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Abstract 

Background  Studies have attributed 50% of infertility cases to male infertility, 15% of which is caused by idiopathic 
genetic factors. Currently, no specific biomarkers have been revealed for male infertility. Furthermore, research 
on genetic factors causing male infertility is still limited. As with other multifactorial genetic disorders, numerous risk 
loci for male infertility have been identified by genome-wide association studies (GWAS), although their clinical signifi-
cance remains uncertain. Therefore, we utilized an integrative bioinformatics-based approach to identify biomarkers 
for male infertility. Bioinformatics analysis was performed using Open Targets Platform, DisGeNet, and GWAS Cata-
log. After that, the STRING database and the Cytoscape program were used to analyze protein–protein interaction. 
CytoHubba was used to determine the most significant gene candidates. Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes pathway analyses were used to assess biological functions that correspond to the male infer-
tility disease pathway.

Results  We identified 305 genes associated with male infertility and highlighted 10 biological risk genes as potential 
biomarkers for male infertility such as TEX11, SPO11, SYCP3, HORMAD1, STAG3, MSH4, SYCP2, SYCE1, RAD21L1, and AMH. 
Of all the genes, we took the top three genes, namely, TEX11, SPO11, and SYCP3 as the genes that have the most 
potential as biomarkers.

Conclusions  TEX11, SPO11, and SYCP3 are involved in meiosis and spermatogenesis. We propose that further 
research in regarding these genes in detecting male infertility.
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Background
Studies have shown that infertility affects 15% of cou-
ples who are unable to conceive after having in regular 
unprotected intercourse for at least 12  months [1–3]. 
Approximately half of cases of infertility are caused by 
male factors, among which 30% and 20% are solely male 
factors and co-contributing female factors, respectively 
[4]. Male infertility can cause serious psychological and 
marital issues [5, 6]. Apart from anatomical conditions, 
male fertility highly depends on the spermatogenesis, a 
complex and multifactorial sperm production and func-
tional process involving genetic, hormonal, and environ-
ment factors [7, 8].

Genetic factors are involved in approximately 15% of 
male infertility cases and has been observed in ductal 
obstruction or dysfunction, hypothalamic-pituitary–
gonadal axis dysregulation, and spermatozoa number/
quality defects [8, 9]. As sperm count declines, there is a 
greater chance that genetic factors contributing to male 
infertility will be present [8]. Genetic factors account for 
25% of cases of male infertility linked to azoospermia; in 
other cases of impaired spermatogenesis, such as those 
involving variables acting at the pre-testicular, post-tes-
ticular and testicular levels, the incidence of genetic fac-
tors increase [10].

Unfortunately, 40% of male infertility cases related to 
impaired spermatogenesis become idiopathic genetic fac-
tors that the underlying causes remain unidentified after 
exhausting all diagnostic options [8, 10]. Thus, genetic 
testing and procedures have emerged to address this 
predicament. Genetic studies have generally focused on 
genes related to spermatogenesis with wide range of fac-
tors from hormonal regulation and cell metabolism to 
meiosis, which involves at least 2000 genes [11, 12]. Over 
the recent decade, studies have used genome-wide asso-
ciation studies (GWAS) based on various methods, such 
as single nucleotide polymorphism (SNP) arrays [13, 14], 
comparative genomic hybridization [15–17], and next-
generation sequencing [18–20], to investigate the basic 
genetic factors involved in male infertility. Although such 
efforts have contributed little to male infertility diag-
nostics, some SNP array results related to the hormonal 
regulation of spermatogenesis have suggested interesting 
treatment targets [8].

We investigated the consideration of genes that influ-
ence male infertility. The result of this study hopefully 
can contribute further investigation and then can be 
developed into biomarkers in the future.

Methods
Dataset selection
A database search was conducted on three platforms 
accessed on June 23, 2023, namely, Open Targets 

Platform (https://​platf​orm.​opent​argets.​org/), DisGeNet 
(https://​www.​disge​net.​org/), and GWAS Catalog (https://​
www.​ebi.​ac.​uk/​gwas/), to identify genes related to male 
infertility. In each database, the keyword “male infertility” 
was used to identify related genes. For Open Targets and 
DisGeNet, we limited our search to genes scoring higher 
than 0.3, whereas for GWAS, we limited our search to 
genes with a p value of at least 10−8 with an odds ratio 
of ≥ 1. After filtering the data, we deleted data for dupli-
cate genes and finalized our results for male infertility 
genes. A summary of the research workflow is shown in 
Fig. 1.

Discovering biomarker genes for male infertility
The STRING database (https://​string-​db.​org/) pro-
vided as a source of potential genes and protein for the 
protein–protein interaction (PPI) investigation. The 
STRING database provides complete data regarding pre-
dicted interactions between proteins, including physi-
cal interactions and functional associations. We also 
used the Cytoscape application version 3.10.0 (Bethesda, 
MD, USA), accessed on June 24, 2023, to visualize the 
interaction network between these proteins. Cytoscape 
allows us to graphically visualize the intricate biologi-
cal network between proteins. Additionally, we screened 
and identified significant modules in the PPI network 
using the cytoscape plugin molecular complex detec-
tion (MCODE) with the relevant settings and scores: k 
score = 2, degree cutoff = 2, node score cutoff = 0.2, and 
maximum depth = 100. The PPI network structure was 
then generated and examined using Cystoscope’s Cyto-
Hubba plugin to find hub genes. The CytoHubba software 
feature eleven topological analysis techniques: Maximal 
Clique Centrality (MCC), Degree, Edge Percolated Com-
ponent, Maximum Neighborhood Component, Density 
of Maximum Neighborhood Component and six cen-
tralities based on shortest paths (Bottleneck, Eccentricity, 
Closeness, Radiality, Betweenness, and Stress). We found 
that the MCC algorithm predicted important proteins 
from the yeast PPI network more correctly than the other 
10 techniques [21]. The top three high closeness genes 
from the MCC algorithm were subsequently considered 
as possible biomarker genes.

Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes Pathway enrichment analysis
The web-based Gene Set study toolkit ShinyGO (http://​
bioin​forma​tics.​sdsta​te.​edu/​go/), a functional enrich-
ment analysis web tool, was used to collect data for the 
gene ontology (GO) enrichment study (accesses on July 
4, 2023). GO was frequently split into three groups: 
molecular function (MF), cellular component (CC) and 
biological process (BP) [21]. Annotations in the GO 

https://platform.opentargets.org/
https://www.disgenet.org/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://string-db.org/
http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
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database characterizes the traits of genes and gene prod-
ucts from different organisms as well as the proposed 
activities of enriched genes. BPs are an orderly collection 
of molecular actions that characterize numerous biologi-
cal processes. CCs specify the locations, macromolecular 
complexes and subcellular structures of genes, whereas 
MF describe how a gene or gene products works [21]. A 
q-value False Discovery Rate (FDR) of 0.05 was used as 
the significance cutoff by using the filters on the website.

The KEGG database was used to systematically investi-
gate gene function by correlating genomic data and high-
level functional data. Significant results with a q(FDR) 
value of 0.05 were used during KEGG enrichment. The 
ShinyGO online tools and candidate genes from the 
KEGG database were used for enrichment analysis to 
enhance the significantly altered pathways.

Results
Dataset selection
After limiting the gene score to at least 0.3 in Open Tar-
gets and DisGeNet, we were able to identify 250 and 50 
genes, respectively. Moreover, after limiting the p value 
to at least 10−8 with an odds ratio of ≥ 1 in GWAS, we 
subsequently identified 86 genes. Interestingly, our data 
showed overlap between 305 genes associated with male 
infertility (table S.1.).

Discovering biomarker genes for male infertility
The STRING database was used to create a PPI network 
of 305 male infertility genes (figure S.1). Furthermore, 

biomarker genes were extracted from the PPI networks 
using Cytoscape plugins like MCODE and CytoHubba. 
MCODE was specifically to find gene clusters within the 
PPI networks that may be indicative of biomarkers. The 
MCODE was used to divide the PPI network into 11 sub-
clusters. A complete list of MCODE clusters, with the 
information of their score, number of nodes, and edges, 
is provided in table S.2. Top three gene clusters shown in 
Fig. 2.

Hub genes (i.e., highly connected nodes) for the PPI 
network were selected using CytoHubba. To rate every 
node, the MCC method in CytoHubba was applied. 
We identified 10 genes that could be considered the 10 
highest ranked male hub genes visualized in Fig.  3 and 
table S.3. From these 10 genes, Human Testis Express 
11 (TEX11), Protein initiator of meiotic double-stranded 
breaks (SPO11), and Synaptonemal Complex Protein 
SYCP3 were identified as the three genes having the most 
potential to become biomarkers of male infertility.

Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes Pathway enrichment analysis
The ShinyGO (http://​bioin​forma​tics.​sdsta​te.​edu/​go/) 
online resources were used to conduct GO enrichment 
analysis and examine the biological characteristics of the 
identified genes and proteins. BPs, CCs, and MF were 
all included in the GO enrichment study. The degree of 
relevance was set by using the filters on the website at a 
p value (FDR) of < 0.05 for each GO enrichment study. 
Notably, KEGG pathway analysis identified 67 significant 

Fig. 1  Flow study chart for genomic analysis to identify biomarkers for male infertility. This figure was created by Biorender.com under license 
ME25RIS757

http://bioinformatics.sdstate.edu/go/
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pathways (Table  S4), with the 20 most significant path-
ways being visualized in Fig.  4. BP enrichment analysis 
showed that 1,000 functions were significantly enriched, 
such as “male sex differentiation,” “sex differentiation,” 
“gonad development,” “development of primary sexual 
characteristic,” and “germ cell development.” CC enrich-
ment analysis showed that 106 functions were signifi-
cantly enriched, such as “axonemal dynein complex,” 
“lateral element,” “synaptonemal complex,” synaptone-
mal structure,” and “condensed nuclear chromosome.” 
MF analysis found that 194 functions were significantly 
enriched, such as “minus-end-directed microtubule 
motor activity,” “dynein light intermediate chain binding,” 
“dynein intermediate chain binding,” “Ribonucleic Acid 

(RNA) polymerase II general transcription initiation fac-
tor binding” and “oxygen binding.”

Discussion
Male infertility affects at least 180 million people world-
wide [2]. Given the substantial number of genes involved 
in spermatogenesis, idiopathic infertility accounts for 
about 50% of cases in males. As such, the current study 
was conducted to identify the most significant genes 
affecting male infertility to establish biomarkers for 
this condition. We initially searched the STRING data-
base for PPIs in male infertility. Thereafter, we searched 
Cytoscape using MCODE and CytoHubba applications, 
through which we identified the three most significant 

Fig. 2  Visualization of the top three gene clusters using MCODE. a Cluster 1, score of 10; b Cluster 2, score of 9.556; c Cluster 3, score of 5.273
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genes that could potentially as indicators of male infertil-
ity biomarkers, namely, TEX11, SPO11, and SYCP3.

TEX11 (Human testis express) is a meiosis-specific 
X-linked gene that plays a role in the spermatogenesis 
process. According to research by Bellil H, et  al. [22] 
TEX11 (at Xq13.1), is the gene most commonly linked to 
azoospermia. The cytoplasm and nucleus of type B sper-
matogonia in mice contain the TEX11 protein, which 
most abundant in zygotene spermatocytes and at least 
abundant late pachytene spermatocytes, thus indicating 
an important role for TEX11 in the initial phases of the 
formation of germ cell.

Based on research by Yang, et  al. [23, 24] loss of the 
TEX11 gene will cause meiosis failure in men, thus 
explaining the role of the encoded protein in spermato-
genesis. Human infertility results from spermatocytes 
undergoing apoptosis at the pachytene stage and surviv-
ing cells displaying chromosome nondisjunction during 
the first miotic division. He also discovered that alter-
ing this allele genetically can be a tactic to ascertain the 
in vivo effect of human TEX11 mutations. Yu et al. [25] 
claims that TEX11 prevents ERβ from binding to a pro-
tein that interacts with the transcription factor associated 
with hematopoietic pre-B cell leukemia, hence suppress-
ing the phosphorylation of the AKT and ERK signaling 
pathways.

In two brothers who had azoospermia, Sha [26] 
found a novel mutation in exon 29 TEX11 (2653G‒T; 
GenBank accession number, NM_031276). First, 
whole-exome sequencing (WES) was used to confirm 
this mutation. Then, specific exon 29 was amplified 

and sequenced. The same missense exonic mutation 
(W856C) was present in the two brothers but not in 
their mother, carried. According to the testicular biop-
sy’s histological study, meiosis had stopped, and the 
seminiferous tubules had neither mature spermatozoa 
nor post-meiotic spherical spermatids. Sertoli cells and 
interstitial cells did not express TEX11; spermatogonia 
expressed it strongly, whereas spermatocyte expressed 
it weakly.

SPO11 is a 13 exons gene that is found on chromo-
some 20 (20q13 0.2–13.3) in human and is involved in 
the processes of meiosis and spermatogenesis, where 
in humans this gene is located with. Research regard-
ing Spo11 with male infertility is still limited. A case–
control of SNP (rs28368082) in exon 7 of the SPO11 
gene and its potential correlation with male infertility 
was carried out in three Iranian provinces by Galkhani 
et  al. in 2014. This study showed that polymorphisms 
in the SPO11 gene may be linked to azoospermia and 
oligospermia susceptibility in three Iranian provinces 
[27]. This contrasts with research conducted by Karim-
ian [28], on 200 samples with 100 healthy men and 100 
infertile men, the findings demonstrated that while 
Spo11-C631T can damage mRNA and protein, it does 
not raised the risk of male infertility. According to a 
meta-analysis study by Ren SZ, et al., 2017, the SPO11 
C631T gene polymorphism may be a hereditary factor 
that can lead to male infertility [29].

SYCP3 (synaptonemal complex protein 3) is a syn-
apse-associated DNA-binding protein involved in germ 
cell meiosis, located on chromosome 12 (12q23), that 
is a testicular specificity to the expression. SYCP3 con-
tains two coil-over domains and encodes 236 amino 
acids. A mutation analysis was performed on all coding 
regions and adjacent introns in 19 patients with azoo-
spermia, which had been histologically shown to be 
caused by anomalies in meiosis. The azoospermia gene, 
SYCP3, was discovered by Miyamoto on the human 
chromosome, outside the AZF region of the Y chromo-
some. SYCP3 mutation cause azoospermia in males by 
arresting meiosis [30]. On the other hand, research on 
Caucasian-Spanish or Maghribians individuals without 
Y chromosomal loss revealed no abnormalities in the 
SYCP3 gene’s coding region in samples of azoospermia 
or severe oligozoospermia infertile male patients [31].

The aforementioned research suggests that the 
TEX11, SPO11 and SYCP3 genes play a role in meiosis 
and spermatogenesis. This is consistent with the results 
of our analysis, which found that these three genes play 
a role in male infertility. Therefore, we suppose that 
such genes can become biomarkers for patients with 
male infertility.

Fig. 3  Visualization of the top 10 genes associated with male 
infertility using MCC. A darker color indicates greater potential 
for the gene to be considered a biomarker
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Fig. 4  The 20 most significant pathways identified following functional enrichment analysis using Gene Ontology (GO). a Kyoto Encyclopedia 
of Gene and Genome (KEGG); b Biological Process (BP); c Cellular Component (CC); d Molecular Function (MF). A pathway on the GO analysis 
is shown by each circle in the diagram. The pathways that were indicated in blue had a less significant FDR than the pathways that were highlighted 
in red. The number of pathways is represented by the size of the circle; bigger circle denote more pathway enrichment
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Conclusions
The current study identified potential biomarkers for 
male infertility. Accordingly, our bioinformatics analysis 
found that significant hub genes, such as TEX11, SPO11, 
SYCP3, HORMAD1, STAG3, MSH4, SYCP2, SYCE1, 
RAD21L1, and AMH might induce male infertility. Our 
findings suggest that TEX11, SPO11, and SYCP3, which 
play a significant role in meiosis and spermatogenesis 
and were the three most significant genes based on the 
MCC algorithm in CytoHubba, could be potential bio-
markers for male infertility. More research is required to 
better understand their regulatory actions and confirm 
the utility of these genes as clinical indicators and thera-
peutic targets.
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