenes with each other based on KME value 
(Fig. 4C and D). The module eigengene-based intramod-
ular connectivity measure kME roughly approximates the 
standard intramodular connectivity kIN. This measure 
is determined by correlating the expression profile of a 

gene i with the module eigengene of its resident module: 
kMEi =|cor(x i, ME)|. This gives top 15 most connected 
genes of each module.

The multiple dimensional scaling (MDS) plot provides 
an alternate visualization of the module structure. Fig-
ure  5 represents multidimensional scaling plots (MDS) 
of coexpressed modules in Set 1 and Set 2. Modules tend 
to form separate ‘fingers’ in this plot. The color denotes 
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genes of that module. Intramodular hub genes are located 
at the finger tips. The MDS plots are shown in Fig. 5. All 
the plots are color-coded according to the modules con-
cerning respective Sets 1 or 2. The points with the same 
color are almost always clustered together which means 
that the relative position of the points is well-preserved. 
However, the spatial distributions of the points vary to a 
large extent when we compare MDS plots of healthy vs 
TS. This is because the expression pattern of genes is dis-
rupted due to TS.

The detailed list of genes of each module in each set is 
listed in electronic supplementary material, (Additional 
file 1: Table S1. and S2).

Comparison of healthy and TS patients modules 
provide insights into TS
A comparison of coexpression networks between healthy 
and TS human samples could provide valuable insight 
into the syndrome. We found that five modules were 
common between Set 1 (Healthy) and Set 2 (Turner Syn-
drome). The genes that were common between these 
modules are listed in Table  2. It was identified that the 
genes highlighted in bold were differentially expressed in 
TS. Two of them, namely SMCHD1 [33] and PGK1 [34], 
have already been reported to be involved in TS. Thus, 
the functions performed by these genes (highlighted in 
bold) in their respective modules in healthy individu-
als are perturbed in TS patients due to their differential 

expression. This may contribute to the pathophysiology 
of TS. Therefore, as studied previously, it can also be con-
cluded that the TS phenotype is caused due to the addi-
tive effect of genes from different loci and due to global 
genomic imbalance [7].

Earlier, we reported seed genes, few key regulatory 
genes, and signature genes involved in Turner syndrome 
from manually curated genes of TS from the literature 
[6] and microarray analysis [7] employing the network 
approach. Table  3 contains the list of those seed genes 
that are present in the gene expression modules of the 
healthy and TS coexpression network. We found that 
many of these genes were present in the different mod-
ules of Set 1 and Set 2. Since these reported genes are 
expected to play an important role in the pathophysiol-
ogy of TS, we can see that many important genes (pre-
sent in the modules of healthy samples coexpression 
network) are missing in their respective modules of TS 
samples (Table  3). This shows that due to the TS state, 
the important genes start to function in a different way 
resulting in disturbed gene functioning. The genes that 
coexpressed to share some biological process or regula-
tory mechanisms in healthy females changed their pat-
tern of functioning, thus, causing the perturbation in the 
normal functioning of an individual with TS.

Specifically, four of the genes, namely PTPN22 [35], 
RPS4X [36, 37], CSF2RA [38, 39], and TIMP1 [40, 41] 
that we identified in our previous studies [6] as the key 
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regulatory genes of the TS network were found to be 
missing in their respective modules of TS. Thus, dys-
function, differential expression, or absence of these 
genes could then lead to a progressive disruption of 
the molecular pathways in a predictable manner lead-
ing to the pathophysiology of TS. This also suggests a 
high level of genetical, organizational and expressional 
heterogeneity among the TS patients.

Comparison of functional and pathway enrichment 
of different modules of healthy vs Turner 
Syndrome
To compare the potential biological functions of critical 
modules between healthy and TS samples, we performed 
the functional enrichment analysis of the GO and KEGG 
categories. There was a significant difference in the func-
tions that different modules were enriched in when 
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Fig. 5  A multidimensional scaling plots (MDS) of coexpressed modules in Set 1 and Set 2. Modules tend to form separate ‘fingers’ in this plot. The 
color denotes genes of that module. Intramodular hub genes are located at the finger tips. A An MDS plot displaying expression data of genes 
in different modules in Set 1. B An MDS plot displaying expression data of genes in different modules in Set 2



Page 9 of 19Farooqui et al. Egyptian Journal of Medical Human Genetics           (2024) 25:23 	

compared within and across the healthy and TS samples 
(Table  4). However, few biological functions were con-
sistent within and across the healthy and TS samples.

We identified five modules common between healthy 
and TS coexpression networks. In the turquoise mod-
ule of both the healthy and TS coexpression network, 
the common molecular functions identified were pro-
tein binding, RNA binding, and poly(A) RNA binding. 
The common enriched cellular components were found 
to be the cytosol, extracellular exosome, and cytoplasm 
and none of the biological functions were found to be 
common in turquoise module. In the blue module of 
both, the healthy and TS coexpression network, the com-
mon molecular function identified was protein binding, 
while none of the biological function and cellular com-
ponent was found to be common. In the green module, 

extracellular exosome while in the yellow module, cyto-
sol was found to be the common enriched cellular com-
ponent of both the healthy and TS coexpression network. 
None of the functions were common in the brown mod-
ule of both the healthy and TS coexpression network. 
None of the KEGG pathways was found to be common 
in the common modules of healthy and TS coexpression 
networks.

Though there were few enriched functions and cellular 
components that were common, there was a significant 
difference in the enriched functions and pathways among 
these five common modules. The functional enrichment 
and KEGG pathway of different modules of healthy and 
TS coexpression networks are listed in Tables 4 and 5.

It can be explained that the similar enriched func-
tions though similar but the set of genes that perform 
these functions are slightly different (in each module) 
in TS samples as compared to healthy ones. This means 
that the functions being similar are somehow being per-
formed by a different set of genes, and due to differential 
gene expression in the TS state, these functions may not 
be performed in synchronized and a proper way result-
ing in the pathophysiology of Turner syndrome. And 
obviously, there are many enriched molecular functions, 
biological functions, cellular components, and KEGG 
pathways that are significantly different among the five 
common modules between healthy and TS coexpression 
networks.

While many genes (Table  2) are common between 
common modules of the healthy and TS patients, most 
of the genes are different in these modules between 
healthy and TS. This clearly makes sense that in a 

Table 2  Common genes between the common modules of Set 
1 (Healthy) and Set 2 (TS)

Genes highlighted in bold are differentially expressed in TS based on the analysis by 
[7]. The genes that are bold underlined have reports that they are associated with TS

S.n Common module Common Gene

1 Turquoise GDI2, RPS5, UBB, RPS27, 
RPLP0, LAPTM5, BTF3, RPL22, 
DLAT, SMCHD1, GLYR1, 
CDC42SE2

2 Blue –

3 Brown RHOA, PGK1, SDHC, ARPC4
4 Yellow RUNX1-IT1, ZBTB20, USP34
5 Green NAGA, AGTRAP, ATP6V0B, 

GRN, BLVRB, GNG5, SLC43A3, 
SLC15A3, EMILIN2, GLIPR2

Table 3  List of previously reported seed genes present in the gene expression modules of the healthy and TS coexpression network

Genes highlighted in bold are differentially expressed in TS based on the analysis by [7]. The genes that are underlined have reports that they are associated with TS [7]

S.n Modules of healthy Previously reported Seed genes/ Key 
genes present in Modules of Healthy

Modules of TS Previously reported Seed genes/ Key genes present in 
Modules of TS

1 Turquoise TOB2, RPL31, PTPN22, RPS4X Turquoise YME1L1, UBE3B, TCAIM, SYNCRIP, STAT1, SAMD4B, PEX3, PCCB, 
PAPOLA, OCIAD1, NNT, N4BP2L1, MAPK1 FOXN3, DOT1L, CELF1, 
ATXN7L1

2 Blue TSPAN33, TPM1, THBS1, GUCY1A3, CXCL5 Blue SYNCRIP, SLC16A7, PPP6R2, POGK, OCIAD1, NPC1, KMT2A, DOT1L, 
DGKZ, BTBD7, ANKRD44

3 Brown PDLIM5, APLP2, CSF2RA Brown SLC16A7, MAST4, KRR1, KMT2A, GOPC, GGCX, FAHD2A, EML4, 
BOD1L1

4 Yellow – Yellow MAPK1, DCAF8, AKAP10

5 Green LGALS3, ALOX5, TIMP1 Green PCNX2, KMT2A, KIAA2026, APLP2

6 Black – – –

7 Red SLC16A7, MTF2, KRAS, KMT2A – –

8 Greenyellow POGK, KMT2A, HIPK1 – –

9 Magenta – – –

10 Pink OCIAD1 – –

11 Purple – – –
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healthy state, these common genes function in syn-
chronization and combination of the genes listed in 
electronic supplementary material, (Additional file  1: 
Table  S1). These genes get replaced by a new set of 
genes in the TS state (electronic supplementary mate-
rial, (Additional file  1: Table  S2)), and the complete 

functional and biological process is performed with a 
whole new set of genes. Many of these genes are differ-
entially expressed in TS. Due to this differential expres-
sion, the genes perform the biological and molecular 
functions in a perturbed way. This explains the mecha-
nism of Turner syndrome and pathophysiology.

Table 4  Comparative analysis of Functional Enrichment of coexpression modules of Healthy with Turner Syndrome

S.n Category Term Count Bemjamini P-Value

Healthy TS Healthy TS

TURQUOISE

1 GOTERM_MF GO:0005515 ~ protein 
binding

120 417 2.30E-06 4.03E-25

2 GOTERM_MF GO:0044822 ~ poly(A) RNA 
binding

88 110 2.11E-56 2.84E-22

3 GOTERM_MF GO:0003735 ~ structural 
constituent of ribosome

77 – 5.39E-100 –

4 GOTERM_MF GO:0003723 ~ RNA binding 49 46 6.77E-31 5.41E-06

5 GOTERM_MF GO:0098641 ~ cadherin 
binding involved in cell–cell 
adhesion

15 – 2.82E-05 –

6 GOTERM_CC GO:0005829 ~ cytosol 109 207 5.75E-38 3.88E-20

7 GOTERM_CC GO:0070062 ~ extracellular 
exosome

98 140 8.60E-35 1.66E-05

8 GOTERM_CC GO:0005737 ~ cytoplasm 92 225 7.94E-11 7.38E-05

9 GOTERM_CC GO:0016020 ~ membrane 85 – 5.21E-32 –

10 GOTERM_CC GO:0005634 ~ nucleus 78 260 9.81E-05 6.42E-11

11 GOTERM_BP GO:0006413 ~ translational 
initiation

81 – 1.06E-129 –

12 GOTERM_BP GO:0006412 ~ translation 79 – 1.99E-98 –

13 GOTERM_BP GO:0000184 ~ nuclear-
transcribed mRNA catabolic 
process, nonsense-medi-
ated decay

77 – 2.83E-127 –

14 GOTERM_BP GO:0006614 ~ SRP-depend-
ent co-translational protein 
targeting to membrane

76 – 1.32E-137 –

15 GOTERM_BP GO:0019083 ~ viral transcrip-
tion

75 – 1.73E-125 –

16 KEGG_PATHWAY​ hsa03010: Ribosome 77 – 1.00E-100 –

17 GOTERM_MF GO:0005524 ~ ATP binding – 73 – 0.043912

18 GOTERM_MF GO:0000166 ~ nucleotide 
binding

– 26 – 0.020279

19 GOTERM_BP GO:0015031 ~ protein 
transport

– 33 – 0.00205

20 GOTERM_BP GO:0000398 ~ mRNA splic-
ing, via spliceosome

– 32 – 7.47E-08

21 GOTERM_BP GO:0016032 ~ viral process – 27 – 0.003497

22 GOTERM_BP GO:0050852 ~ T cell receptor 
signaling pathway

– 25 – 2.87E-07

23 GOTERM_BP GO:0043161 ~ proteasome-
mediated ubiquitin-
dependent protein 
catabolic process

– 23 – 8.11E-04
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Table 4  (continued)

S.n Category Term Count Bemjamini P-Value

Healthy TS Healthy TS

24 GOTERM_CC GO:0005654 ~ nucleoplasm – 194 – 6.26E-24

25 KEGG_PATHWAY​ hsa03040: Spliceosome – 21 – 8.47E-05

BLUE

1 GOTERM_MF GO:0005515 ~ protein 
binding

103 251 0.008723 1.33E-08

2 GOTERM_MF GO:0046982 ~ protein heter-
odimerization activity

34 – 5.69E-18 –

3 GOTERM_MF GO:0098641 ~ cadherin 
binding involved in cell–cell 
adhesion

17 – 9.14E-07 –

4 GOTERM_MF GO:0042393 ~ histone 
binding

11 – 1.21E-05 –

5 GOTERM_MF GO:0003779 ~ actin binding 11 – 0.008723 –

6 GOTERM_CC GO:0070062 ~ extracellular 
exosome

66 – 8.95E-12 –

7 GOTERM_CC GO:0005886 ~ plasma 
membrane

56 – 0.017636 –

8 GOTERM_CC GO:0005576 ~ extracellular 
region

30 – 0.004611 –

9 GOTERM_CC GO:0005615 ~ extracellular 
space

27 – 0.003648 –

10 GOTERM_CC GO:0000786 ~ nucleosome 24 – 1.70E-24 –

11 GOTERM_BP GO:0007596 ~ blood coagu-
lation

20 – 1.45E-12 –

12 GOTERM_BP GO:0002576 ~ platelet 
degranulation

18 – 2.00E-14 –

13 GOTERM_BP GO:0098609 ~ cell–cell 
adhesion

16 – 1.97E-06 –

14 GOTERM_BP GO:0006334 ~ nucleosome 
assembly

15 – 6.74E-10 –

15 GOTERM_BP GO:0044267 ~ cellular pro-
tein metabolic process

11 – 8.50E-06 –

16 KEGG_PATHWAY​ hsa05202: Transcriptional 
misregulation in cancer

15 – 4.44E-06 –

17 KEGG_PATHWAY​ hsa04611: Platelet activation 9 – 0.018321 –

18 KEGG_PATHWAY​ hsa04270: Vascular smooth 
muscle contraction

8 – 0.038538 –

19 GOTERM_MF GO:0044822 ~ poly(A) RNA 
binding

– 63 – 3.71E-09

20 GOTERM_CC GO:0005634 ~ nucleus – 174 – 3.12E-08

21 GOTERM_CC GO:0005654 ~ nucleoplasm – 120 – 2.12E-12

22 GOTERM_CC GO:0005829 ~ cytosol – 118 – 4.45E-07

23 GOTERM_CC GO:0016020 ~ membrane – 76 – 0.001716

24 GOTERM_CC GO:0043234 ~ protein 
complex

– 21 – 0.039779

BROWN

1 GOTERM_CC GO:0070062 ~ extracellular 
exosome

34 – 1.94E-05 –

2 GOTERM_CC GO:0016020 ~ membrane 32 – 1.61E-06 –

3 GOTERM_CC GO:0005829 ~ cytosol 32 – 0.004395 –

4 GOTERM_CC GO:0005925 ~ focal adhe-
sion

10 – 0.004824 –
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Table 4  (continued)

S.n Category Term Count Bemjamini P-Value

Healthy TS Healthy TS

5 GOTERM_MF GO:0005515 ~ protein 
binding

– 145 – 0.02457

6 GOTERM_MF GO:0044822 ~ poly(A) RNA 
binding

– 49 – 1.99E-10

7 GOTERM_MF GO:0003676 ~ nucleic acid 
binding

– 31 – 0.003619

8 GOTERM_MF GO:0008270 ~ zinc ion 
binding

– 31 – 0.029941

9 GOTERM_MF GO:0003682 ~ chromatin 
binding

– 15 – 0.039254

10 GOTERM_BP GO:0006351 ~ transcription, 
DNA-templated

– 48 – 0.010354

11 GOTERM_BP GO:0000398 ~ mRNA splic-
ing, via spliceosome

– 13 – 0.010354

12 GOTERM_BP GO:0008380 ~ RNA splicing – 12 – 0.008027

13 GOTERM_BP GO:0006306 ~ DNA meth-
ylation

– 6 – 0.008027

14 GOTERM_CC GO:0005634 ~ nucleus – 101 – 0.002754

15 GOTERM_CC GO:0005654 ~ nucleoplasm – 83 – 2.07E-11

16 GOTERM_CC GO:0005694 ~ chromosome – 8 – 0.036564

GREEN

1 GOTERM_MF GO:0016176 ~ superoxide-
generating NADPH oxidase 
activator activity

4 – 8.84E-04 –

2 GOTERM_CC GO:0070062 ~ extracellular 
exosome

30 – 2.15E-06 –

3 GOTERM_CC GO:0005576 ~ extracellular 
region

15 – 0.04831 –

4 GOTERM_CC GO:0043020 ~ NADPH 
oxidase complex

4 – 4.89E-04 –

5 KEGG_PATHWAY​ hsa04380: Osteoclast dif-
ferentiation

10 – 7.53E-06 –

6 GOTERM_MF GO:0005515 ~ protein 
binding

– 94 – 0.005757

7 GOTERM_MF GO:0004872 ~ receptor 
activity

– 9 – 0.024421

8 GOTERM_MF GO:0031996 ~ thioesterase 
binding

– 4 – 0.018449

9 GOTERM_MF GO:0031997 ~ N-terminal 
myristoylation domain 
binding

– 3 – 0.018449

10 GOTERM_BP GO:0006954 ~ inflammatory 
response

– 12 – 0.03351

11 GOTERM_BP GO:0045087 ~ innate 
immune response

– 12 – 0.039301

12 GOTERM_BP GO:0002576 ~ platelet 
degranulation

– 8 – 0.016525

13 GOTERM_BP GO:0045454 ~ cell redox 
homeostasis

– 6 – 0.037236

14 GOTERM_BP GO:0000302 ~ response 
to reactive oxygen species

– 5 – 0.03351

15 GOTERM_CC GO:0070062 ~ extracellular 
exosome

– 63 – 8.56E-13

16 GOTERM_CC GO:0016020 ~ membrane – 38 – 4.20E-04
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Table 4  (continued)

S.n Category Term Count Bemjamini P-Value

Healthy TS Healthy TS

17 GOTERM_CC GO:0005789 ~ endoplasmic 
reticulum membrane

– 21 – 8.12E-04

18 GOTERM_CC GO:0005794 ~ Golgi appa-
ratus

– 18 – 0.011764

19 GOTERM_CC GO:0043231 ~ intracel-
lular membrane-bounded 
organelle

– 15 – 0.005962

20 KEGG_PATHWAY​ hsa04142: Lysosome – 11 – 7.95E-05

21 KEGG_PATHWAY​ hsa04145: Phagosome – 11 – 1.98E-04

YELLOW

1 GOTERM_CC GO:0005829 ~ cytosol 9 63 0.038311 0.002252

2 GOTERM_MF GO:0005515 ~ protein 
binding

– 146 – 1.14E-05

3 GOTERM_BP GO:0016485 ~ protein 
processing

– 9 – 0.003794

4 GOTERM_CC GO:0070062 ~ extracellular 
exosome

– 68 – 8.00E-07

5 GOTERM_CC GO:0016020 ~ membrane – 55 – 9.69E-06

6 GOTERM_CC GO:0005739 ~ mitochon-
drion

– 35 – 6.58E-04

7 GOTERM_CC GO:0005794 ~ Golgi appa-
ratus

– 28 – 3.24E-04

8 KEGG_PATHWAY​ hsa00190: Oxidative phos-
phorylation

– 12 – 3.53E-04

9 KEGG_PATHWAY​ hsa04932: Non-alcoholic 
fatty liver disease (NAFLD)

– 11 – 0.00346

BLACK

1 GOTERM_MF GO:0005515 ~ protein 
binding

53 – 2.85E-06 –

2 GOTERM_MF GO:0044822 ~ poly(A) RNA 
binding

17 – 1.29E-04 –

3 GOTERM_CC GO:0005737 ~ cytoplasm 30 – 0.026891 –

4 GOTERM_CC GO:0070062 ~ extracellular 
exosome

25 – 7.16E–04 –

5 GOTERM_CC GO:0005654 ~ nucleoplasm 22 – 0.006953 –

6 GOTERM_CC GO:0016020 ~ membrane 18 – 0.017508 –

7 GOTERM_CC GO:0005925 ~ focal adhe-
sion

8 – 0.011224 –

GREENYELLOW

1 GOTERM_MF GO:0003677 ~ DNA binding 12 – 0.038074 –

2 GOTERM_MF GO:0042800 ~ histone 
methyltransferase activity 
(H3-K4 specific)

3 – 0.038074 –

3 GOTERM_CC GO:0005634 ~ nucleus 22 – 0.041888 –

4 GOTERM_CC GO:0005654 ~ nucleoplasm 18 – 0.001011 –

5 GOTERM_CC GO:0016607 ~ nuclear speck 7 – 3.66E-04 –

RED

1 GOTERM_MF GO:0005515 ~ protein 
binding

51 – 0.005499 –

2 GOTERM_MF GO:0044822 ~ poly(A) RNA 
binding

20 – 6.04E-06 –

3 GOTERM_MF GO:0008270 ~ zinc ion 
binding

15 – 0.008017 –
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Table 4  (continued)

S.n Category Term Count Bemjamini P-Value

Healthy TS Healthy TS

4 GOTERM_MF GO:0001046 ~ core pro-
moter sequence-specific 
DNA binding

4 – 0.027245 –

5 GOTERM_CC GO:0005634 ~ nucleus 42 – 3.70E-06 –

6 GOTERM_CC GO:0005654 ~ nucleoplasm 38 – 5.63E-12 –

7 GOTERM_CC GO:0005737 ~ cytoplasm 33 – 0.022071 –

8 GOTERM_CC GO:0016607 ~ nuclear speck 10 – 3.13E-06 –

9 GOTERM_BP GO:0016569 ~ covalent 
chromatin modification

7 – 0.00304 –

MAGENTA

1 GOTERM_MF GO:0030246 ~ carbohydrate 
binding

7 – 9.31E-04 –

2 GOTERM_MF GO:0004872 ~ receptor 
activity

6 – 0.011029 –

3 GOTERM_CC GO:0070062 ~ extracellular 
exosome

19 – 0.003651 –

4 GOTERM_CC GO:0043202 ~ lysosomal 
lumen

5 – 0.003651 –

5 KEGG_PATHWAY​ hsa04145: Phagosome 7 – 8.56E-04 –

6 KEGG_PATHWAY​ hsa04142: Lysosome 6 – 0.002174 –

PURPLE

1 GOTERM_CC GO:0005925 ~ focal adhe-
sion

9 – 8.64E-04 –

PINK

1 GOTERM_MF – – – – –

2 GOTERM_BP – – – – –

3 KEGG_PATHWAY​ – – – – –

Table 5  Top 15 KME in each module of TS samples

S.n MODULES

Turquoise Blue Brown Yellow Green

1 GOLGA7 NDUFS8 ANKRD36B PCMT1 MS4A6A

2 XRCC5 OCIAD1 RP9 TMED10 PSAP

3 MAGT1 SRRM2 NUTM2B-AS1 COPZ1 MS4A6A

4 TMEM230 NLN CCAR1 SH3GLB1 MNDA

5 CD164 PRR11 NEK1 SDHC CAPNS1

6 FYTTD1 FBXW12 GON4L VAMP3 MS4A6A

7 ATG5 FGFR1 PNISR C4orf3 APLP2

8 UBE2D3 PDE4C KMT2A MAPRE1 NAGA​

9 CAPRIN1 EWSR1 PRRC2C MAPK1 RAC1

10 PCNP MGC12488 ATRX ARF1 APLP2

11 WTAP PRR11 JPX CHMP1B TNFSF13B

12 PTPN11 POLR1B RNPC3 TMEM59 BLVRB

13 SMAD2 UBXN2A EIF5B DOCK2 MEGF9

14 UBE2G1 ATP8B1 EIF5B RPN2 NAGA​

15 PCBP1 MALAT1 PPIG ATP6AP2 TM9SF2
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PPI network of TS and identification of its clusters
The eigengenes are the principal component of a module, 
and they can be a representative of a cluster’s expression 
profile. To understand how these modules interact with 
one another, we selected the top 15 KME genes of each 
module. These KME genes of each module are listed in 
Table 5. Being the eigengenes of each module, the genes 
listed in Table  5 may have a potential role in TS. These 
genes were then entered into the STRING database to 
construct the protein–protein interaction (PPI) network. 
The confidence score was set at 0.7, and the genes in the 
first shell was set at 100. The main network constructed 
had a clustering coefficient of 0.750 with 129 nodes and 

990 edges. In total, we considered the top four sub-net-
works (modules 1, 2, 3, and 4) with scores 34, 12.5, 7, and 
7, respectively, that were detected by MCODE (Fig.  6). 
Each cluster had the highest scoring node called a seed. It 
is the node from which the cluster was derived. The genes 
NDUFV1, EFTUD2, POLR1C, and STT3A are the high-
est scoring node, i.e., seed genes of clusters 1, 2, 3, and 
4, respectively. They act as the eigengene of those clus-
ter. The list of genes of each cluster is listed in electronic 
supplementary S3. The functional and pathway enrich-
ment of modules of the PPI network of TS was ana-
lyzed, and it was found that cluster 1 is mainly enriched 
in the processes and reactions related to mitochondrial 
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Fig. 6  A Protein–protein interaction network of top 15 KME genes of each module of TS coexpression network. B-E Modules identified by MCODE 
where B is cluster 1, C is cluster 2, D is cluster 3, and E is cluster 4. The highest scoring node in the cluster is called a seed. It is the node from which 
the cluster was derived and is represented by a square shape (see square yellow in B, C, D and E)
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phosphorylation, cluster 2 is mainly enriched in golgi-
mediated protein transport and reactions related to it, 
cluster 3 is mainly enriched in processes related to tran-
scription, and cluster 4 is mainly enriched in post-trans-
lational modification processes like glycosylation. The 
list of different molecular functions, biological functions, 
cellular components, and KEGG pathways in which these 
four clusters are enriched is listed in the electronic sup-
plementary material (Additional file 1: Table S4).

Discussion
Turner syndrome (TS) is a rare disorder that is associated 
with either complete or partial loss of one X chromosome 
in women, with an approximate occurrence of 1 in 2500 
females [42]. Surprisingly, our knowledge of genotype–
phenotype relationships in TS is rather limited, with very 
few specific candidate genes linked to its clinical features. 
The genotype–phenotype relationship in TS refers to the 
relationship between karyotype and phenotypic features 
of TS. TS is defined by the presence of an abnormal X 
chromosome in the form of monosomy, mosaicism of a 
45X cell line with another cell line, which could be 46XX, 
46XY, or an abnormal sex chromosome rearrangement 
[43, 44]. In TS, there is a link between the exact cytoge-
netic appearance and the phenotype. Pure 45, X mono-
somy is the most common karyotype and is associated 
with the most abnormal phenotype. Although the clinical 
features of TS are well-defined, the severity of the pheno-
type in TS individuals varies according to the underlying 
chromosomal constitution [44]. To better characterize 
gene expression differences between healthy and TS, we 
took a systems-biology approach by using weighted gene 
coexpression network analysis on 182 microarray periph-
eral mononuclear blood samples (PBMC). By comparing 
the modules in both healthy and TS, we aim at finding 
more relations between both healthy and TS PBMC sam-
ples including both the similarities and the differences.

The coexpression networks of healthy and TS samples 
had a scale-free topology that ensured network robust-
ness which means they can resist random node attacks. 
Five modules were preserved between healthy and 
Turner Syndrome that carry many genes that were com-
mon (listed in Table 2) in each module. This means that 
these five modules are TS specific and are related to TS 
progression, which implicates many genes that were pre-
viously known and many that were unknown that func-
tion in TS. We found that many genes were common 
between the modules of TS and healthy coexpressed 
networks. Many of these common genes were differen-
tially expressed in TS modules. This signifies that most of 
these genes being differentially expressed fail to perform 
the molecular functions of their respective modules. Two 
of these genes, namely SMCHD1 and PGK1 that were 

common between turquoise and brown modules, respec-
tively, of healthy and TS have already been reported to 
be involved in TS. SMCHD1 (OMIM 614982) plays a 
role in X chromosome inactivation [45]. It was reported 
earlier in a 13-year-old girl with Turner syndrome-like 
clinical features in association with intellectual disability, 
facial dysmorphism, and the psychomotor developmen-
tal delay had chromosome deletion syndromes and also 
had SMCHD1 polymorphism [33]. This SMCHD1 may 
correlate with TS. In another case study of a 28-year-
old Turner syndrome patient, it was found through the 
DNA studies that the locus controlling X-inactivation is 
proximal to PGK1 suggesting the role of PGK1, as well, 
in TS [34]. There were few more common genes between 
healthy TS modules, namely CDC42SE2, ARPC4, 
RUNX1-IT1, ZBTB20, USP34, EMILIN2, GLIPR2 that 
were differentially expressed in TS and may prove to be 
significant in the progression of TS pathophysiology.

Many genes were different among the common healthy 
and TS modules. Few more previously reported genes of 
TS, specifically, PTPN22, RPS4X, CSF2RA, and TIMP1 
were found to be missing in their respective modules in 
TS when compared with healthy ones. Dysfunction or 
absence of these genes (listed in Tables  1 and 2) could 
then lead to a progressive disruption of the molecular 
pathways in a predictable sequence leading to the patho-
physiology of TS.

It is unsurprising that the presence of 45,X monosomy 
results in dysregulation of cellular growth and repair 
pathways, leading to significant detrimental effects dur-
ing both embryonic development and later stages. The 
extended cell cycle observed may mark the initiation of 
Turner syndrome (TS) pathogenesis, giving rise to a cas-
cade of phenotypic consequences throughout various life 
stages, including embryonic/fetal, neonatal, pediatric, 
adolescence, and adulthood phases. The X chromosome 
harbors transcription factors influencing cell cycle dura-
tion and haploinsufficiency may contribute to cell cycle 
delays. Moreover, the insufficient expression of genes 
associated with DNA replication or repair on the X chro-
mosome could further prolong the cell cycle in 45,X cells, 
impacting their ability to respond to S replication signals. 
TS patients often experience embryonic lethality, growth 
retardation, short stature, osteopenia/osteoporosis, 
congenital heart disease, gonadal dysgenesis, impaired 
pancreatic β-cell function, and neurologic deficits, mani-
festing as compromised neuronal microstructural integ-
rity (connectivity) in white matter pathways.

While there were few molecular, biological functions 
and cellular pathways common among these preserved 
modules of healthy and TS, we also observed a signifi-
cant difference in the functions of these modules when 
compared within and across healthy and TS samples. 
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These genes mentioned in Tables  1 and 2 are likely to 
be involved in molecular and biological functions and 
pathways that are syndrome-related, thus providing a 
new window of an investigation into TS pathophysiol-
ogy. The identified pathways in individuals with Turner 
syndrome (TS) offer valuable insights into the underly-
ing molecular processes associated with this condition. 
The dysregulation observed in these pathways has spe-
cific implications for various aspects of TS pathology. 
The spliceosome pathway, crucial for RNA splicing, 
may influence gene expression patterns, contributing 
to the diverse clinical manifestations seen in TS. Tran-
scriptional misregulation, involving errors in gene tran-
scription control, further accentuates the complexity 
of TS molecular dysregulation and its potential impact 
on aberrant gene activity. Platelet activation and vascu-
lar smooth muscle contraction dysregulations hint at 
possible connections to cardiovascular complications 
observed in TS. Abnormalities in osteoclast differen-
tiation suggest potential implications for bone health, 
possibly contributing to conditions like osteoporosis. 
Lysosome and phagosome dysregulation may influ-
ence cellular homeostasis and immune responses in 
TS. Oxidative phosphorylation, central to energy pro-
duction, highlights potential metabolic perturbations 
in TS. The presence of the non-alcoholic fatty liver dis-
ease (NAFLD) pathway points to potential liver-related 
complications in individuals with TS. Collectively, the 
identification of these pathways not only provides a 
more elaborated understanding of TS at the molecular 
level, but also lays the groundwork for future research 
and therapeutic strategies targeting the specific bio-
logical dysregulations associated with this genetic 
condition.

Further, we identified four clusters in the PPI net-
work constructed from the top 15 KME in each mod-
ule of the TS coexpression network. These modules 
were enriched in different significant molecular and 
biological functions, cellular components, and KEGG 
pathways. Each cluster has the highest scoring node 
called a seed. It is the node from which the cluster was 
derived. The genes NDUFV1, EFTUD2, POLR1C, and 
STT3A are the highest scoring node representing the 
seed genes of cluster 1, 2, 3, and 4, respectively, as men-
tioned earlier. They act as the eigengene of that cluster.

This comprehensive network-based meta-analysis 
methodology has previously been implemented by 
Jeremy et  al. on human and mouse brain transcrip-
tome [19]. This methodology of WGCNA has many 
advantages over traditional transcriptional analyses, 
leading to more reliable results compared to previous 
studies. Although, through this approach we uncover 
many facets of TS, there are several limitations such as 

the limited size of TS samples. The currently available 
datasets of PBMCs samples of TS do not allow a more 
elaborated study at this moment. Thus, a larger sam-
ple size would provide more elaborate results. Overall, 
our work highlights the potential molecular functions, 
pathways, and molecular targets when genomic data of 
TS and healthy women are compared and analyzed at 
the level of gene coexpression modules that can be tar-
geted therapeutically in the future.

This work also provides an opportunity to ascertain 
if these genes originating from different modules have 
lost their functional attributes owing to mutational 
load or aberrant signal transduction or defunct interac-
tomes. Since the number of interactomes are expected 
to be more for all the genes, their own detailed char-
acterization would prove to be a rewarding proposi-
tion. From these interactomes, regulatory genes may 
be identified using network-based approach. In any 
case, these observations are likely to fuel the thought 
along the line for precise identification of genes actu-
ally implicated in giving rise to TS. Another important 
aspect is that after the implantation of the blastocyst, 
at what stage TS sets in and how the molecular hetero-
geneity is accentuated and prevailed. If we know what 
compels such an events, we may use the information 
for better management of TS patients including that of 
prenatal diagnosis.

Conclusion
In this study, gene expression differences between healthy 
and individuals with Turner syndrome were character-
ized using the systems-biology approach of weighted gene 
coexpression network analysis (WGCNA) on 182 micro-
array peripheral mononuclear blood samples (PBMC). 
While many genes were found to be common between the 
modules of TS and healthy coexpressed networks, some 
of the genes were different among the common healthy 
and TS modules. These genes may prove to be significant 
in the progression of TS pathophysiology. Dysfunction or 
absence of these genes could lead to a progressive disrup-
tion of the molecular pathways in a predictable sequence 
leading to the pathophysiology of TS.

Overall, our scientific work holds potential benefits 
for various groups within society. Primarily, biotech-
nologists, geneticists, and doctors stand to gain valuable 
insights from our analysis, as it may contribute to early 
diagnosis and proactive intervention in individuals at risk 
of Turner Syndrome. By identifying specific genes asso-
ciated with the syndrome, our research could aid geneti-
cists in establishing reference panels for more accurate 
and efficient genetic testing. This has the potential to 
facilitate early detection and intervention before symp-
toms manifest or worsen.
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Moreover, our findings could pave the way for 
advancements in personalized medicine. Pharmaceu-
tical companies might leverage the identified genes 
to develop Turner Syndrome-specific drugs aimed at 
reducing the severity of symptoms. This personalized 
approach has the potential to significantly improve the 
quality of life for individuals with Turner syndrome by 
addressing the underlying genetic factors. In essence, 
our work carries implications for both diagnostic prac-
tices and the development of targeted therapeutic strat-
egies, offering a comprehensive contribution to the 
fields of genetics, medicine, and biotechnology.
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