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of human diseases in the near future.

Background Gene editing can produce irreversible permanent changes to the genetic material at predetermined
sequences, avoiding random integration, which is the major drawback of classical gene therapy. The technology
has invaded all approaches of genetic engineering and biotechnology with versatile applications in agriculture, indus-

Main body The present review displays the different approaches and mechanisms of gene editing. Special emphasis
has been given to the technology therapeutic applications where all registered clinical trials have been addressed.
The Islamic ethical concerns of gene editing have also been highlighted.

Conclusion The great advantages of gene editing technology, coupled with the splendid efforts of scientists

to develop systems with superior efficacy and safety would provide an effective avenue for treating a wide range
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Background

Targeted DNA modifications are primarily accomplished
by means of programmable nucleases that induce site-
specific DNA double-strand breaks (DSBs). The DSBs
can be restored by cellular DNA repair systems that allow
the insertion, deletion, or alteration of genetic material
at a particular DNA site. The programmable nucleases
have further been engineered to create nickases that only
cut a single DNA strand with much more precision and
efficacy. Furthermore, gene editing can also be achieved
without triggering any DNA breaks using synthetic
nucleic acid-like molecules known as peptide nucleic
acids (PNAs).
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The DSBs can be mainly repaired by two different
mechanisms: homology-directed repair (HDR) or non-
homologous end joining (NHE]). HDR utilizes an exog-
enous single- or double-stranded DNA template for
the repair of DSBs. Such a donor template is flanked
by sequences identical to those around the break site
(homology arms), incorporating their sequence vari-
ations into the cut region. This mechanism is mainly
utilized for mutation repair (Fig. 1la). However, NHE]
repairs DSBs via direct religation of the cleaved ends. It is
an error-prone mechanism that often induces the forma-
tion of small indels at the cut region, where it is primar-
ily associated with specific gene knockout [1] (Fig. 1b).
If two DSBs are created together on one chromosome,
the intervening sequence between the two DSBs can be
deleted or inverted (Fig. 1c). Chromosomal transloca-
tions can also occur if two DSBs are simultaneously gen-
erated on two different chromosomes [2] (Fig. 1d).

NHE] is the predominant DNA repair mechanism
in high eukaryotic organisms, where HDR is largely
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Fig. 1 Different approaches of DSB repair. a Repair of DSB using HDR in which donor template flanked by homology arms is provided incorporating
their sequence variations into the cut region. b Repair of DSB by the error-prone NHEJ via direct religation of the cleaved ends forming small

indels at the cut region. ¢ Repair of two DSBs on the same chromosome would result in large deletion or inversion. d Restoring DSBs on different
chromosomes might be associated with chromosomal translocations. e HITI can repair DSB in the presence of donor template containing the same
nuclease cleavage site as the target sequence

restricted to actively dividing cells [3]. Scientists have dividing and non-dividing cells. In such a situation, the
adopted the unique strategy of homology-independent target sequence as well as the donor template harbors the
targeted insertion (HITI) for transgene insertion in both  nuclease cleavage site, creating blunt ends. Subsequently,
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the linearized donor sequence is integrated by NHE] into
the site of DSB. When incorporated in the correct ori-
entation, the nuclease target sequence is disrupted, pre-
venting further cleavage (Fig. 1e). Interestingly, HITT has
been induced in neurons, presenting the first demonstra-
tion of gene knock-in within non-dividing cells, where it
has been applied to successfully repair a certain mutation
in a rat model for retinitis pigmentosa [4].

Progammable nucleases

They can be categorized into two main classes: FoKI-
dependent nucleases and CRISPR-Cas systems. Each
consists of a variable DNA-binding domain and a con-
stant catalytic domain.

a. Fokl-dependent nucleases

The activity of two different classes of programmable
nucleases depends on the cleavage domain of the Fokl
restriction endonuclease: zinc finger nucleases (ZFNs)
and transcription activator-like effector nucleases (TAL-
ENs). ZENs first emerged in 1991 [5], representing the
master gene editing tool for about 20 years until TAL-
ENs were engineered in 2011 [6]. Each class contains a
customized array of different DNA-binding domains:
zinc finger proteins (ZFPs) and transcription activator-
like effectors (TALEs) in ZFNs and TALENS, respec-
tively. Fokl must dimerize to cleave DNA; therefore, two
nuclease monomers, separated by a short spacer, bind the
complementary DNA strands (Figs. 2a and 1b).

In an attempt to enhance the nuclease efficiency, Fokl
nickases, in which the catalytic activity of one Fokl
monomer is inactivated, have been developed. Accord-
ingly, nickases produce single-strand breaks (SSBs) or
nicks instead of DSBs, which are mainly repaired by
HDR rather than NHE], which authorize highly pre-
cise gene editing [7] (Figs. 2c and 1d). Custom design of
FokI-dependent nucleases requires substantial protein
engineering, which is laborious, time-consuming, and
expensive. Besides, they can introduce DSBs at untar-
geted genomic sites (off-target sites), leading to non-
specific DNA modifications including point mutations,
deletions, insertions, inversions, and translocations.

b. CRISPR-Cas systems

CRISPR-Cas (Clustered regularly interspaced short pal-
indromic repeats and CRISPR-associated enzyme) sys-
tems have been classified into two major classes (class
I and class 2), each of which includes several types and
subtypes (Table 1). Class 2 systems use only one Cas pro-
tein, which is most commonly applied in gene editing.
Noteworthy, type VI Cas13 targets RNA instead of DNA,
providing new avenues for gene editing. On the other
hand, class 1 systems utilize a complex of multiple Cas
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proteins [8]. They have also recently emerged as possible
tools for gene editing technologies with potential charac-
teristics [9].

CRISPR-Cas9 of Streptococcus pyogenes (SpCas9) was
the first type II system to be discovered, characterized,
and utilized in gene editing [10]. CRISPR regions consist
of a CRISPR RNA (crRNA) containing 20-bp spacer that
binds the DNA target sequence and a trans-activating
CRISPR RNA (tracrRNA) that interacts with the crRNA
to generate functional small guide RNA (sgRNA). Once
sgRNA is formed, it can be complexed with Cas9, ena-
bling the nuclease to bind DNA via the crRNA. Cas9 also
binds DNA via a 3-bp protospacer adjacent motif (PAM),
predominantly 5-NGG-3. Cas9 contains two catalytic
domains, RuvC and HNH; each nicks a single strand
of the target DNA. The HNH domain cuts the sgRNA
complementary strand, and the RuvC domain cleaves
the displaced one generating, a site-specific DSB [11]
(Fig. 2e). Importantly, inactivation of one of the Cas9 cat-
alytic domains results in a partially inactivated Cas9 or
Cas9 nickase that can only generate SSB (Figs. 2f and g),
whereas inactivation of both domains inhibits the nucle-
ase catalytic activity, resulting in dead Cas9 (dCas9) [12]
(Fig. 2h).

The applications of dCas9 extend beyond gene editing
by virtue of its guidable capacity. It can recruit various
effector proteins to specific DNA sequences, mediating
several manipulations. These guidable proteins include
transcriptional activators and repressors (to regulate
gene expression), epigenetic modulators (to trigger epi-
genetic changes), chromatin rewiring proteins (to modify
the 3D chromatin structure), and fluorescently labeled
proteins (for chromatin imaging) [13].

CRISPR-Cas systems have surpassed other program-
mable nucleases due to their easy design, low cost, and
higher efficiency. Since emerging, CRISPR-based gene
editing has progressed at an unprecedented pace, being
utilized in the majority of gene editing systems in the
past few years. By 2020, the CRISPR/Cas systems have
been utilized in all announced clinical trials. In 2015,
CRISPR-Cas9 was named the “Breakthrough of the Year”
by Science magazine. In 2020, the Nobel Prize in Chem-
istry was awarded to Emmanuelle Charpentier and Jen-
nifer Doudna for Crispr gene editing [14].

The major concern with CRISPR-Cas systems is their
off-target effects. In fact, CRISPR-Cas tools have higher
off-target activity than other nucleases. Several strategies
have been developed to mitigate the CRISPR/Cas9 oft-
target effect, including sgRNA optimization, Cas9 modi-
fication, application of other Cas variants, and inhibition
of Cas enzymes. Several academic and commercial online
resources with user-friendly interfaces are currently
available to select and design optimal sgRNAs, where
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Fig. 2 Programmable nucleases. a ZFN: the monomer contain 3-6 zinc fingers (ZFs); each interacts with 3 DNA bases binding DNA sequences

of 9-18 bp, where the active dimer achieves a specificity of 18-36 bp. ZFs recognizing 47 of all possible 64 DNA triplets have been characterized. b
TALEN: each TALE consists of 33-39 amino acids binding a single base pair. The nucleotide specificity of each TALE is determined by the two amino
acids at positions 12 and 13, known as repeat variable diresidues (RVDs). Four different RVDs specifically, Asn—lle, His—Asp, Asn-His, and Asn-Gly, are
most widely applied to recognize adenine, cytosine, guanine and thymine residues, respectively. TALEN target site must have a 5'T residue, specified
by the constant N-terminal TALE. The TALEN monomer binds DNA sequences of 16-24 bp (32-48 bp when upon dimerization). ¢ ZFN nickase:

in which the catalytic activity of one Fokl monomer is inactivated. d TALEN nickase. e Wild type Cas9 cleaves both DNA strands. f Cas9 D10A nickase
with inactivated RuvC domain cleaving the target strand only. g Cas9 H840A nickase with inactivated HNH domain cleaving the non-target strand
only. h dCas9 without any nuclease activity. Red stars denote for inactive catalytic domains and red small arrows indicate the cut sites
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Table 1 CRISPR-Cas systems types and subtypes
Type Class | Class I

| 1] v 1l v VI
Nuclease Cas3 Cas10 DinG Cas9 Cas12, Cas14 Cas13
Target DNA DNA, RNA Unknown DNA DNA RNA

GC content and length should be considered. Moreover,
chemical modifications of sgRNAs, including base, sugar,
and backbone modifications, can enhance system effi-
ciency and reduce off-target activity [15]. Modification
of the Cas-9 protein involves the use of Cas9 nickases
and high-fidelity Cas9 variants. The high-fidelity Cas9
variants are generated by introducing certain amino acid
substitutions in the Cas9 groove lying between its nucle-
ase domains. This groove mediates the Cas binding with
the PAM-containing DNA strand. As this groove is posi-
tively charged, it has a strong electrostatic binding with
the negatively charged DNA, irrespective of the sequence
homology. Therefore, decreasing the groove electro-
positivity would contribute to reduced off-target activity.
These variants include eSpCas9, SpCas9-HF1, HypaCas9,
Sniper-Cas9, xCas9, and evoCas9 [16]. Given their supe-
rior specificity, it is likely that these variants will be
adopted as the future gold-standard tools for gene edit-
ing. On the other hand, different Cas9 orthologs derived
from other bacterial species as well as other Cas proteins,
such as Cas-12a, Cas-3, and Cas-10, have provided better
gene editing efficiency than SpCas-9 [17]. Inhibition of
Cas enzymes can be mediated by anti-CRISPR (Acr) pro-
teins, small-molecule Cas inhibitors, and small nucleic
acid-based CRISPR inhibitors, preventing sustained
nuclease activity and reducing the off-target effects [8].

DSB-independent gene editing strategies

a. Base editing

Base editing is a unique approach to gene editing that
enables targeted substitution of a specific DNA base. The
first system of base editors was developed by Komor et al.
in 2016 [18]. Base editors (BEs) are composed of cytidine
or adenosine deaminase enzyme fused to a CRISPR/Cas
system, forming cytosine base editors (CBEs) or adenine
base editors (ABEs), respectively. BEs normally mediate
nucleotide transitions, i.e., purine to purine or pyrimi-
dine to pyrimidine, where cytidine and adenosine are
converted into uridine and inosine finally replaced by
thymidine and guanosine, respectively (Fig. 3a). Inosine
is automatically recognized as guanosine by the cellular
machinery, while uridine, which is not a natural DNA
nucleoside, will be removed from DNA by uracil DNA
glycosylase (UDG). Therefore, uracil DNA glycosylase

inhibitor (UGI) has been incorporated with CBEs, form-
ing glycosylase base editors (GBEs).

The first CRISPR/Cas system used in base editors was
dCas9. However, Cas9 nickase has subsequently dem-
onstrated more efficient gene editing, where the edited
strand can be used as a template to repair the nicked
strand and/or provide better deaminase accessibility [19].
Targeting cytosine and adenine bases occurs within an
activity window of about 5 nucleotides on the non-target
strand [20]. Interestingly, both CBEs and ABEs have been
recently modified to induce specific DNA transversions
[21, 22]. However, base editing is unable to introduce
small insertions or deletions.

b. Prime editing

The technology of prime editing has been recently
described by Anzalone and his colleagues in 2019 [23].
Prime-editors (PEs) consist of Cas9 nickase fused to engi-
neered reverse transcriptase (RT) in addition to unique
prime-editing guide RNA (pegRNA). The pegRNA con-
tains sgRNA, a primer binding site, and an RT template
with edit. The Cas9 nickase cuts the PAM containing
DNA strand, liberating a free 3’-hydroxyl group that
induces the reverse transcription of the pegRNA RT tem-
plate. This yields a branched intermediate containing two
DNA flaps: the edited 3’ flap and the unedited 5’ flap. The
cellular DNA repair system can integrate any of these
two flaps into the genomic DNA. Interestingly, PEs can
be engineered to modify the PAM sequence to prevent
further editing when the modified 3’ flap is incorporated
into the host genome. However, if the original sequence
is restored again to the target site, a new cycle of prime
editing can be initiated.

¢. Peptide nucleic acids (PNAs)

PNAs, first generated in 1991, are synthetic nucleic
acid analogues in which the sugar phosphate backbone
of nucleic acids is replaced by a synthetic polyamide
(protein-like) backbone of N-(2-amino-ethyl)-glycine
[24]. Such modification has granted PNAs high stability
and resistance against cleavage by proteases and nucle-
ases. PNAs can form duplexes with DNA and RNA tar-
get sequences obeying the Watson—Crick base pairing
model. They are highly specific, where few mismatches
are associated with inefficient target binding. The PNA
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by thymidine, thereby the base pairs of C-G are converted into T-A, while adenine base editors (ABEs) convert adenosine into inosine finally
replaced by guanosine. Accordingly, ABEs enable the transition of A-T into G-C. UGI: uracil DNA glycosylase inhibitor. b Prime editing: Prime-editors
(PEs) consist of Cas9 nickase, reverse transcriptase (RT) and prime-editing guide RNA (pegRNA). The pegRNA contains sgRNA, primer binding

site and RT template with edit. The Cas9 nickase cuts the DNA strand activating the reverse transcription of the pegRNA RT template forming

an intermediate with two flaps. The DNA repair system can integrate either the edited 3'flap or the unedited 5'flap. Only upon incorporation

of the 3'flap, further editing is prohibited. ¢ PNA-mediated gene editing: Tail-clamp PNA (tcPNA) interacts with a single DNA strand, where one

PNA strand associates with a polypurine DNA stretch by Hoogsteen-base pairing and the second strand binds DNA by Watson-Crick base pairing.
PNA-DNA binding displace the two DNA strands apart enabling recombination with ssDNA donor template at a nearby location

neutral charge strengthens the PNA/DNA complexes
compared to those of DNA/DNA. This effect is exten-
sively enhanced when two PNAs interact with a single
DNA strand. In such a situation, one PNA strand associ-
ates with a polypurine DNA stretch along the helix major
groove by Hoogsteen-base pairing, and the second strand
binds DNA by Watson—Crick base pairing. Subsequently,
PNAs open the DNA helical structure, stimulating site-
specific recombination at a nearby genomic location
using an exogenous ssDNA donor template. As PNAs
lack nuclease activity, their safety profile is critically

enhanced, where their off-target activity is very low or
even undetected [25].

The first PNA applied in gene editing was bis-PNA, in
which two PNA molecules with the same length were
connected by a linker sequence [26]. Subsequently, differ-
ent types of PNAs have been designed. However, a tail-
clamp PNA (tcPNA), in which the Watson—Crick part
is extended over the Hoogsteen part, and its chemically
modified derivative, ytcPNA, have been found to be asso-
ciated with superior activity [27]. Interestingly, PNA can
also mediate single-base modification without the use
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of donor DNA. In such cases, ssPNAs, which are differ-
ent from the target sequence for only a single base, are
employed. Thereby, PNA is not only acting by stimulat-
ing recombination with donor DNA but also by acting
as a source of genetic information [28]. PNAs have some
advantages over programmable nucleases due to their
small size, powerful specificity, and extreme safety. How-
ever, they are associated with relatively low efficiency.
Their application to correct the cystic fibrosis gene in
mice has achieved 9% efficiency when inhaled and only
1% when injected [29]. PNA might be suitable for thera-
peutic application when the correction of a small cell
subset would be significant. For example, editing only
6-7% of cells was found to potentially ameliorate mice
with beta thalassemia [30]. On the other hand, advances
in PNA structure and delivery systems would contribute
to more efficient applications.

Delivery systems

Programmable nucleases can be delivered in the form of
DNA plasmids, in-vitro transcribed mRNAs (Cas mRNA
and sgRNA in the case of CRISPR/Cas systems), or puri-
fied proteins (ribonucleoproteins; RNPs, in the case of
CRISPR/Cas systems). DNA-based delivery allows long-
lasting nuclease expression; however, it is associated with
increased off-target activity. However, when nucleases
are delivered as mRNA or proteins, they induce on-tar-
get mutations shortly after delivery and degrade rapidly,
reducing the off-target effects [31].

There are three main classes of gene editing delivery
systems: physical, chemical, and viral platforms. Gen-
erally, non-viral (physical and chemical) methods have
lower efficiency than viral vectors. The physical methods
include electroporation, microinjection, and hydrody-
namic injection. Electroporation applies an intense elec-
tric field to the cell membrane to increase its permeability
for a while enabling the influx of the gene editing tool
into cells. Microinjection is a direct microscopic injection
of the effector into the target cells. Hydrodynamic injec-
tion involves the immediate injection of a huge volume of
high-pressure liquid into the animal blood stream via the
tail vein, mediating delivery to liver cells specifically. The
chemical vectors mainly comprise lipid and polymer nan-
oparticles. Both allow cell entry of the gene editing tool
via endocytosis.

Viral vectors include lentiviral vectors (LVs), adenoviral
vectors (AVs), and adeno-associated viral vectors (AAVs).
AAVs are characterized by their reduced immunogenicity
and non-integration into the host genome, representing
the most efficient delivery system. However, its cloning
capacity is limited to<4.8 kb, impeding their applica-
tion for delivery of large nucleases, such as TALENs and
SpCas9. Several strategies have been adopted to tackle
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this hurdle, including: 1) packaging SpCas9 and sgRNA
into separate AAVs and transfecting them into cells
simultaneously; 2) using truncated SpCas9; and 3) using
smaller Cas9 orthologs such as Staphylococcus aureus
Cas9 (SaCas9).

Therapeutic applications of gene editing

Gene editing technology can be utilized to irreversibly
restore or disrupt the function of specific target genes for
therapeutic purposes. Gene editing of autologous T cells,
hematopoietic stem cells (HSCs), and induced pluripo-
tent stem cells (iPSCs) would provide an efficient strategy
of personalized transplantation for treating various dis-
eases and disorders. Generally, the clinical application of
gene technology involves either ex vivo platform in which
the patient’s cells are isolated, edited in vitro, and then
delivered back to the human body or in vivo platform in
which the gene editing system is directly delivered to the
patient’s target cells or tissue.

Therapeutic platforms of gene editing are exceedingly
applied in almost all types of human diseases, includ-
ing viral infections [32], cancer [33], blood disorders
[34], primary immunodeficiencies [35], inborn errors of
metabolism [36], muscular disorders [37-39], congenital
lung diseases [40], neurological disorders [41-44], der-
matological disorders [45], inherited eye diseases [46]
and hereditary hearing loss [47]. To date, more than 80
clinical trials have already been registered on Clinical-
Trials.gov. They are mainly designed to target a group
of monogenic disorders, type 1 diabetes mellitus (T1D),
certain viral infections, and different malignant transfor-
mations (Table 2).

a. Monogenic disorders

Clinical trials of monogenic disorders are primarily
related to sickle cell disease (SCD) and p-thalassemia
caused by abnormal or insufficient hemoglobin (Hb) pro-
duction due to mutations in the hemoglobin beta gene
(HBB). To date, there are 18 ex vivo clinical trials on SCD
(n=7) and B-thalassemia (n=11), of which six have pro-
gressed to phase 3. They depend on either the correc-
tion of HBB mutations or reactivating the HBG genes,
increasing the production of fetal hemoglobin (HbF:
a2y2)and compensating for adult hemoglobin (HbA:
a2f2). Reactivating the HBG gene can be accomplished
by removing the cis-regulatory elements of the HBG1/2
promoter region or inactivating the expression of the
HbF production inhibitory gene (BCL11a) [48].

Ten trials have also been conducted on other genetic
disorders (one for each). All of them involve the in vivo
application of the gene editing complex to the target
cells. Interestingly, five studies have launched in 2022
and 2023, and it is expected that the number of trials
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on monogenic disorders will exponentially increase in
the upcoming few years. Four of these trials were des-
ignated to insert a correct copy of the defective gene in
hemophilia B, phenylketonuria (PKU), and mucopolysac-
charidosis type I and type II (MPSI and MPSII). Moreo-
ver, three aimed to restore the most common genetic
mutations in Duchenne muscular dystrophy (DMD),
leber congenital amaurosis 10 (LCA10), and otoferlin
(OTFO)—related congenital hearing loss (CHL).

Alternatively, disruption of a specific target gene has
been the leading mechanism in three other studies
involving heterozygous familial hypercholesterolemia
(HeFH), hereditary angioedema type 3 (HAE-3) and
rhodopsin (RHO)—related retinitis pigmentosa (RP).
25% of autosomal dominant RP is associated with RHO
mutations mediating retinal degeneration via gain-of-
function effects in the vast majority of cases. Therefore,
the therapeutic regimen should provide specific inhibi-
tion of mutant allele expression. An alternative approach
involves disrupting both mutant and wild-type (WT)
alleles and replacing them with an exogenous correct
gene copy [49]. In the clinical trials of HeFH and HAE,
the target genes (PCSK9 and KLKBI) are not the mutant
ones. HeFH is primarily caused by heterozygous muta-
tions in the LDL receptor (LDLR) gene, reducing LDL
cellular intake. In turn, the level of blood LDL will be
elevated, possibly causing cardiovascular disease. PCSK9
is the negative regulator of LDLR, promoting its degra-
dation, and PCSK9 knockout was reported to increase
LDLR gene expression in cases of HeFH [50]. HAE-3 is a
rare genetic disorder characterized by recurrent, severe,
and possibly fatal swelling attacks that affect different
tissues and organs. It can originate due to mutations in
the F12 gene encoding for coagulation factor XII, which
is a critical stimulator for blood coagulation and body
inflammation via the intrinsic coagulation pathway and
the kinin-kallikrein system, respectively. Kallikrein is
encoded by the KLKBI gene in a protein precursor form
(prekallikrein), where KLKB1 disruption could amelio-
rate the disease state [51].

b. Diabetes mellitus

Two clinical trials have been established in Canada for
treating type 1 diabetes mellitus (T1D), in which alloge-
neic pancreatic endoderm cells were genetically modified
to promote immune evasion, preventing host rejection
upon transplantation.

c. Viral infections

Most clinical trials on viral infections are related to the
immunodeficiency virus (HIV), which can destroy the
body’s immune system, causing acquired immunode-
ficiency syndrome (AIDS). The first HIV clinical study
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was started in 2009, representing the pioneering gene
editing-based study. To date, there are 11 HIV-related tri-
als that are mainly disrupting the gene encoding the C-C
chemokine receptor 5 (CCR5) in T cells or hematopoi-
etic stem/progenitor cells (HSPCs). CCR5 is the key co-
receptor for viral entry, mediating a fundamental role in
HIV infection. Individuals with a 32-bp deletion in CCR5
are naturally resistant to HIV infection. [52]. Alterna-
tively, one study has been designed to eliminate large sec-
tions of the HIV genome, minimizing virus activity.

Other clinical studies on viral infections include coro-
navirus disease 2019 (COVID-19), herpes simplex virus
type 1 (HSV1), and papillomavirus (HPV). The serious
pandemic of COVID-19 has engaged many scientists to
find an effective intervention to inhibit or treat the viral
infection. COVID-19 is caused by the severe acute respir-
atory syndrome coronavirus-2 (SARS-CoV-2). The angi-
otensin-converting enzyme 2 (ACE2) is a surface protein
on many cell types that allows SARS-CoV-2 to infect
human cells [53]. On the other hand, the expression of
programmed death receptor 1 (PD-1) has been reported
to be significantly increased on the surface of T cells in
patients with COVID-19. Continuous PD-1 expression
causes T cell exhaustion, which in turn may reduce the
patient’s ability to fight reinfection [54]. Accordingly, a
clinical trial was conducted for the knockout of both
PD-1 and ACE2 in memory T cells to test the engineered
cells ability for virus recognition and destruction upon
reinfection.

Corneal infection with HSV1 induces herpes stromal
keratitis (HSK), which is the major cause of infectious
blindness [55]. A clinical trial has been designed to com-
bat HSV1 in corneal tissue cells via the destruction of the
viral genes UL8 and UL29 that are required for viral rep-
lication. On the other hand, HPV infection is the primary
cause of cervical cancer. The viral E6 and E7 proteins
disrupt the host tumor suppressor genes p53 and pRB,
respectively, promoting cervical malignant transforma-
tion [56]. In this context, three clinical studies have been
applied for E6 and/or E7 knockout in cervical neoplasms
to abrogate viral activity.

d. Cancer

Notably, most gene editing-based clinical trials have been
directed against different forms of malignant transforma-
tions. Programmed cell death protein 1 (PD-1) is a pro-
tein on the surface of T and B cells that down-regulates
the immune system. PD-1 can prevent the progression of
autoimmune diseases; however, it can also prohibit the
immune system from eradicatingcancerous cells and tis-
sues. Therefore, knockout of PD-1 has been accredited
by several clinical trials for various types of cancer (n=7)
[57]. Moreover, PD-1 expression was found to be reduced
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upon deficiency of cytokine-inducible SH2-containing
protein (CISH) in T cells [58], justifying CISH knockout
in other clinical trials (n=2).

Anti-cancer therapeutic strategies have been advanced
by the development of T cell receptor (TCR)-based ther-
apy. Generally, there are two types of TCR: alpha/beta
(a/B; encoded by TRAC and TRBC, respectively) and
gamma/delta (y/§; encoded by TRGC and TRDC, respec-
tively), both of which are composed of a heterodimer
and associated with invariant CD3 complexes on the cell
surface. o/ TCR-expressing T cells comprise the most
predominant T cell fraction, and they recognize antigens
presented by major histocompatibility complex (MHC)
molecules [59]. In TCR therapy, T cells are engineered
with receptors targeting specific antigens of cancer cells.
Another type of genetically modified T cell is the chi-
meric antigen receptor (CAR) T cell. They are engineered
to produce synthetic CAR receptors on their surface.
Each CAR bridges the cell membrane, where its extra-
cellular part recognizes and binds specific antigens on
cancer cells [60]. The main difference between TCR and
CAR T cell therapies is the type of programmed recep-
tor. In TCR therapy, the receptor binds antigen presented
by MHC. However, CAR T cells bind naturally occurring
antigens on the surface of cancer cells.

It is costly and time-consuming to engineer T cells
per each patient. Autologous T cell therapy can also be
hindered by the reduced quantity and quality of autolo-
gous T cells as patients usually receive lympho-depleting
chemo- and/or radiotherapy. In this context, utilization
of allogeneic universal T cells would provide an effec-
tive avenue for cancer treatment, in which T cells derived
from healthy donors, engineered to express anti-cancer
receptor (to recognize and destroy cancer cells) with
simultaneous elimination of the TCR, specifically TRAC
(to avoid graft-versus-host disease; GVHD) [61].

Islamic ethical perspectives on human gene editing-based
studies

The Islamic discipline of bioethics is dominated by the
collective reasoning of both religious scholars and bio-
medical scientists. In this context, three authoritative
institutions have already been established, namely the
Islamic Organization for Medical Sciences (IOMS),
the Islamic Figh Academy (IFA), and the International
Islamic Figh Academy (IIFA).

According to the Islamic ethical perspective, the field
of genomics should generally comply with two main
principles. First, the marriage institution is the only
channel through which children can be procreated. Sec-
ond, the research must firmly respect human dignity,
i.e., informed consent should be gained, privacy should
be highly appreciated, and the key benefits and harms
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should be rigorously evaluated. On the other hand, the
Islamic ethical judgment on gene editing is specifically
based on the purpose of editing (research, treatment, or
enhancement) and the type of edited cells (somatic or
germline).

Gene editing for research and treatment purposes is
permissive. However, the three Muslin bioethics institu-
tions prohibit gene editing for enhancement. They con-
sider the latter act as tampering with God’s creation. In
this context, somatic gene editing is permitted only for
research and treatment but not for enhancement (e.g.,
increasing musculature can be authorized in a patient
with muscular atrophy but not in a person with normal
capacities). However, germline gene editing is currently
acceptable for research purposes only, where surplus or
nonviable embryos obtained from in vitro fertilization
can be utilized [62].

Conclusion

Different approaches of gene editing have been engi-
neered and applied with the superior advantages of
CRISPR-Cas systems by virtue of their high efficiency,
simple design, and diverse manipulations. Extensive
efforts are being made to enhance the technology effi-
cacy, and it is anticipated that gene editing technology
will eventually realize its great potential for effective
disease amelioration and treatment. The profound ther-
apeutic prospect for gene editing on diverse human dis-
orders will prioritize its application in the near future.
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