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Abstract 

Background  The unifying hypothesis of competing endogenous RNA (ceRNA) wherein crosstalk between coding 
(mRNAs) and long non-coding RNAs (lncRNAs) via microRNA (miRNA) response elements, creates a pervasive regu-
latory network across the transcriptome, has been implicated in complex disorders including schizophrenia. Even 
with a wide range of high-throughput data, the etiology of schizophrenia remains elusive, necessitating a more holis-
tic understanding of the altered genetic landscape, shifting focus from solely candidate gene studies and protein-
coding variants.

Objective  We developed lncRNA-associated ceRNA networks to elucidate global molecular/regulatory signatures 
underlying schizophrenia using diverse data in the public domain.

Methods  Microarray dataset associated with peripheral blood mononuclear cells (PBMCs) of schizophrenia and con-
trol patients was used to identify differentially expressed mRNAs. Weighted gene co-expression network analysis 
(WGCNA) was used to identify highly correlated hubs, and genes from these overlapping Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and gene ontology (GO) term genesets were considered key mRNA players. StarBase, 
Human MicroRNA Disease Database, and miRWalk were used to derive mRNA-miRNA and miRNA-lncRNA relation-
ships. Finally, the key mRNAs, interacting lncRNAs and miRNAs were chosen to reconstruct sub-ceRNA networks 
based on network centrality scores.

Results  Bioinformatics analysis revealed the involvement of three differentially expressed mRNAs, namely ADRA1A, 
HAP1 and HOMER3 in the schizophrenia ceRNA networks with lncRNAs NEAT1, XIST, and KCNQ1OT1 modulating their 
activity by a suggestive sequestering of miR-3163, miR-214-3p and miR-2467-3p, respectively.

Conclusions  Furthermore, based on contextual evidence, we propose how ceRNAs could orchestrate crosstalk 
between neurostructural dynamics and immune/inflammatory processes and enable unifying these disparate models 
of schizophrenia etiology.
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Introduction
Schizophrenia presents itself as a severe psychiatric dis-
order in early to late adolescence with a complex mani-
festation of positive symptoms (e.g., hallucinations and 
delusions), negative symptoms (e.g., social withdrawal, 
blunted affect) and pervasive cognitive deficits associated 
with functional decline [1, 2]. Though not as common 
as other psychiatric disorders with a lifetime prevalence 
of 0.32% [3] affected worldwide, it executes a high toll 
on society via multifaceted indices such as economic 
liabilities, human rights violations and suicides [4, 5]. 
Its pathophysiology is perplexing as uncovered through 
advanced genomic [6], developmental neurobiology [7], 
and systems biology investigations [8, 9] with irregulari-
ties in cellular, molecular, neuroanatomical, and neuro-
physiological domains [10] being implicated. This diverse 
milieu of factors and their enigmatic interplay contrib-
utes to its elusive etiology.

As far as the genetics of schizophrenia are concerned 
the strong links between schizophrenia and over 100 sus-
ceptibility loci, along with identified CNVs and SNVs, 
show promise. Thousands of common alleles with small 
effects collectively contribute substantially to schizo-
phrenia risk. These findings may lead to new therapeutic 
insights. However, we must remember: (i) associations 
between genetic variants and schizophrenia do not nec-
essarily imply causal pathways; (ii) many associations 
extend beyond schizophrenia to other mental disorders. 
The specifics of schizophrenia’s origins and genotype-
environment interactions are largely unknown, warrant-
ing caution in assessing the various genetic contributors 
to its development [11]. The evolution of pharmacologi-
cal interventions to alleviate the patient’s condition has 
been extremely slow since the advent of the first antip-
sychotics [12]. Efforts toward biomarker discovery for 
early identification of individuals at risk, improving 
diagnostic accuracy and precision, predicting treatment 
response, and to obtain new druggable targets are nota-
ble [13]. However, the prevalent body of work regarding 
this has mainly focused on the coding part of the genome 
but the mosaic manifestation of schizophrenia war-
rants a far more holistic understanding of the underlying 
pathophysiology.

Toward this end, integrating existing knowledge 
of schizophrenia etiology with the recent shift in our 
understanding of the ncRNAs as junk/black matter of 
the genome to being vital regulatory molecules is of 
prime importance [14–16]. By virtue of their ability to 
silence/alter expressions of multiple targets simultane-
ously, ncRNAs can affect entire signaling pathways [17]. 
Not surprisingly, understanding the role of ncRNAs in 
physiological and pathological conditions has signifi-
cantly enriched our recognition and understanding of 

alternate/additional molecular pathways involved. More 
than a hundred miRNAs and though in its infancy ∼ 30 
lncRNAs have been found dysregulated across the pre-
frontal cortex, superior temporal gyrus, parietal cortex, 
amygdala, serum, and peripheral blood in schizophre-
nia [18]. SNPs in both miRNAs and lncRNAs have also 
been shown to have significant associations with the 
schizophrenia phenotype [19]. Collectively, substantial 
evidence has been generated as to the dysregulation of 
ncRNAs in schizophrenia and that the disruption of the 
networks they regulate is critical to schizophrenia as they 
are enriched with target genes pertaining to various neu-
rophysiological processes [20, 21]. Considering all these, 
a new paradigm wherein the clinical utility of ncRNAs 
in the form of a next-generation is now being seriously 
assessed [22].

Nevertheless, making sense of the huge amount of 
data on ncRNAs in the public domain for targeted thera-
peutics is a herculean task [23–26]. Integrating the raw 
sequencing data from multiple sources and fitting them 
under logical models is one way of understanding how 
lncRNAs collectively interact with the coding genome. 
A possible route is the ceRNA theory, wherein ncRNAs 
such as lncRNAs that share common MREs with mRNAs 
can act as siphons and competitively sequester miRNAs, 
thus forming a complex regulatory network [27]. Any dif-
ferential expression in these RNAs harboring common 
MREs could thereby lead to imbalances in the regula-
tory network and disease development [28–30]. ceRNA 
networks developed for diseases such as sarcopenia have 
identified lncRNAs, mRNAs and miRNAs which add to 
disease risk with very high accuracy [31]. Several lines 
of evidence have already shown a close association of 
ceRNA networks with several forms of cancer but very 
little is known for schizophrenia [32]. As substantial evi-
dence of an altered immune landscape in schizophrenia 
has accumulated [33–35] and recent research has solidi-
fied the probable role of lncRNAs in orchestrating an 
altered immune landscape in the disease [36], we nar-
rowed down the analysis to focus on identifying immune/
inflammatory signals by using a relevant expression data-
set from publicly available database with the propensity 
to identify these peripheral signals, if any and performed 
bioinformatics analyses to highlight the lncRNA-asso-
ciated ceRNA networks. It is hypothesized that such 
strategies may potentially reveal putative novel pathways 
and/or give credence to erstwhile proposed theories for 
disease etiology. These may identify/uncover novel can-
didate biomarkers and aid in understanding molecular 
pathways underlying schizophrenia.

The novelty of our study lies in usage of HTS mRNA 
expression profile followed by hub module identification 
via WGCNA, PPIN, enrichment, and ceRNA network 
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analyses. This study is the first of its kind where schizo-
phrenia biomarkers are extrapolated via a robust and 
multi-stage protocol. These predictive biomarkers may 
be beneficial for patients’ early diagnosis and treatment 
as they play a vital role in schizophrenia pathogenesis. 
Further validation is required via wet laboratory experi-
mentations in order to prove the efficacy and accuracy 
of these biomarkers, which comes in as a limitation of 
the present study. Also, the availability of fewer datasets 
poses another limitation and a comprehensive meta-anal-
ysis study would be much more beneficial in near future.

Materials and methods
Selection of schizophrenia‑associated mRNA expression 
profile and DEA
We accessed NCBI-GEO [37] (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) to retrieve schizophrenia-associated mRNA 
expression profiles utilizing “schizophrenia” as a suit-
able keyword. All results were further shortlisted as per 
the following inclusion criteria: (i) the dataset(s) must 
be “ncRNA expression profiling by array” type with all its 
samples belonging to “Homo sapiens”; (ii) the dataset(s) 
must include raw as well as processed data; (iii) the 
dataset(s) must be submitted to GEO from last 10 years 
till present (i.e., 2012 to 2024); (iv) the dataset(s) must 
contain at least 25 samples; (v) dataset(s) must com-
prise schizophrenia and healthy control patient samples; 
(vi) patient samples within dataset(s) must be acquired 
from PBMCs. Studies devoid of any review articles, 
abstracts, case reports, non-human samples and cell-
line-based experimental study designs were excluded. 
The series matrix file of the selected dataset was down-
loaded followed by further QCs (i.e., normalization and 
log2transformation) . The ARSyNseq function available 
within the NOISeq package [38, 39] was utilized (with 
unknown batch settings) to acquire batch-corrected 
expression values in R. Probe IDs were mapped to their 
corresponding HGNC symbols via ArrayExpress online 
portal [40] (https://​www.​ebi.​ac.​uk/​biost​udies/​array​
expre​ss) with respect to the sequencing platform of the 
selected dataset. An average was taken for the expres-
sion value of genes mapping to more than one probe ID 
to avoid redundancy. An unpaired two-sample t test was 
utilized for computing p-values and log2(fold change) 
values of all genes between schizophrenia and normal 
patients via limma package in R [41]. All p-values were 
also corrected via BH method in R. The genes were con-
sidered as differentially expressed corresponding to a 
BH− p− value < 0.01 and log2(fold change) > 0.5 
[42]. DEGs having log2

(

fold change
)

> 0.5 and 
log2

(

fold change
)

< −0.5 were designated as upregu-
lated and downregulated, respectively. PCA method was 
utilized to assess the sample aggregation degree. It is an 

unsupervised method that can be used to understand 
the difference between two or more sample groups [43, 
44]. Unsupervised PCA/dimensionality reduction was 
performed via R software based on the DEGs expression 
with respect to samples [45, 46].

WGCN construction and hub module selection
WGCNA implemented in R [45, 47] assisted in con-
structing a WGCN from schizophrenia-associated DEGs 
followed by the detection of representative modules. Pri-
marily, goodSamplesGenes function was used to check 
the data for any missing values and LV genes. Next, the 
pickSoftThreshold function assisted in choosing β based 
on SFT. The power adjacency function assisted in trans-
forming similarity matrix into a weighted adjacency 
matrix. Thereafter, we computed TOM and dissTOM 
followed by clustering dendrogram (hierarchical) con-
struction via hclust function. DTC algorithm was applied 
to identify gene modules from branches of the tree [48]. 
ME and MEdiss were computed followed by joining 
module(s) with similar high-expression profiles based 
on ME dendrogram. The module with significantly high-
est correlation between MM and k.in was finalized, and 
the genes with MM > 0.9 were regarded as hub genes for 
further analysis.

PPIN, pathway, and GO term enrichment analyses
All the DEGs obtained from WGCNA hub module were 
submitted to the STRING [49] (https://​string-​db.​org/) 
v11.5 database for constructing PPIN corresponding to 
medium confidence (i.e., interaction score > 0.4 ). This 
network was further visualized using Cytoscape v3.9.1 
[50]. In line with recent integrative OMICS approaches 
[44, 46, 51–53], all significant ( p− value < 0.05 ) path-
ways and GO terms using KEGG [54], GO-BP, GO-MF, 
and GO-CC [55] libraries available within Enrichr web 
server [56, 57] (https://​maaya​nlab.​cloud/​Enric​hr/) were 
compiled corresponding to WGCNA hub module DEGs.

Schizophrenia‑associated 3‑node ceRNA network 
construction and topological analysis
The miRNAs interacting with the functionally enriched 
schizophrenia-associated hub mRNAs were acquired 
from miRWalk 2.0 [58] (http://​mirwa​lk.​umm.​uni-​heide​
lberg.​de/) and ENCORI databases [59] (https://​rnasy​
su.​com/​encori/), respectively. Combined miRWalk and 
ENCORI make up for each others drawbacks thereby 
leading to a robust prediction scheme. ENCORI is the 
second most cited database for such predictions, and 
miRWalk harbors experimental data from luciferase 
assays, microarrays, NGS, pSILAC, and western blot 
experiments. Furthermore, where miRWalk made up for 
ENCORI’s last update of 2021 by being updated twice 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
https://string-db.org/
https://maayanlab.cloud/Enrichr/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://rnasysu.com/encori/
https://rnasysu.com/encori/
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a year and containing predictions from MirTarBase, 
ENCORI was crucial in understanding the lncRNA inter-
actions which miRWalk lacked [60]. miRNAs binding 
on 3′UTR region, having an interaction score > 0.95 , 
and binding gap = 1 were considered as significant and 
retrieved from miRWalk. The list of miRNAs were vali-
dated from available literature and those associated with 
schizophrenia were finally retained. lncRNAs interacting 
with schizophrenia-associated miRNAs were cataloged 
using ENCORI. All data were extracted using a low strin-
gency of >= 1 in both CLIP data and degradome data. 
Finally, with multiple lines of evidence indicating that TFs 
may also be involved in ceRNA crosstalk, TFs interacting 
with the hub mRNAs as their targets were acquired using 
TF2DNA [61] (https://​www.​fiser​lab.​org/​tf2dna_​db/) at a 
significant p− value < 0.0001.

Results
Schizophrenia‑associated mRNA expression profile 
selection and DEA
Based on the abovementioned inclusion and exclusion 
criteria, a schizophrenia-associated mRNA expression 
profile possessing accession number GSE54913 was 
selected. It comprised 12 healthy controls and 18 schizo-
phrenia PBMC samples. The QC analysis revealed that 
the expression values were already normalized and log2
-transformed in the preprocessed series matrix file. 
Post batch correction, all the probe IDs were mapped 
to their corresponding HGNC symbols (protein-cod-
ing) with respect to Arraystar Human LncRNA micro-
array V2.0 platform. Finally, the expression values 
corresponding to duplicate gene symbols were aver-
aged leading to 12971 unique genes. Corresponding to 
a BH− p− value < 0.01 and 

∣

∣log2(fold change)
∣

∣ > 0.5 , 
2169 DEGs were finally screened. The distribution of 
upregulated ( n = 950 ) and downregulated ( n = 1219 ) 
schizophrenia-associated DEGs along with nonsignifi-
cant genes ( n = 10802 ) were visualized using a volcano 
plot (Fig. 1A). The log2 (fold change) value of total genes 
varied with respect to the −log10 ( BH− p− value ). 
CCL22 [ log2(fold change) = 2.49 ] and TFF1 
[ log2(fold change) = −2.12 ] reported the highest fold 
change values across upregulated and downregulated 
DEGs. Heatmap plot shows the expression distribution 
of top 10 up and top 10 downregulated DEGs across all 
patient samples (Fig. 1B). Interestingly, TNFRSF, PROK2, 
DUSP4, CCL22, PRICKLE2, MDGA1 reported previously 
as associated with schizophrenia [62–67] were among 
the top 10 up and top 10 downregulated DEGs. Among 
all the DEGs, PGK1 ( BH− p− value = 3.81× 10−14 ) 
was observed to be the most significant. All the DEG 
expression variability was dimensionally reduced using 
PCA [44–46, 68] with respect to sample type leading to 

distinct cluster formations (Fig. 1C). % of explained vari-
ances accounted for by top 5 PCs is shown by a Scree plot 
in Fig. 1D. We observed a clear separation between con-
trol and schizophrenia sample groups along PC1 ( 58.8% ) 
and PC2 ( 7.9% ) dimensions, respectively.

WGCN construction and hub module selection
The expression data of 2169 schizophrenia-associated 
DEGs and sample information were given as an input 
to WGCNA. WGCN was established at β = 12 (cor-
responding to R2

= 0.8 ) with no sample outliers and LV 
genes. Figure  S1A–D shows plots for β in consideration 
with SFT criteria. The clustering dendrogram (hierar-
chical) and DTC algorithm gave fourteen color-coded 
modules (i.e., black, blue, brown, cyan, green, gree-
nyellow, magenta, pink, purple, red, salmon, tan, tur-
quoise, yellow) ranging in sizes from 34 to 522 (Fig. 2A). 
The modules with highly co-expressed gene patterns 
were merged together by cutting the dendrogram at a 
height of 0.2 (which corresponds to a correlation of 0.8 ) 
as shown in Fig.  S2. After merging, fourteen modules 
were clubbed into four color-coded modules (i.e., black, 
brown, salmon, magenta) ranging in sizes from 36 to 
1152 . The clustering dendrogram (hierarchical) based 
on dissTOM and ME with original ( n = 14 ) and merged 
( n = 4 ) color modules is shown in Fig.  2B. WGCN is 
shown as a heatmap plot depicting TOM among merged 
color modules in Fig.  S3. Based on the most significant 
correlation between MM and k.in (Table S1), the brown 
module ( MM vs k.in = 0.85, p− value = 6.0× 10−155 ) 
was picked as the hub module. Scatterplot of MM versus 
k.in across brown module is shown in Fig. 2C. Heatmap 
of brown module DEGs along with their corresponding 
ME levels is shown in Fig. 2D. Finally, a total of 119 DEGs 
were identified from the brown hub module correspond-
ing to MM > 0.9.

PPIN, pathway, and GO term enrichment analyses
A total of 118 out of 119 DEGs from hub module suc-
cessfully mapped to their corresponding protein 
names via STRING database. Corresponding to an 
interaction score > 0.4 , the PPIN comprised 35 nodes 
and 27 edges as shown in Fig. S4. Figure S5 shows cen-
trality distributions like betweenness, closeness, ND, TC, 
NC, and ASPL of PPIN. We entered all 119 DEGs from 
hub module into Enrichr. A total of 11 , 16 , 37 , 12 KEGG 
pathways, GO-CC, GO-MF, GO-BP terms were obtained 
(Tables S2–S5) corresponding to p− value < 0.05 . Venn 
plot as shown in Fig. 3A illustrates three overlapping hub 
genes (i.e., ADRA1A, HAP1, HOMER3) between signifi-
cant pathway, GO-BP, GO-MF, and GO-CC genesets. 
The box-and-whisker plots show the relative expression 
distribution of ADRA1A, HAP1, and HOMER3 across 

https://www.fiserlab.org/tf2dna_db/
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Fig. 1  A Volcano plot showing the distribution of 2169 schizophrenia-associated significant DEGs (upregulated: 950 + downregulated:1219 ) 
and nonsignificant ( 10802 ) genes across GSE54913 dataset. B Annotation heatmap showing the expression distribution of top 10 down and top 10 
upregulated schizophrenia-associated DEGs. Cluster dendrograms representing Euclidean distance-based hierarchical clustering for both columns 
and rows are presented along the top and left sides of the plot. Sample type annotation bar is presented at the top of heatmap. C PCA plot showing 
the expression variability of 2169 schizophrenia-associated DEGs across GSE54913 dataset. The relative expression level of all DEGs dimensionally 
reduced in compliance with sample type leading to distinct cluster formations were signified by solid circular points in the plot. Green 
and red-colored points within ellipses signify control and schizophrenia samples. The % of total variation accounted for by the 1st ( 58.8% ) and 2nd 
( 7.9% ) PCs are shown on the x- and y-axes, respectively. D Scree plot displaying the % of explained variances captured by their corresponding PCs
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control and schizophrenia patient samples (Fig.  3B–D). 
As observed, mRNA expression levels of all three hub 
genes were significant across control and schizophrenia 
samples.

Schizophrenia‑associated 3‑node ceRNA network 
construction and topological analysis
The schizophrenia-associated 3-node ceRNA network 
comprised 767 nodes and 3030 edges as shown in Fig. 4. 
The breakup of nodes and edge pairs is summarized in 

Table  S6. Tables  S7−S8 shows top 3 lncRNAs and miR-
NAs within ceRNA network ranked based on between-
ness, degree, and closeness centralities. Within this 
network, degree of lncRNAs, miRNAs and mRNAs 
ranged from 1 to 117 , 2 to 50 , and 24 to 90,respectively. 
Average degrees of lncRNAs, miRNAs, and mRNAs were 
4.64 , 21.18 , 47.66 , respectively. As observed from these 
centralities, ADRA1A hub gene was repressed and regu-
lated by maximum miRNAs while lncRNA NEAT1 inter-
acted with the highest number of miRNAs. Numerous 

Fig. 2  A Clustering dendrogram (hierarchical) of 2169 schizophrenia-associated DEGs clustered based on dissTOM, and fourteen color-coded 
modules obtained using DTC. These modules contained highly similar expression profiles with the following sizes: black ( 117 ), blue ( 428 ), brown 
( 283 ), cyan ( 34 ), green ( 144 ), greenyellow ( 54 ), magenta ( 70 ), pink ( 76 ), purple ( 66 ), red ( 132 ), salmon ( 36 ), tan ( 39 ), turquoise ( 522 ), yellow ( 168 ). 
B Clustering dendrogram (hierarchical) of DEGs clustered based on dissTOM together with original ( 14 ) and merged ( 4 ) module colors. The 
merged module sizes were as follows: brown ( 551 ), black ( 430 ), salmon ( 36 ), magenta ( 1152 ). C Scatterplot showing significant ( p− value < 0.05 ) 
correlation of MM with k.in across brown module genes. D Expression heatmap of brown module genes where the rows and columns correspond 
to genes and samples. The red and green color bands in the heatmap signify higher and lower expression level across brown module genes. Also, 
the corresponding ME expression levels (along y-axis) across all samples (along x-axis) are displayed at the bottom panel of module heatmap 
in the form of barplot
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miRNAs, lncRNAs, and mRNAs participating in higher-
order subnetwork motifs were observed and the top three 
higher-order subnetwork motifs based on highest cen-
trality scores of betweenness, degree, and closeness have 
been reported. The first-ranked subnetwork motif com-
prised one miRNA (miR-3163), one lncRNA (NEAT1), 
and one hub gene (ADRA1A). The second-ranked sub-
network motif comprised one miRNA (miR-214-3p), one 
lncRNA (XIST), and one hub gene (HOMER3). And, the 
third-ranked subnetwork motif comprised one miRNA 
(miR-2467-3p), one lncRNA (KCNQ1OT1), and one hub 
gene (ADRA1A) (Fig. 5A–C). Figure S6 shows centrality 
distributions like betweenness, closeness, ND, TC, NC, 
and ASPL of 3-node ceRNA network.

Discussion
Rare/ultra-rare protein-coding variants de novo or cap-
tured through WES of familial forms of schizophrenia 
have provided insights into a few genes from dopaminer-
gic and neurodevelopmental pathways in schizophrenia 
[69–72] but heritability and etiology remain unexplained. 
Regulatory variants such as ncRNAs are emerging to be 
essential players in our understanding of the biology/

etiology of common conditions such as schizophrenia 
[73, 74]. As one of the most common types of ncRNAs, 
lncRNAs are believed to play a pivotal role in the ceRNA 
machinery and elicit a significant effect in both physi-
ological and pathological mechanisms. Multiple lines of 
evidence have implicated them in various psychiatric dis-
orders [75–77]. Their differential expression in tissue, cell 
types, and developmental levels indicates that lncRNA 
expression is tightly regulated [78–80]. These give further 
credence to the idea that lncRNA-associated ceRNA net-
works may play a crucial role in schizophrenia etiology. 
However, the dire lack of studies on lncRNAs in the pub-
lic domain has made it difficult for bioinformatic analy-
ses to annotate their role in disease biology sufficiently. 
This is exacerbated further by the dearth of HTSeq stud-
ies in schizophrenia, including lncRNAs and the lack of 
postmortem data. To account for these, we employed an 
approach to shortlist coding genes and their interacting 
miRNAs and then extract the lncRNA-miRNA interac-
tions reported in the public domain, thus making the 
mRNA-lncRNA-disease interaction hypothesis-free.

Furthermore, recent studies have indicated the link 
between brain and periphery via the circulatory system, 

Fig. 3  A Overlapping hub genes between significant GO-BP, GO-MF, GO-CC, and pathway genesets. The red, blue, yellow, and green-colored areas 
signify KEGG, GO-BP, GO-MF, GO-CC genesets, respectively. Box-and-whisker plots showing expression intensity distribution of B HAP1, C HOMER3, 
D ADRA1A across control and schizophrenia patient samples. The top and bottom of the boxes signify 75th and 25th percentile of distribution. 
Horizontal lines within the boxes represent the median values while minimum and maximum values label the axes endpoints. P-values shown 
at the top of boxplots represent significance levels between sample groups for each hub gene



Page 8 of 14Mukhopadhyay et al. Egyptian Journal of Medical Human Genetics           (2024) 25:71 

which contains secreted regulatory molecules and hor-
mones produced in the diffused NES that impact the 
peripheral markers’ gene expression pattern [81–84]. 
These findings confirm that schizophrenia is a systemic 
disorder and support the notion that biomarkers in 
peripheral samples such as WB, PBMCs, lymphoblasts 
and olfactory epithelium may be insightful. Another line 
of evidence that dictated the choice of blood expres-
sion profiles for the analysis was based on the current 
evidence wherein immune/inflammatory processes are 

located in the disorder [33–35] and the strong connec-
tions established between altered immunity and lncR-
NAs [36, 85]. Understanding the networks at play in the 
peripheral system might help generate a holistic view of 
the underlying connection.

In the enrichment analysis using the highest-order 
WGCNA module, three genes were found overlapping in 
all the significant pathway and GO term libraries tested.

ADRA1A was enriched for terms such as neuroactive 
ligand-receptor interaction, cytosolic Ca2+ ion transport, 

Fig. 4  Schizophrenia-associated 3-node ceRNA network comprising 767 nodes and 3030 edges. Magenta-colored diamond nodes represent 
the lncRNAs, red circular nodes represents the miRNAs, and green-colored octagonal nodes represents the hub genes

Fig. 5  A Top higher-order subnetwork motif based on betweenness, degree, and closeness comprising one miRNA (miR-3163), one lncRNA 
(NEAT1), and one hub gene (ADRA1A). B The second higher-order subnetwork motif comprising one miRNA (miR-214-3p), one lncRNA (XIST), 
and one hub gene (HOMER3). C Third higher-order subnetwork motif comprising one miRNA (miR-2467-3p), one lncRNA (KCNQ1OT1), and one hub 
gene (ADRA1A). Magenta-colored diamond nodes represent the lncRNAs, red circular nodes represents the miRNAs, and green-colored octagonal 
nodes represents the hub genes
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positive regulation of GABAergic synaptic transmission. 
HOMER3 was enriched for glutamatergic synapse and 
G protein-coupled glutamate receptor binding and was 
a cellular component of dendrites. HAP1 was associated 
with pathways involved in neurodegeneration, neuro-
genesis, neurotrophin binding and similar to HOMER3 
was found located in the dendrites. All of the pathways 
have either been directly reported in schizophrenia eti-
ology before or are of substantial importance in the 
processes involved in schizophrenia pathophysiology 
[86–91]. Thereby, any perturbation in their expression 
could potentially disturb these pathways and initiate or 
maintain the disease phenotype. With this hypothesis, 
we assessed the lncRNAs and miRNAs that could puta-
tively dysregulate these key mRNAs leading to disease 
manifestation.

Among the three lncRNAs, NEAT1 has recently been 
reported to be upregulated [ log2(fold change) > 2 ] in 
Brodmann area 46, hippocampus and striatum. NEAT1 is 
highly enriched in the mammalian brain and is an indis-
pensable structural component of paraspeckles which are 
membrane-less cellular bodies involved in several cellu-
lar processes such as splicing and transcriptional modu-
lation through chromatin structure modifications with 
emerging evidence suggesting their altered abundance 
with several innate immune activating responses stimuli 
such as sequestering to IFNGR1 [92]. NEAT1 itself has 
been cited as lncRNA-type immunoregulator (i) affecting 
monocyte-macrophage functions and T cell differentia-
tion [93], (ii) assembly of inflammasomes by recruitment, 
maturation, and stabilization of CASP1 in activated mac-
rophages [94], (iii) elicits pro-proliferative and anti-apop-
totic roles and migration, invasion, and inflammatory 
cytokines secretion [95], (iv) exhibits innate immunity 
responses against viral infections [96]. Furthermore, mul-
tiple studies have shown miRNA sequestering tendencies 
of NEAT1, thereby attenuating target gene activity [97–
101]. Based on our bioinformatic analyses, we propose 
that NEAT1 could be sequestering miR-3163 because 
of its higher number of transcripts in the disease state, 
thereby elevating the repression of ADRA1A which was 
downregulated in cases in the DEA (Fig. 3B).

The second lncRNA, XIST has also been previously 
associated with multiple mental disorders [102–104]. 
XIST is involved in the inactivation of the X chromo-
some, which has a long-standing reputation for harbor-
ing genes important for brain development and function 
[105]. Outside of its silencing roles, XIST i) stimulates 
proliferation and differentiation of naive CD4+ T cells 
[106], (ii) is delocalized in B cells of female-biased auto-
immunity [107], (iii) in-part promotes CD11c+ atypi-
cal B cell formation [107], and (iv) has been shown to 
perturb PDL1 levels by probable competitive binding of 

miR-34a-5p [108]. Even though the expression profile 
of HOMER3 in schizophrenia is unknown, HOMER1 
(member of the three-member HOMER family) has been 
shown to be up and downregulated in schizophrenia 
depending on the tissue type with variants in both found 
to be associated with schizophrenia [109]. Overexpres-
sion of XIST has been reported in bipolar disorder and 
major depressive disorder (phenotypes closely associated 
with schizophrenia) as well but is highly tissue-specific 
[102]. Therefore, in a similar fashion as NEAT1, XIST 
could be competitively sequestering to miR-214-3p, a 
miRNA already known to target the Qki [110], thereby 
leading to the altered HOMER3 levels.

The third lncRNA, KCNQ1OT1, targeting KCNQ1, 
though actively involved in epigenetic phenomenon via 
chromatin modifications, HMT G9a, and PRC2 [111], 
has no direct association with schizophrenia yet. How-
ever, it does seem to sponge miR-15a, leading to immune 
evasion and malignant progression of prostate cancer 
via upregulating PDL1, an essential immune checkpoint 
[112]. This might explain its expression correlation with 
CD4+ , CD8+ , and cytotoxic T cell levels and several 
other immune cell subsets in another ceRNA reported 
in colorectal cancer [85]. Furthermore, it might be indi-
rectly associated with increased sudden cardiac arrest in 
schizophrenia patients [113].The KCNQ1 protein forms 
functional potassium channels [114]. Multiple lines of 
evidence, structural variants and mice knockouts, have 
shown KCNQ1 to be associated with LQT1, a condition 
synonymous with increased adverse cardiac events [115–
117]. It is established that all atypical antipsychotics affect 
the cardiac potassium pump and that about ∼ 6− 10% of 
schizophrenia patients show a longer QT interval under 
treatment [118, 119]. We propose that the expression of 
KCNQ1 as dictated by altered KCNQ1OT1 levels could 
be a putative cause of these adverse drug reactions.

Further investigations into this aspect could poten-
tially lead to pre-emptive treatment strategies. Though 
the levels of KCNQ1OT1 in schizophrenia are not 
known, we can extrapolate from available knowledge 
that rs8234 [120] leads to lower expression of KCNQ1 
and is also associated with reduced processing speed, 
reduced white matter FA and higher risk for schizophre-
nia [121], thereby implying that lower levels of KCNQ1 
are associated with these impaired phenotypes. Elevated 
KCNQ1OT1 levels could also propagate this scenario. 
Considering these derived associations, studies estab-
lishing KCNQ1OT1 levels in schizophrenia could be 
informative.

We could thereby imply that elevated KCNQ1OT1 
transcripts could be competitively sequestering to miR-
2467-3p and inhibiting the expression of ADRA1A, 
thereby leading to its downregulated state in the DEA. 
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Interestingly, ADRA1A is also associated with several 
cardiac conditions [122–124]. This gives a glimpse into 
the intricate mechanism in which ceRNAs could be act-
ing in the pathophysiology of schizophrenia.

In conclusion, this study identified lncRNAs NEAT1, 
XIST and KCNQ1OT1-associated ceRNA networks 
which could be potentially relevant to schizophrenia by 
interacting with schizophrenia-relevant genes, ADRA1A 
and HOMER3. Furthermore, the affinity of the mRNAs 
to neurodevelopmental processes and that of the lncR-
NAs to immune/inflammatory processes might indicate 
a mechanism to unite the two most significant mod-
els proposed in schizophrenia etiology. Of note, though 
the current analyses is based on data specific to schizo-
phrenia, neuroinflammation and its effect on neurody-
namics is a well-established phenomenon in a variety of 
psychiatric illnesses such as depression, bipolar depres-
sion and obsessive–compulsive disorder [125]. ceRNAs 
established through this study and new ones discovered 
by using similar methods have the potential of uncover-
ing further such pathways. Further refinements in such 
prediction strategies have the potential of unveiling 
additional interactions in schizophrenia biology, which, 
eventually, systems biology approaches coupled with 
artificial intelligence and machine learning technologies 
can integrate into a holistic picture. However, it is also 
important to note that the prediction strategy deployed 
in this study does not take into account the miRNA and 
potential ceRNA expression levels. This is important as it 
is well-established that both miRNAs and ceRNAs have 
temporal, spatial, and disease-specific expression pat-
terns. Furthermore, studies have shown that ceRNAs and 
miRNAs with concentrations within a particular range 
are capable of eliciting such crosstalks. Even though we 
have provided evidence to give strong credence to the 
highlighted ceRNA axes, these must still be validated by 
qRT-PCR, luciferase reporter systems and co-IP assays. 
Furthermore, we have discussed in favor of the stan-
dalone components of the ceRNA networks. We believe 
that additional investigations into their roles in the dis-
eased state would be valuable in assessing their role as 
important biomarkers for schizophrenia. Further wet 
lab experimentations would be an asset in proving the 
efficacy and accuracy of the predicted biomarkers. Also, 
design of lead compounds as potential drugs post suc-
cessful clinical trials could be helpful for the treatment of 
schizophrenia in near future.
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