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Abstract 

Objective Recent studies have indicated a potential association between giant cell arteritis (GCA) and diabetes mel-
litus, encompassing both type 1 diabetes (T1D) and type 2 diabetes (T2D). However, the exact nature of this relation-
ship requires further investigation to be fully elucidated.

Methods Genetic links between T1D/T2D and GCA were explored using data from genome-wide association 
studies available to the public, focusing on populations of European ancestry. We applied a bidirectional mendelian 
randomization (MR) approach to assess the potential association between these diseases. Confirmatory analyses, 
including additional datasets and a comprehensive meta-analysis, were utilized. The inverse-variance-weighted (IVW) 
method was applied to pinpoint heterogeneity and pleiotropy, while subsequent sensitivity analyses aimed to trace 
the origins of any heterogeneity.

Results Initial analysis demonstrated a correlation between T1D and an elevated likelihood of developing GCA (IVW 
odds ratio = 1.33, with a 95% confidence interval of 1.22–1.46, and a P-value of 9.42E−10). The causal association 
was verified through four validation datasets and meta-analysis (all P-value < 0.001). However, the reverse MR analysis 
was unable to detect any genetic basis for the increased risk of T1D due to GCA. Furthermore, we could not establish 
any causal links between T2D and GCA.

Conclusion T1D patients may have a higher risk of developing GCA, whereas an inverse causal relationship 
was not evident. Furthermore, no causal relationship was detected between T2D and GCA. These insights shed light 
on the possible pathological mechanisms underlying GCA and may influence the future clinical handling of both T1D 
and GCA.
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Background
Giant cell arteritis (GCA) is a type of vascular inflamma-
tion characterized by granulomatous swelling within the 
medium to large arteries, notably the temporal artery, 
and predominantly affects individuals over the age of 50 
[1]. This condition manifests through symptoms such 
as persistent headaches, pain in the jaw when chewing, 
and tenderness of the scalp, in addition to increased lev-
els of inflammatory markers like C-reactive protein and 
the erythrocyte sedimentation rate [2]. While Tempo-
ral artery biopsy (TAB) remains the standard for diag-
nosing GCA, less invasive techniques such as Doppler 
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ultrasound, PET-CT, and MRI are progressively being 
adopted in diagnostics [3–5]. GCA has been tradition-
ally treated using substantial doses of glucocorticoids 
(GCs), which come with a spectrum of potential side 
effects. Tocilizumab, an inhibitor to the interleukin-6 (IL-
6) receptor, is a promising alternative that may lower the 
reliance on glucocorticoids [6, 7].

Diabetes mellitus (DM) refers to a group of chronic 
conditions marked by inadequate regulation of blood glu-
cose levels due to insufficient insulin production and/or 
inefficient insulin action. If left unmanaged, the chronic 
hyperglycemic state arising as a result can cause various 
complications affecting the cardiovascular, nervous, and 
renal systems [8]. Type 1 diabetes (T1D) is characterized 
by an autoimmune attack on the insulin-secreting beta 
cells in the pancreas, and typically develops in younger 
populations [9]. On the other hand, type 2 diabetes 
(T2D) usually arises from insulin resistance and is more 
common among adults and the elderly [10]. Both types of 
diabetes pose significant health risks if not properly man-
aged, including cardiovascular complications, kidney dis-
ease, and nerve damage.

The correlation between GCA and blood glucose lev-
els is ambiguous. Population-based cohort studies have 
shown an inverse correlation between the incidence of 
GCA and increased levels of fasting blood glucose [11]. 
Moreover, several studies have reported lower glycated 
hemoglobin (HbA1c) levels and prevalence of diabetes 
among individuals diagnosed with GCA [12, 13]. How-
ever, Esen et  al. [14] demonstrated increased baseline 
glucose levels in GCA patients compared to the general 
population, although no differences were observed in 
HbA1c levels. In a case report of a male T1D patient, 
acute upper respiratory infection was followed by the 
development of biopsy-proven GCA [15], which under-
scores the complex interactions between autoimmune 
diseases and infections. The interrelation between T2D 
and GCA is similarly multifaceted, with some studies 
suggesting a potential protective effect of T2D against 
developing GCA [16], Abel et  al. [17] found that T2D 
increased the risk of GCA by 100% among the beneficiar-
ies of Medicare. In addition, high-dose (GC) treatment of 
GCA increases the body mass index (BMI), which in turn 
can elevate the risk of T2D [18–20].

Case studies and observational analyses are often 
restricted by various factors, such as potential con-
founding influences, limited participant numbers, and 
variations across population ethnicities, which hinders 
the ability to firmly establish causative links. Conse-
quently, the nature of the association between DM and 
GCA—whether causative, coincidental, or a one-way or 
two-way relationship—remains to be clarified. Mende-
lian randomization (MR) leverages genetic variants as 

instrumental variables to sidestep limitations inherent 
in observational studies, and therefore can offer more 
definitive insights. MR utilizes the single nucleotide poly-
morphisms (SNPs) sourced from extensive genome-wide 
association studies (GWAS) to elucidate the relationship 
between an exposure and its outcome, while minimizing 
the confounding effects [21–23]. As SNPs assort inde-
pendently according to Mendelian inheritance during 
gamete formation, MR analyses are generally less sus-
ceptible to reverse causation and lingering bias [24]. The 
aim of this study was to examine a possible causal link 
between DM and GCA using bi-directional MR analyses 
based on data collated in GWAS.

Materials and methods
Study design
Several key hypotheses were made: (1) Appropriate-
ness of IVs: the selected instrumental variables (IVs) are 
appropriate because they have strong correlations with 
exposure (T1D/T2D or GCA). These IVs are well-docu-
mented in existing research for their strong association 
with exposure (T1D/T2D or GCA), making them suit-
able for the analysis. (2) Independence from confounders: 
the IVs used are not influenced by confounding variables 
in the T1D/T2D and GCA relationship. The IVs known 
to be independent of confounding factors were selected 
to ensure a clear causal pathway. (3) Exogeneity of IVs 
regarding outcome: the IVs affect outcome (GCA or 
T1D/T2D) through mechanisms unrelated to exposure 
(T1D/T2D or GCA). Causality was investigated with dia-
betes as the influencing factor and GCA as the outcome, 
followed by an inverse assessment with GCA as the influ-
encer and diabetes as the outcome (Fig. 1).

Data sources
The inclusion criteria for data were as follows: (1) The 
data must be from articles published within the last 
three years. (2) The included data should represent 
either the largest or one of the largest sample sizes 
currently available. (3) The number of SNPs in the 
data must reach  107. The exclusion criteria for data 
were as follows: (1) Data from articles published a 
long time ago. (2) Data with a relatively small sample 
size. (3) Data with a small number of SNPs. (4) Data 
for which the original datasets are not accessible. The 
data for T1D was obtained from five GWASs. The dis-
covery T1D GWAS data was sourced from FinnGen 
Release 10 [25], using the phenocode “T1D_STRICT2” 
for identification. In addition, four validation T1D 
datasets (GCST90014023 [26], GCST90018925 [27], 
GCST90013891 [28], and GCST90013941 [28]), along 
with one T2D dataset (GCST90018926 [27]), were 
accessed from the IEU OpenGWAS database, located 
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at https:// gwas. mrcieu. ac. uk/. Furthermore, aggre-
gate GCA genetic insights were also derived from 
FinnGen Release 10, earmarked with the phenocode 
“M13_GIANTCELL”. All GWAS data were retrieved 
by December 31, 2023. Comprehensive GWAS data-
sets pertaining to T1D, T2D, and GCA are delineated 
in Table 1.

Selection of IVs
Genome-wide association significance for the SNPs was 
set as P value < 5 ×  10–8, the independence of all selected 
SNPs was within 10,000  kb, and linkage disequilib-
rium threshold  r2 was less than 0.001 when T1D/T2D 
(GCST90014023, GCST90018925, and GCST90018926) 
was taken as the exposure. When T1D (T1D_STRICT2, 
GCST90013891, and GCST90013941) was the expo-
sure, the significance threshold for the SNPs was P 

Fig. 1 Overview of the MR analysis. (A) T1D/T2D-related SNPs were used as instrumental variables (IVs) to investigate the potential causal effect 
of T1D/T2D on GCA. (B) GCA-related SNPs were used as IVs to investigate the potential causal effect of GCA on T1D/T2D. Solid lines: instrumental 
variables (SNPs) that are linked to the exposure and can solely affect the outcome through exposure. Dotted lines: instrumental variables (SNPs) 
that are unrelated to any confounding factors and are between the exposure and the outcome. The confounding factors included exposure 
to environmental toxins, radiation, infectious agents, chemical substances, smoking, and prior pregnancy

Table 1 The detailed information on included GWAS data

GCA  giant cell arteritis; T1D type 1 diabetes; T2D type 2 diabetes; GWAS genome-wide association studies; N number; N/A not available

Disease GWAS ID Sample size (N) Cases (N) Controls (N) Population Number of SNPs Year Median 
age 
(years)

Author PMID

T1D T1D_STRICT2 331,094 105 330,989 European N/A N/A 12.38 N/A N/A

T1D GCST90014023 520,580 18,942 501,638 European 59,999,551 2021 N/A Chiou J 34012112

T1D GCST90018925 457,695 6447 451,248 European 24,182,422 2021 N/A Sakaue S 34594039

T1D GCST90013891 407,746 N/A N/A European 11,039,126 2021 N/A Mbatchou J 34017140

T1D GCST90013941 407,746 N/A N/A European 11,035,542 2021 N/A Mbatchou J 34017140

T2D GCST90018926 490,089 38,841 451,248 European 24,167,560 2021 N/A Sakaue S 34594039

GCA M13_GIANTCELL 400,421 1066 399,355 European N/A N/A 69.81 N/A N/A

https://gwas.mrcieu.ac.uk/
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value < 1 ×  10–6, the independence of all selected SNPs 
was within 1000  kb, and linkage disequilibrium thresh-
old  r2 was 0.01. In scenarios where GCA served as the 
exposure, SNP significance was defined by a P value of 
less than 1 ×  10–5, LD coefficient cap set at  r2 < 0.01, and 
LD search span restricted to 10,000 kb. The F-statistic of 
each SNP was ascertained to confirm robustness, requir-
ing an F-value above 10. The SNP dataset was further 
refined to exclude SNPs that were palindromic or could 
not be unambiguously interpreted. To guard against pos-
sible pleiotropic effects, IVs tied to confounding factors 
or recognized GCA risk factors, like exposure to other 
autoimmune disorders, were screened out using the Phe-
noScanner V2 tool (available at http:// www. pheno scann 
er. medsc hl. cam. ac. uk/).

MR analyses
The primary methodology adopted for MR analysis was 
the inverse variance weighted (IVW) method, which can 
mitigate pleiotropic variations and produce dependable 
outcomes. To further evaluate causation under varying 
conditions, MR-Egger regression was employed along-
side the calculation of a weighted median [29–31]. The 
findings were articulated as odds ratios (ORs) along with 
their 95% confidence intervals (CIs). A p value threshold 
of less than 0.05 was determined to denote statistical sig-
nificance. The statistical computations were performed 
using the TwoSampleMR package (version 0.5.7) of R 
version 4.3.1 [32].

Sensitivity analysis
The MR-Egger intercept was employed to probe for 
horizontal pleiotropy, where the IVs might influence the 
outcome through several distinct channels. The pres-
ence of horizontal pleiotropy was visualized using scatter 
plots. Heterogeneity among the IVs was quantified using 
Cochran’s Q test, with P values below 0.05 indicating 
significant variance. Funnel plots were used to visualize 
heterogeneity and validate the stability of the results. The 
results were further verified through the leave-one-out 
sensitivity analysis, which involves sequential omission of 
each SNP. Moreover, the MR pleiotropy residual sum and 
outlier test was applied to scrutinize the direct influence 
of the IVs on the outcomes, and to evaluate any residual 
horizontal pleiotropy.

Results
Causal relationships between T1D and GCA 
We use the rigorously screened T1D dataset (T1D_
STRICT2) as the exposure data for the discovery stage. 
Based on the IVW approach, T1D was associated with a 
significant increase in the risk of GCA (OR = 1.33, 95% 
CI 1.22–1.46, P = 9.42E−10) (Table  2). Therefore, we 

selected the GWAS data of four European T1D data-
sets (GCST90013891, GCST90013941, GCST90014023, 
and GCST90018925) with a current sample size of over 
400000 as the exposure data for the validation phase, and 
observed that T1D increased the risk of GCA develop-
ment (IVW: all P-value < 0.05) (Table  3, Supplementary 
Figs.  1–4). Additionally, a meta-analysis of the IVW 
method was conducted on these four datasets, which 
also revealed a significant increase in the GCA risk due to 
T1D (P < 0.0001; Fig. 2). We then performed reverse MR 
analysis to explore the effect of GCA on five T1D GWAS 
data. However, there was no indication of a reverse causal 
link with the IVW technique (Table  2 and Supplemen-
tary Table 1). Furthermore, the MR-Egger intercept test 
(scatter plots shown in Fig. 3A, Supplementary Figs. 1A, 
2A, 3A and 4A), sensitivity analysis (forest plots shown 
in Fig. 3B, Supplementary Figs. 1B, 2B, 3B and 4B), leave-
one-out analysis (Fig.  3C, Supplementary Figs.  1C, 2C, 
3C and 4C), and Cochran’s Q statistics (funnel plots 
shown in Fig.  3D, Supplementary Figs.  1D, 2D, 3D and 
4D) did not indicate any significant heterogeneity in 
the impact of T1D on GCA risk. We also did not detect 
any directional pleiotropy (Table 2 and Table 3), and the 
robustness of the data was confirmed by the leave-one-
out analyses. The analysis revealed a lack of significant 
heterogeneity or directional pleiotropy when evaluating 
the influence of GCA on T1D, as demonstrated by the 
MR-Egger intercept, Cochran’s Q test, and further cor-
roborated by leave-one-out and sensitivity analyses (Sup-
plementary Table 1 and Figs. 5–9).

Causal links between T2D and GCA 
To elucidate the potential causal links between T2D 
and GCA, a bidirectional MR approach was employed. 
As indicated in Table  1, the analysis did not establish 
any causal link between T2D and GCA. Furthermore, 
the sensitivity tests, including the MR-Egger intercept 
and Cochran’s Q statistics, along with the leave-one-out 
method, consistently found no notable heterogeneity or 
directional pleiotropy (Supplementary Figs. 10 and 11).

Discussion
This study is possibly the first to apply a bidirectional 
MR framework to uncover a causative link between DM 
and GCA. Our results confirm a significant correlation 
between genetically predicted T1D and a greater risk of 
GCA. However, reverse MR analysis did not indicate that 
a genetic predisposition to GCA increased the risk of 
developing T1D. In addition, no causal relationship was 
detected between T2D and GCA.

GCA, an inflammatory disease of large and medium-
sized blood vessels, is characterized by granulomatous 
inflammation affecting, and mainly occurs in the elderly 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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[1]. In addition to specific symptoms like headaches, jaw 
claudication, limb claudication and vision loss, patients 
frequently experience non-specific manifestations 
such as fever and weight loss [2]. Previous studies have 
reported abnormalities in blood glucose and HbAc1 lev-
els in patients with GCA [11, 12, 14]. However, there are 
no documented cases of GCA patients developing T1D. 
This is not surprising given that GCA is more common in 
individuals older than 50 years [1], while T1D primarily 
manifests in adolescence due to a genetic predisposition 
[9]. Nevertheless, T1D and GCA share a few susceptibil-
ity genetic variations, such as PTPN22 1858C/T poly-
morphism and STAT4 rs7574865, which provide indirect 
evidence of an association between the two diseases [33, 
34]. Furthermore, several inflammatory factors are ele-
vated during T1D and GCA, such as interleukin 21 [35]. 
There is however one reported case of late GCA onset in 
a 62-year-old patient with T1D, who developed biopsy-
confirmed GCA after suffering an acute upper respira-
tory infection. Serological tests revealed concomitant 
Streptococcus pneumoniae infection. The clinical signs 
of vasculitis disappeared in a month without any immu-
nosuppressive therapy, and no relapse was noted during 
the ensuing 12 months [18]. The natural course of GCA 

is still unknown, and the respiratory infection may have 
contributed to its development. In fact, some recent stud-
ies have demonstrated an indirect link between infection 
and GCA development [36, 37]. However, the aforemen-
tioned individual case reports do not clearly establish a 
causal relationship between T1D and GCA. Further-
more, there is a lack of large-scale and comprehensive 
genetic studies investigating the relationship between 
the two conditions. In this study, we used the latest five 
GWAS datasets for both T1D and GCA, and applied rig-
orous selection criteria to T1D as the exposure variable. 
Subsequently, four sets of T1D GWAS data were used 
for validation, and a meta-analysis was also conducted. 
Therefore, our findings regarding the causal relationship 
between T1D and GCA are reliable and highly represent-
ative, and consistently indicate that T1D can increase the 
risk of developing GCA. Conversely, there is no genetic 
evidence of GCA influencing the development of T1D.

T2D, a common chronic metabolic disorder in the 
elderly population, is often caused by the development 
of insulin resistance, which gradually impairs the abil-
ity of pancreatic beta cells to secrete sufficient levels of 
insulin. Several studies have suggested a potential pro-
tective influence of T2D against GCA [19, 38, 39], and 

Table 2 Causal association between T1D/T2D and GCA in MR analysis during the discovery stage

GCA  giant cell arteritis; T1D type 1 diabetes; T2D type 2 diabetes; MR mendelian randomization; IVW inverse variance weighted; SNPs single nucleotide 
polymorphisms; OR odds ratio; CI confidence intervals; SE standard error

Exposure/Outcome Methods SNPs (n) OR (95% CI) P-value Test of 
heterogeneity

Test of pleiotropy MRPRESSO 
(P-value)

Q P-value Intercept SE P-value

T1D/GCA MR Egger 6 1.71 (1.39–2.11) 7.42E−03 2.12 0.71  − 0.31 0.12 0.07 0.284

Weighted median 6 1.29 (1.16–1.43) 2.87E−06

IVW 6 1.33 (1.22–1.46) 9.42E−10 8.26 0.14

Simple mode 6 1.41 (1.16–1.71) 0.018

Weighted mode 6 1.22 (1.07–1.39) 0.031

GCA/T1D MR Egger 35 1.21 (0.66–2.23) 0.54 38.23 0.23  − 0.07 0.13 0.61 0.212

Weighted median 35 1.18 (0.75–1.85) 0.48

IVW 35 1.06 (0.78–1.43) 0.71 38.88 0.26

Simple mode 35 0.56 (0.20–1.60) 0.29

Weighted mode 35 0.48 (0.16–1.42) 0.20

T2D/GCA MR Egger 167 1.24 (0.98–1.57) 0.08 174.78 0.29  − 0.015 8.83E−03 0.10 0.261

Weighted median 167 1.05 (0.87–1.28) 0.61

IVW 167 1.04 (0.93–1.17) 0.50 177.67 0.25

Simple mode 167 1.44 (0.97–2.12) 0.07

Weighted mode 167 1.05 (0.84–1.31) 0.69

GCA/T2D MR Egger 16 1.00 (0.95–1.05) 0.97 13.87 0.46 1.29E−03 8.74E−03 0.89 0.492

Weighted median 16 1.00 (0.97–1.03) 0.89

IVW 16 1.00 (0.98–1.02) 0.79 13.90 0.53

Simple mode 16 0.98 (0.93–1.03) 0.51

Weighted mode 16 0.98 (0.95–1.03) 0.65
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the proposed mechanisms include aberrant cytokine 
secretion, weakened T cell response, and decreased den-
dritic cell activity due to high antigen glycosylation [19, 
38, 39]. Furthermore, a new study reported lower inci-
dence of biopsy-positive GCA in T2D patients, along 
with less prevalence of T2D in subjects with positive 
TAB as opposed to those with a negative TAB [19]. How-
ever, another study conducted on a single-center large 

cohort showed that T2D patients older than 68  years 
had a higher chance of being diagnosed with GCA [20]. 
A possible explanation is that the cell-mediated immune 
dysfunction in T2D and GCA exhibit similar abnormali-
ties. GCA patients often experience a reduction in the 
circulating regulatory T cells (Tregs), which has not been 
observed in T2D patients [40, 41]. Therefore, the pres-
ence of functional Tregs in T2D patients may increase 

Table 3 Causal association between T1D (exposure) and GCA (outcome) in MR analysis during the validation stage

GCA  giant cell arteritis; T1D type 1 diabetes; MR mendelian randomization; IVW inverse variance weighted; SNPs single nucleotide polymorphisms; OR odds ratio; CI 
confidence intervals; SE standard error

GWAS ID Methods SNPs (n) OR (95% CI) P-value Test of 
heterogeneity

Test of pleiotropy MRPRESSO 
(P-value)

Q P-value Intercept SE P-value

GCST90013891 MR Egger 12 1.18 (0.98–1.43) 0.097 10.58 0.39  − 0.035 0.06 0.59 0.465

Weighted median 12 1.16 (1.07–1.27) 7.76E−04

IVW 12 1.12 (1.05–1.20) 3.43E−04 10.91 0.45

Simple mode 12 1.12 (0.97–1.29) 0.15

Weighted mode 12 1.17 (1.05–1.30) 0.018

GCST90013941 MR Egger 15 1.13 (1.00–1.28) 0.069 18.54 0.14 − 3.25E−04 0.05 0.99 0.195

Weighted median 15 1.13 (1.06–1.21) 4.02E−04

IVW 15 1.13 (1.07–1.19) 2.58E−06 18.54 0.18

Simple mode 15 1.11 (0.99–1.24) 0.10

Weighted mode 15 1.13 (1.03–1.23) 0.023

GCST90014023 MR Egger 71 1.16 (1.04–1.29) 8.02E−03 83.25 0.12 − 3.36E−03 0.01 0.76 0.118

Weighted median 71 1.08 (0.96–1.21) 0.23

IVW 71 1.14 (1.06–1.24) 5.48E−04 83.36 0.13

Simple mode 71 1.04 (0.82–1.31) 0.76

Weighted mode 71 1.11 (1.00–1.23) 0.05

GCST90018925 MR Egger 17 1.25 (1.05–1.50) 0.027 10.00 0.82 − 0.016 0.024 0.51 0.84

Weighted median 17 1.24 (1.08–1.42) 1.90E−03

IVW 17 1.19 (1.07–1.31) 8.60E−04 10.46 0.84

Simple mode 17 1.23 (0.96–1.58) 0.12

Weighted mode 17 1.25 (1.08–1.44) 7.07E−03

Fig. 2 Forest plot of the causal association between T1D and GCA in the meta-analysis by the IVW method. GCA giant cell arteritis; T1D type 1 
diabetes; IVW inverse variance weighted; GWAS genome-wide association studies; OR odds ratio; CI confidence intervals
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the risk of GCA. The primary treatment for GCA entails 
high doses of orally administered GCs [42]. However, 
prolonged GC exposure can lead to severe adverse 
events, notably T2D [18–20]. The average daily dose of 
oral GC has been linked to hyperglycemia, glucose intol-
erance, and the initiation of new T2D. Furthermore, up 
to 50% of GCA patients experience worsening of under-
lying T2D in response to GC treatment, although it 
may not always correspond with the average daily GC 
dose [43–46]. However, these observational studies and 
individual case reports do not clearly establish a causal 
relationship between T2D and GCA. The complex rela-
tionship between these two conditions needs to be vali-
dated through large-scale, extensive, and comprehensive 
genetic studies. We used the most recent GWAS data-
sets for T2D and GCA for the present MR analysis. The 
GWAS for T2D included 38,841 cases and 451,248 con-
trols from the IEU OpenGWAS database, and the GWAS 
for GCA had 1066 cases and 399,355 controls from the 
FinnGen database. Our results indicated lack of any 
causal connections between T2D and GCA.

The present study is the first to employ a 2-sample bidi-
rectional MR approach to dissect the possible bidirec-
tional causality between GCA and T1D/T2D. Currently, 
most of the research on the relationship between T1D/
T2D and GCA consists of observational studies or indi-
vidual case reports. Reverse causation, confounding, and 
inaccurate non-differentially assessed exposures are less 
common with MR analysis compared to observational 
studies or individual case reports. We also employed 
several MR framework methodologies to conduct sen-
sitivity analyses on these causal links, which verified 
the consistency of point estimates both before and after 
outlier removal, and successfully reduced heterogeneity. 
Furthermore, we employed an extensive summary-level 
available GWAS dataset to obtain all the relevant genetic 
data.

There are several limitations in this study that ought 
to be considered. First, the modest number of SNPs 
included as IVs decreased the total statistical power, 
even though there was minimal possibility of moder-
ate IV bias affecting our findings (all F-statistics were 

Fig. 3 Assessment of the influence of discovery T1D data (T1D_STRICT2) on GCA. (A) Scatter plot of the MR-Egger intercept test. (B) Forest plot 
of sensitivity analysis. (C) Forest plot of leave-one-out analysis. (D) Funnel plot of Cochran’s Q statistic. MR Mendelian randomization
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larger than 10). Therefore, additional subjects need to 
be included in future MR analyses. Second, the publicly 
available GWAS data for GCA are currently limited to 
populations of European ancestry. The lack of GWAS 
datasets for GCAin the Asian, Black, or Middle Eastern 
populations limits our ability to study the causal relation-
ship between T1D/T2D and GCA in these populations. 
Therefore, caution should be exercised when extrapolat-
ing the findings of this study to non-European popula-
tions. To ensure broader applicability and understand 
the potential differences in genetic predispositions, fur-
ther studies are needed that include diverse populations. 
This will help validate the findings in a more comprehen-
sive manner and explore any potential variations in the 
causal relationship between T1D/T2D and GCA across 
different ethnic groups. Third, MR studies are essentially 
statistical constructs, which overlook the intricate inter-
actions between genetic and environmental factors in 
autoimmune illnesses like GCA and DM. Therefore, the 
causal factors identified through this approach should be 
applied with caution in clinical settings. Given the steady 
increase in both the number and size of GWASs, future 
studies will likely involve larger samples and more com-
prehensive patient data.

Conclusion
This study pioneers the use of MR to dissect the bidirec-
tional causality between DM and GCA. The evidence 
we have gathered indicates an increased risk of GCA 
in patients with T1D, but not a reciprocal causal effect. 
Furthermore, our study did not establish any causal links 
between T2D and GCA. These outcomes underscore the 
need for a more comprehensive investigation into the 
mechanisms underlying the causal association between 
DM and the occurrence of GCA.
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