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Abstract 

Background  Recent researches have increasingly indicated a strong correlation between the gut microbiota 
and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Nevertheless, the impact of gut microbiota on CP/
CPPS still requires further elucidation.

Methods  Employing the summary statistics provided by the MiBioGen consortium, we executed a two-sample 
Mendelian randomization (MR) analysis. The study involved 18,340 participants and considered gut microbiota 
as the instrumental variable. Chronic prostatitis summary statistics, representing 500 cases and 208,308 controls, were 
extracted from the GWAS Catalog release data as the disease outcome. Various methods, including weighted inverse 
variance, MR-Egger and weighted median, were employed to assess how gut microbiota interact and correlate 
with CP/CPPS. Sensitivity analysis was used to eliminate heterogeneity and horizontal pleiotropy.

Results  Our findings, primarily derived from the IVW approach, provided evidence for a causal link between five 
categories of gut microbiota and CP/CPPS. Resultantly, the genus Christensenellaceae (OR = 0.39, 95% CI 0.17–0.87, 
P = 0.02), genus Eisenbergiella (OR = 0.62, 95% CI 0.40–0.97, P = 0.04), genus Hungatella (OR = 0.49, 95% CI 0.28–0.85, 
P = 0.01) and genus Terrisporobacter (OR = 0.39, 95% CI 0.20–0.75, P = 0.00) exhibited a protective impact on CP/CPPS, 
while family Prevotellaceae (OR = 1.78, 95% CI 1.01–3.15, P = 0.05) had the opposite effect. No notable heterogeneity 
of instrumental variables or horizontal pleiotropy was detected.

Conclusions  The findings of this study, which used a two-sample Mendelian randomization approach, indicate 
a causal link between gut microbiota and CP/CPPS. This could be valuable in offering fresh perspectives for additional 
mechanistic and clinical investigations of microbiota-related CP/CPPS. Nevertheless, additional randomized controlled 
trials are necessary for validation.
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Introduction
Chronic prostatitis/chronic pelvic pain syndrome (CP/
CPPS) is a common condition that affects a significant 
number of young males, with reported prevalence rates 
varying from 1.8 to 8.2% [1]. The diagnosis and treatment 
of this condition have presented a considerable clini-
cal difficulty due to the uncertain cause and the varied 
and diverse symptoms. Manifesting frequently as per-
sistent and recurring pelvic or systemic pain episodes, 
lower urinary tract dysfunction, and diminished quality 
of life stemming from depression and anxiety are com-
mon occurrences in patients. Despite being nonlethal, 
it affects millions of people globally, while the potential 
mechanism of CP/CPPS is unknown.

The largest microecosystem within the human body is 
the gut microbiota, and it is intricately linked to meta-
bolic processes, immunity regulation, and the mainte-
nance of stability in the intestinal mucosal barrier [2]. 
Furthermore, the gut microbiota assume a pivotal role as 
an integral component of the broader intestinal micro-
bial system [3]. A wealth of empirical evidence supports 
the notion that individuals encountering simultaneous 
challenges affecting both the bladder and the intestines, 
notably conditions like functional bowel disorders and 
inflammatory intestinal conditions, are subject to notable 
health implications [4]. Moreover, the gut-bladder axis, a 
widely recognized interaction between the gut and blad-
der, may play a crucial role in altering bladder activity 
and vice versa. Hence, investigating the link between gut 
microbiome and CP/CPPS could offer novel avenues and 
concepts for preventing and treating of CP/CPPS.

The cause-and-effect link between exposure and result 
can be deduced employing a single nucleotide polymor-
phism (SNP) as an instrumental variable (IV) through 
the statistical approach called Mendelian randomiza-
tion (MR) [5]. In contrast to observational investigations, 
MR studies possess the capacity to eliminate confound-
ing factors and counteract reverse causation through 
the haphazard distribution of genetic variations. This 
allows for the simulation of randomized controlled tri-
als (RCTS) and prevents the interference of reverse 
causality and potential confounders commonly faced 
in traditional RCTS [6]. In the current landscape of sci-
entific research, the widespread adoption of MR analy-
sis stands out as a prominent methodology extensively 
used to evaluate the conceivable cause-and-effect asso-
ciation between the composition and dynamics of the 
gut microbiota and illness [7–10]. The objective of this 
investigation was to scrutinize how gut microbiota influ-
ence CP/CPPS, through an exhaustive two-sample MR 
analysis. This analysis made use of the summary statis-
tics from genome-wide association studies (GWAS) pro-
vided by the MiBioGen and GWAS Catalog consortiums, 

presenting innovative biomarkers for the clinical man-
agement of CP/CPPS.

Materials and methods
Study design
In this study, gut microbiota were used as exposure 
factors, SNPs that were significantly related to gut 
microbiota were selected as the IVs. The outcome vari-
able utilized was chronic prostatitis/chronic pelvic pain 
syndrome (CP/CPPS). Two-sample MR method was 
employed for the causality analysis. Cochran’s Q test 
was performed to test the heterogeneity of the results, 
and sensitivity analysis was conducted to verify the reli-
ability. Figure 1a illustrates that for IVs to be considered 
valid, they must satisfy three key assumptions: (1) Cor-
relation hypothesis: IVs are significantly associated with 
gut microbiota; (2) Independence hypothesis: IVs are 
not associated with confounding factors other than gut 
microbiota; (3) Exclusivity hypothesis: IVs can only affect 
the CP/CPPS through gut microbiota [11]. The workflow, 
illustrating the sequential steps and key components of 
our process, is displayed in Fig. 1b. Given that the infor-
mation used as study material herein comprises pub-
lic GWAS data, no further ethical consent was deemed 
necessary.

Data source
Initially, data concerning gut microbial taxa were gath-
ered through MiBioGen (https://​mibio​gen.​gcc.​rug.​nl), 
an extensive GWAS meta-analysis encompassing 18,340 
participants across 24 groups, predominantly of Euro-
pean ancestry (n = 13,266) [12]. Examining the micro-
bial composition by focusing on three distinct variable 
regions of the 16S rRNA gene revealed insightful data. 
This comprehensive analysis resulted in the categori-
zation of a total of 211 bacterial taxa, encompassing a 
diverse spectrum of biological classifications, includ-
ing 9 phyla, 16 classes, 20 orders, 35 families, and 131 
genera. This extensive taxonomic profiling provides a 
nuanced elaboration of the complex diversity within the 
gut microbiota, capturing a holistic view of its structural 
and compositional aspects. Following this, we excluded 
three unknown families and 12 unknown genera. In sub-
sequent steps, our attention narrowed down to the genus 
level, the lowest classification in bacterial taxonomy. This 
refined dataset comprised 9 phyla, 16 classes, 20 orders, 
32 families, and 119 genera, laying the foundation for 
the forthcoming MR analysis. This meticulous categori-
zation at the genus level ensures a granular exploration 
of the associations between specific bacterial groups 
and the targeted outcomes in our research. In this cur-
rent investigation, GWAS summary statistics was utilized 
for CP/CPPS extracted from the GWAS Catalog release 

https://mibiogen.gcc.rug.nl
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data, which encompassed 500 cases and 208,308 controls. 
The term “chronic prostatitis” was specifically utilized in 
our investigation. In the course of the analysis, thorough 
adjustments were systematically integrated to account for 
gender, age, the first 10 genetic principal components, 
and the genotyping batch. This meticulous approach 
aimed to facilitate a thorough and well-controlled scru-
tiny of the dataset.

Instrumental variable (IV)
To ensure the accuracy of the results, we screened 
the data extracted from MiBioGen.  As the number of 

eligible IVs (P < 1*10–8) was extremely small, a signifi-
cance threshold of less than 1*10–5 was selected as the 
p-value [13]. Furthermore, in order to prevent any linkage 
disequilibrium (LD) between gene tools, we established 
the chain imbalance threshold r2 < 0.001 and clumping 
distance = 10,000 kb. The F statistics for individual bacte-
rial taxa were calculated by applying the given formula: 
F = R2 × (N − K − 1)/(1 − R2) × K, to assess the efficacy of 
the selected SNPs. Here, R2 denotes the proportion of 
exposure variance explained by the IVs, N refers to the 
sample size, and K represents the number of SNPs [14]. 
A F-statistic value equal to or greater than 10 indicates 

Fig. 1  a Three assumptions of Mendelian randomization. b Flowchart of this Mendelian randomization study
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the lack of substantial instrumental bias, signifying that 
the instrumental variables employed in the analysis 
exhibit a robust and reliable influence on the outcomes 
under examination. Hence, SNPs having < 10 F value were 
removed as they lacked adequate validity [15]. Addition-
ally, the presence of palindromic variation entails that 
the plus and minus chains will exhibit identical alleles, 
specifically A and T (or C and G). As a result, the exclu-
sion of palindromic SNPs was implemented to mitigate 
the risk of potential disruptions in strand orientation or 
allele coding, especially in instances involving A/T or 
G/C alleles [16]. In the end, PhenoScanner (http://​www.​
pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) was screened to fur-
ther assess whether the IVs were potentially associated 
with confounders or risk factors for CP/CPPS in order 
to prevent potential pleiotropy. The final MR estimations 
were obtained by rerunning the MR analysis after exclud-
ing the IVs that did not meet the described criteria above.

Statistical analysis
Following the alignment of the SNPs in the data source 
with matching alleles, we conducted a two-sample MR 
analysis. The MR analysis utilized the Wald ratio method 
for bacterial genera that had a single IV. To assess the 
connections between CP/CPPS and the human gut 
microbiota, we employed the inverse-variance weighted 
(IVW) approach as the primary method for MR analy-
sis. In  addition,  MR-Egger  regression  and weighted 
median analysis (WME) were  also  considered  as sec-
ondary references.  For a comprehensive assessment of 
the influence of gut microbiota on CP/CPPS, the IVW 
technique adopted a meta-analysis approach, utilizing 
Wald estimates for each SNP. In the absence of horizon-
tal pleiotropy, the IVW findings would remain impar-
tial. MR-Egger regression method was following in this 
study to determine the horizontal pleiotropy, wherein the 
p-value greater than 0.05 confirms that each SNP adheres 
to the Mendelian hypothesis, reinforcing the reliability of 
outcomes derived via IVW approach. Conversely, the sig-
nificance level < 0.05 for the MR-Egger intercept suggests 
the potential presence of directional pleiotropy, prompt-
ing a cautious interpretation of the IVW results.  The 
accurate estimation of a causal connection can be 
achieved by the weighted median approach when valid 
instrumental variables contribute not less than 50% of the 
weights. Additionally, we employed MR-PRESSO analy-
sis, a method that detects and adjusts for the impacts of 
diverse outliers within the instrument.  Heterogeneity 
of IVs was estimated using Cochran’s IVW Q statistics 
[17]. Existence of atypical IVs was confirmed through the 
analysis known as “leave-one-out,” excluding individual 
instrumental SNP one by one [18].

To examine the potential reverse causal relationship 
between CP/CPPS and gut microbiota, we embarked 
on a reverse MR analysis specifically targeting bacte-
ria that had initially demonstrated a causal association 
with CP/CPPS in the primary MR analysis. Notably, this 
method helped us to scrutinize the bidirectional influ-
ences between CP/CPPS and gut microbiota, along with 
a detailed overview of their interplay.  The methodolo-
gies and configurations utilized remained consistent with 
those of progressive MR. Regrettably, due to the insuffi-
cient number of IVs, the reverse MR analysis was failed 
to conduct.

Conducting all statistical analyses within the R software 
(version 4.1.2), we employed the TwoSampleMR (ver-
sion 0.5.6) and MR-PRESSO packages (version 1.0) for 
the execution of MR analyses. Additionally, the R pack-
age “forestploter” was utilized to create specific graphical 
representations, ensuring a comprehensive and visually 
accessible presentation of the results.

Results
We screened 2197 SNPs as instrumental variables (IVs) 
for 196 bacterial taxa based on the IV selection criteria. 
The breakdown of these taxa, as presented in Table  1, 
revealed the distribution across various taxonomic lev-
els, encompassing 9 phyla (105 SNPs), 16 classes (191 
SNPs), 20 orders (235 SNPs), 32 families (385 SNPs), 
and 119 genera (1,281 SNPs). All the F statistics of the 
IVs were over 10. The results of the MR analysis for IVs 
are visually illustrated in the circus plot (Fig. 2) and fur-
ther elaboration is provided in Additional file  1: Excel 
1. According to primary IVW analysis, one family, four 
genera showed significant association with CP/CPPS. 
Specifically, genus Christensenellaceae (OR = 0.39, 95% 
CI 0.17–0.87, P = 0.02), genus Eisenbergiella (OR = 0.62, 
95%CI 0.40–0.97, P = 0.04), genus Hungatella (OR = 0.49, 
95%CI 0.28–0.85, P = 0.01) and genus Terrisporobacter 
(OR = 0.39, 95%CI 0.20–0.75, P = 0.00) exhibited a pro-
tective impact on CP/CPPS, while family Prevotellaceae 
(OR = 1.78, 95%CI 1.01–3.15, P = 0.05) is tentatively 
linked to a higher likelihood of developing CP/CPPS 
(Fig.  3). The results confirmed the relationship between 

Table 1  Selection of IVs after quality control

Taxonomies Taxa NSNP Palindromic IVs

Phylum 9 126 21 105

Class 16 233 42 191

Order 20 293 58 235

Family 32 468 83 385

Genus 119 1579 298 1281

Total 196 2699 502 2197

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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specific microbial taxa and the susceptibility to or protec-
tion against CP/CPPS, shedding light on potential micro-
bial contributors to the etiology of this condition.

The outcomes of sensitivity analyses listed in Table  2 
provide a comprehensive overview. Cochran’s Q-test 
results, as presented, revealed the absence of signifi-
cant values for any of the gut microbiota, signifying that 
there was no heterogeneity among the IVs. The exami-
nation of MR-Egger’s intercept yielded results that were 

statistically insignificant, indicating the absence of hori-
zontal pleiotropy in the analyzed data. Furthermore, 
leave-one-out analysis affirms the obtained results, dem-
onstrating that individual SNPs did not unduly influ-
ence the overall results, as depicted in Fig. 4. In essence, 
these collective findings consistently point toward a 
strong connection between specific gut microbiota and 
CP/CPPS, underpinned by genetic factors. The meticu-
lous analyses conducted, coupled with the nonexistence 

Fig. 2  The circus plot showing all results of MR analysis and sensitivity analysis between GM and CP/CPPS
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of heterogeneity and horizontal pleiotropy, enhance the 
confidence in the reliability and robustness of the estab-
lished causal connection between specific gut microbiota 
and CP/CPPS.

Discussion
CP/CPPS is a complicated and multifaceted disorder with 
an uncertain origin. An increasing body of research has 
discovered a potential connection between the gastro-
intestinal microbiome and various illnesses in humans. 
Since the brain-gut-bladder axis theory emerged, numer-
ous clinical and animal model studies have validated the 
correlation between the gut microbiome and bladder 
symptoms. In recent years, there has been a growing 
acknowledgement of the connection between gut micro-
biota and CP/CPPS [19, 20]. But the exact mechanism 
is not clear. Intestinal flora may influence CP/CPPS via 
mediating immune inflammatory response, neurotrans-
mitters, androkinin, and direct infection.

Urinary disorders, such as urinary urgency, increased 
urination frequency, and difficulty initiating or complet-
ing voiding, were commonly observed in patients with 
gastrointestinal disorders [21]. Leue et al. have reported 
that there is a connection between functional bladder dis-
orders and bowel disease [22]. Considering the frequent 
occurrence of urinary and colonic dysfunctions together, 
as well as the possibility of one organ affecting the 

functioning of the other, it can be concluded that there 
is an interaction between these two organs. Gut-bladder 
axis is the most famous hypothesis regarding bladder-
gut cross-talk. The gut microbiota play a vital role as an 
essential mediator in the bidirectional communication 
between the gastrointestinal tract and the urinary blad-
der. In these exchanges, inflammasomes, complexes of 
multiple proteins that can trigger inflammatory reac-
tions, and metabolites produced by the microbiome like 
short-chain fatty acids (SCFAs), have a significant impact.

SCFAs have become significant microbial byprod-
ucts involved in the regulation of immune inflamma-
tion and metabolism through interactions with the gut 
microbiome and host receptors [23]. Within the micro-
environment of the proximal colon, three noteworthy 
SCFAs—acetate, propionate, and butyrate—hold promi-
nence, with concentrations ranging from 50 to 120 mM 
(mM), showcasing considerable variability within this 
specified concentration range [24]. They are generated 
by two primary categories of bacteria, specifically Bac-
teroidetes and Firmicutes [25]. SCFAs display a versatile 
capability to influence various aspects of immune cell 
function, as they possess the ability to modulate gene 
expression, alter cellular differentiation processes, impact 
chemotaxis, regulate cellular proliferation, and even 
induce apoptosis within immune cells, actively partici-
pating in the comprehensive process of immune response 

Fig. 3  Forest plot of the associations between genetically determined 5 gut microbial genera with the risks of CP/CPPS

Table 2  MR estimates for the association between gut microbiota and CP/CPPS

Classification Nsnp SE P-val OR (95%CI) Heterogeneity Pleiotropy MR-PRESSO

Q Q-pval Egger-intercept P-val

family.Prevotellaceae.id.960 15 0.291 0.047 1.782 (1.007–3.152) 9.790 0.777 0.018 0.799 0.799

genus.ChristensenellaceaeR.7group.id.11283 9 0.416 0.023 0.387 (0.171–0.875) 5.875 0.661 0.126 0.233 0.694

genus.Eisenbergiella.id.11304 11 0.223 0.035 0.625 (0.403–0.969) 4.789 0.905 -0.197 0.304 0.906

genus.Hungatella.id.11306 5 0.280 0.012 0.493 (0.285–0.854) 2.113 0.715 0.318 0.260 0.767

genus.Terrisporobacter.id.11348 5 0.337 0.005 0.387 (0.200–0.749) 1.376 0.848 -0.103 0.368 0.839
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[26]. According to the findings presented by Du HX et al., 
the occurrence of gut dysbiosis plays a contributory role 
in generating an imbalance in the differentiation of Th17 
and Treg cells within the context of experimental autoim-
mune prostatitis (EAP). This imbalance, observed in the 
differentiation patterns of these immune cells, is intri-
cately linked to the lower levels of propionic acid—a sig-
nificant SCFA originated from gut microbiota [27]. Chen 
et  al. observed that the oral consumption of glycated 
whey proteins may induce a prebiotic effect, leading to 
heightened levels of Allobaculum, Anaerostipes, Bacte-
roides, Parabacteroides, and Prevotella, while concur-
rently lowering the levels of Adlercreutzia and Roseburia 
at the genus level. Consequently, this led to a decrease in 
the immune inflammatory response of mice in the EAP 
model [28].

Interestingly, 4 GM taxa, including family Chris-
tensenellaceae, genus Eisenbergiella, genus Terrisporo-
bacter, and genus hungatella of our results, all belong to 
the phylum Firmicutes. In the healthy population, there 

was a greater presence of Christensenellaceae, which 
showed an inverse correlation with inflammation [29]. 
Kropp C et al. reported that Christensenellaceae minuta 
has the ability to inhibit intestinal harm, decrease inflam-
mation in the colon, and facilitate the healing of the 
mucosal layer in both in  vitro and in  vivo experiments 
[30]. Similarly, Relizani K et al. presented a comprehen-
sive screening procedure that integrates in  vitro and 
in  vivo tests to systematically choose a viable strain of 
Christensenellaceae minuta with potent immunomodu-
latory characteristics. This indicates that Christensenella 
minuta has the potential to be utilized as a future bio-
therapy for Crohn’s disease [31]. The relationship 
between Genus Eisenbergiella and eubiosis is likely due 
to its ability to generate significant metabolic products 
such as butyrate, acetate, lactate, and succinate, which 
have a nourishing impact on the mucosa[32]. Moreover, 
the genus Eisenbergiella might be strongly associated 
with the observed reduction in inflammation of intestine 
among mice with ulcerative colitis [33]. In accordance 

Fig. 4  Leave-one-out plots for the causal association between gut microbiota and CP/CPPS
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with Eisenbergiella, the genus Terrisporobacter was found 
to have significantly linked to SCFAs and oxidative stress 
in a study involving animals[34]. Qiao J et  al. reported 
that rapeseed bee pollen can inhibit pathogenic bacteria 
and enhance probiotics, particularly in the Firmicutes-to-
Bacteroidetes (F/B) ratio to alleviate chronic non-bacte-
ria prostatitis [19], which is basically consistent with our 
findings. However, to the best of our knowledge, there 
have been no prior examinations exploring the potential 
link between the genera Eisenbergiella/Terrisporobacter 
and CP/CPPS.

CP/CPPS may be also related to abnormal release 
of neurotransmitters. The main neurotransmitters 
involved in the occurrence and development of CP/
CPPS are “5⁃hydroxytryptamine(5⁃HT), noradrena-
line (NE), and dopamine (DA).” They have a significant 
impact on this condition. Statistics show that about 
40% of CP/CPPS men suffer from premature ejacula-
tion [35]. Moreover, 78% of CP/CPPS patients exhibit 
psychological distress, including anxiety and depression 
[36]. The concentrations of 5⁃HT and various other neu-
rotransmitters in both peripheral blood and the brain 
may be subject to influence by the gut microbiota. Yano 
et al. showed that the 5⁃HT level in germ-free mice was 
lower than that in healthy mice. When normal intestinal 
flora was transplanted into germ-free mice, it was possi-
ble to restore it to normal levels [37]. Du et al. reported 
that the EAP mice showed obvious depression-like 
behavior and the composition of intestinal bacteria such 
as Dantamoesophagota, Ruminococcus, and Bacteroi-
detes was significantly different from that in normal mice. 
Fecal bacteria from EAP mice transplanted into pseud-
ogerm-free mice treated with antibiotics could aggravate 
the depression-like behavior of the host [38]. Disrupted 
neurotransmitter release can impact the functioning of 
the nervous system, leading to symptoms of depression 
and sexual dysfunction in individuals with CP/CPPS. 
5⁃HT reuptake inhibitors can be used for targeted treat-
ment [39].

Besides, gut microbiota correlate with androgen levels, 
which regulates prostate. Sufficient androgens can pro-
mote prostate growth and development, maintain secre-
tion and differentiation function of prostate. Androgen 
imbalance can cause CP, the mechanism may be caused 
by the decrease of androgen content level, which has 
the effect of inhibiting humoral immunity, and when its 
content is reduced, it can cause autoimmune reaction. 
In addition, androgen can promote prostate autophagy, 
while high levels of estrogen inhibiting autophagy [40, 
41]. Once androgen level decreased and the balance of 
male and female hormones disturbed, prostate cells may 
be damaged due to insufficient autophagy, inducing pros-
tate inflammation. Poutahidis et al. found that the serum 

testosterone level was significantly increased after feed-
ing Lactobacillus reuteri to mice [42]. Konkol Y et  al. 
induced nonbacterial chronic prostate inflammation 
(CPI) in the Wistar rat strain for 18 weeks with subcuta-
neous testosterone and 17β-estradiol (E2) hormone pel-
lets.  A decrease in Bacteroides uniformis, Lactobacillus, 
and Lachnospiraceae levels was observed in rats suffer-
ing from CPI. In the fecal samples from those rats, SCFA 
butyric-,  valeric-,  and caproic-acid concentrations were 
also decreased [20]. These results and theories are similar 
to our findings. Liu et al. demonstrated that poria cocos 
polysaccharides and finasteride had the ability to alter the 
composition of intestinal flora in a rat model of CP/CPPS. 
This led to a decrease in the levels of pro-inflammatory 
cytokines (TNF⁃α, IL⁃2, and IL⁃8). Simultaneously, there 
was a reduction in androgens (dihydrotestosterone and 
testosterone), resulting in an improvement in both pros-
tatic inflammation and histological damage, which is sug-
gested that CP/CPPS can be treated by regulating the gut 
microbiota and androgen level [43].

Finally, gut microbiota may affect CP/CPPS through 
direct infection. Although it has not been confirmed that 
there is a direct pathway between the rectum and the 
prostate to explain how gut microbiota infuse the uro-
genital tract. The two organs are anatomically adjacent, 
and there is the possibility of “direct infiltration” [44].

In the current study, we utilized the summary data of 
gut microbiota from the MiBioGen Consortium’s exten-
sive GWAS meta-analysis and the GWAS Catalog’s sum-
mary data of CP/CPPS to investigate the causal link. 
Mendelian randomization and sensitivity analysis were 
performed to assess the causal relationship between gut 
microbiota and CP/CPPS. Protective effects against CP/
CPPS were observed in various genera of gut microbiota, 
including ChristensenellaceaeR.7group, Eisenbergiella, 
Hungatella, Terrisporobacter (OR < 1), whereas the family 
Prevotellaceae (OR > 1) had the opposite effect.

According to recent researches, rheumatoid arthritis 
[45], periodontitis [46], and intestinal and vaginal dysbio-
sis [47–49] are linked to the higher presence of Prevotel-
laceae family members in various microbial ecosystems. 
Prevotella colonization may lead to metabolic alterations 
in the microbiome, resulting in decreased IL-18 synthe-
sis. This, in turn, exacerbates intestinal inflammation and 
contributes to the development of systemic autoimmun-
ity. Regrettably, given the intricacy of gut microbiota, 
there is indeed a lack of agreement between our findings 
and the current supporting data. For example, Shoskes 
DA et  al. used 16S rRNA sequencing, discovering 
reduced gut microbiota richness and diversity in CPPS 
patients compared to controls, along with markedly 
diminished levels of Prevotella [50]. Hence, additional 
research is required to authenticate these connections.
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Our research brings distinct strengths. Firstly, through 
a two-sample MR analysis, we amplified the influence 
of gut microbiota on CP/CPPS causality. Secondly, the 
strict quality control procedures and robust MR methods 
applied ensure the reliability and stability of the causal 
estimates. Thirdly, the identification of potential causal 
links through the IVW method serves as a guiding bea-
con for further exploration into specific gut bacteria. This 
enlightens the investigation of their roles in shaping the 
intricate landscape of CP/CPPS development.

However, this task also possesses compelling con-
straints. While meeting the MR assumptions by ensur-
ing the strong correlation of instrumental variables with 
gut microbiota taxa, our study remains vulnerable to the 
absence of a guarantee against weak instrumental bias. 
Firstly, the relatively modest sample size of CP/CPPS may 
cause some bias in the selection process of IVs, and there 
may be weak instrumental variables, which may reduce 
the reliability of the results, impeding the full scope of 
our research insights. Secondly, the reverse MR analysis 
was impeded by a limited number of IVs, preventing the 
establishment of a potential reciprocal causal connection 
between CP/CPPS and gut microbiota. Thirdly, although 
MR techniques can offer fresh perspectives on the causal 
relationships between exposure characteristics and out-
come characteristics, the accuracy of estimating the 
strength of these associations may be limited. Therefore, 
further investigation is necessary to validate the results. 
Fourthly, it is crucial to recognize that the predominant 
participants in this GWAS hail from European ancestry. 
This demographic specificity raises a noteworthy consid-
eration—the outcomes of this study may not be univer-
sally applicable to ethnically diverse populations. Finally, 
due to the lack of specific country, region, age, and other 
information, stratification analysis cannot be carried out, 
which may cause bias to research results. These limita-
tions currently present hurdles in definitively ground-
ing the cause–effect correlation between gut microbiota 
and CP/CPPS, urging further research endeavors that 
encompass a broader spectrum of ethnic backgrounds for 
comprehensive insights. In the future, if a GWAS data-
set of CP/CPPS is publicly released with a larger number 
of participants and SNPs, or from other ethnic groups, 
it is hoped that additional researches can confirm these 
connections.

Conclusions
Our study assessed the potential causal role of gut 
microbiota on the risk of CP/CPPS. Various gut micro-
biota, such as genus ChristensenellaceaeR.7group, 
Eisenbergiella, Hungatella, Terrisporobacter, and family 
Prevotellaceae, emerged as potential associates with the 

occurrence of CP/CPPS. These findings hold the prom-
ise of introducing fresh perspectives for understanding 
the genesis and exploring innovative approaches for the 
management of CP/CPPS.
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