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Abstract 

Background Lipocalin-2 (LCN2), a neutrophil gelatinase-associated protein, plays an important role in iron homeo-
stasis, infection, and inflammation. Polymorphism in the LCN2 gene is linked to various diseases such as cardiovascular 
disease, renal damage, and colorectal and pancreatic cancer. Identifying deleterious functional non-synonymous SNPs 
in the LCN2 gene is crucial in understanding how these genetic variations affect its structure and function.

Methods Several in silico tools such as SIFT, Polyphen-2, PROVEAN, PREDICT SNP, MAPP, and SNAP2 followed 
by I-MUTANT 2.0, MUpro, ConSurf, and NetsurfP-2.0, secondary structure of the protein by SOPMA and PSIPRED, 
while its interaction with other genes and proteins was analyzed using GeneMANIA and STRING, respectively, 
and AlphaFold for protein’s 3D structure prediction.

Results The study identified 6 potentially harmful nsSNPs (rs11556770, rs139418967, rs142623708, rs200107414, 
rs201365744, rs368926734) and their structure and function were analyzed using prediction tools. I-MUTANT 2.0 
predicted an increase in stability with the nsSNPs rs139418967, while the other shows decrease in protein stability 
with the 6 nsSNPs (rs11556770, rs139418967, rs142623708, rs200107414, rs201365744, rs368926734) which was vali-
dated using MUpro. ConSurf identified the 6 high-risk nsSNPs to be in the conserved regions of the protein. The result 
showed that rs11556770, rs139418967, rs142623708, rs200107414, rs201365744, and rs368926734 were found to be 
highly conserved and the variant amino acids. According to NetsurfP-2.0 server, the result showed that rs11556770 
(Q39H), rs139418967 (L6P), rs368926734 (Y135H) were predicted to be exposed and rs142623708 (M71I), rs200107414 
(Y52C), rs368926734 (Y135) were buried. The PSIPRED server analysis indicated that the predominant secondary struc-
ture was a strand, with lesser occurrences of coil and helix.

Conclusion Overall, the study identified detrimental nsSNPs of LCN2 using computational analysis which could be 
used for large population-based investigations and diagnosis.
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Background
Genetic polymorphisms like single nucleotide poly-
morphisms (SNPs) are inherited variations in the DNA 
sequence that contribute to phenotypic diversity and 
can influence disease susceptibility by affecting gene 

expression and function [1, 2]. Recent advancements 
in gene expression analyses, high-throughput single 
nucleotide polymorphism genotyping, and association 
studies have identified genetic loci or genes that influ-
ence immune abnormalities in autoimmune disease [2]. 
Non-synonymous single nucleotide polymorphisms 
(nsSNPs) within protein-coding regions induce protein 
modification through amino acid substitution. Detrimen-
tal nsSNPs cause unstable protein structures, alter gene 
regulation, modify ligand-binding sites, and change pro-
tein hydrophobicity. The other adverse impacts of nsS-
NPs manifest in geometry, charge, dynamics, stability, 
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protein–protein interactions, altering translation and 
threatening cellular integrity [3]. These variations have 
the capacity to modulate protein function and serve as 
crucial indicators for elucidating the mechanisms under-
lying various diseases [4]. In silico analysis predicts the 
harmful effects of these mutations and its effect on the 
structure and function of genes more quickly and cost-
effectively than experimental methods [5].

Lipocalin-2 (LCN2) is a novel 198 amino acid adipo-
cytokine also known as neutrophil gelatinase-associated 
lipocalin (NGAL) which was first isolated in neutro-
phil granules of humans [6], and these proteins circu-
late and transport hydrophobic compounds (steroid, 
free fatty acids, prostaglandins, and hormones) to target 
organs after binding to megalin/glycoprotein and GP330 
SLC22A17 or 24p3R LCN2 receptors. LCN2 has been 
used as a biomarker to assess acute and chronic damage 
to the renal system [7], and it has been shown to pre-
vent carcinogenesis in colorectal and pancreatic cancer, 
whereas it induced tumorigenesis in breast and prostate 
cancer [8]. LCN2 has been discovered as a key regulator 
of oxidative stress and inflammation in the pathogenesis 
of cardiovascular disease [9] and used as markers of tis-
sue damage, particularly in the kidneys, and is also asso-
ciated with cardiovascular disease symptoms such as 
hypertensive cardiac enlargement and heart failure [10]. 
Recent studies have shown that LCN2 levels are elevated 
in obese and type 2 diabetic patients [7] suggesting its 
potential as a biomarker for early detection of pulmo-
nary hypertension in children with congenital heart dis-
ease [11]. Lipocalin-2-induced cardiomyocyte apoptosis 
affects intracellular iron levels, contributing to obesity-
related heart failure. It causes cardiomyocyte death by 
increasing intracellular iron, which detrimentally impacts 
cardiac function [12]. The association of single nucleo-
tide polymorphisms (SNPs) in the LCN2 gene may influ-
ence blood pressure without causing hypertension, yet 
still increase the risk of cardiovascular disease due to 
the continuous relationship between blood pressure and 
cardiovascular risk. Specifically, the SNP rs3814526 is 
associated with elevated blood pressure, indicating that 
lipocalin-2 may impact hypertension through inflamma-
tory pathways [13]. In this study, we focused on inves-
tigating the missense nsSNPs of the LCN2 gene using 
bioinformatics tools to assess its potential detrimental 
effects and understand the structural and functional sig-
nificance of the LCN2 protein.

Methods
SNP data mining
The LCN2 variants with (Accession: NP_005555.2) 
were retrieved from National Center for Biotechnol-
ogy Information (NCBI) database (https:// www. ncbi. 

nlm. nih. gov/ proje cts/ SNP) and primary sequence of 
protein were retrieved from UniProt database (https:// 
www. unipr ot. org/) (UniProtKB—P80188 [(NGAL_
HUMAN)]. Additionally, SNPs of the LCN2 gene were 
retrieved from the ENSEMBL database to assess the 
impact of amino acid changes on protein function [14] 
(Fig. 1).

Prediction of deleterious of SNPs
Several online bioinformatics tools were used to iden-
tify damaging missense nsSNPs of the LCN2 gene. First, 
nsSNPs of the LCN2 gene were subjected to Sorting 
Intolerant from Tolerant (SIFT) and Polymorphism Phe-
notyping v2 (Polyphen-2) tools. SIFT, a web-based tool 
(https:// sift. bii.a- star. edu. sg/), was employed to distin-
guish between harmful and tolerated SNPs by assessing 
their sequence homology. The predictive scoring system 
spanned a spectrum of values, wherein a score of ≤ 0.05 
signified adverse impacts, while a score of ≥ 0.05 indi-
cated tolerance [14]. Polyphen-2 (http:// genet ics. bwh. 
harva rd. edu/ pph2/) was used to predict the effects of 
amino acid substitutions on protein structure and func-
tion, categorizing mutations as “Possibly Damaging” 
(probability score > 0.15), “Probably Damaging” (prob-
ability score > 0.85), or “Benign” based on analysis of the 
protein sequence and variant position [15]. The nsSNPs 
identified by SIFT and Polyphen-2 were then subjected 
to Protein Variation Effect Analyzer (PROVEAN; http:// 
prove an. jcvi. org/), (PREDICTSNP; https:// losch midt. 
chemi. muni. cz/ predi ctsnp1/), Multivariate Analysis of 
Protein Polymorphism (MAPP;http:// www. ngrl. org. uk/ 
Manch ester/ page/ mapp- multi varia te- analy sis- prote inpol 
ymorp hism. html), Screening for non-acceptable poly-
morphism 2 (SNAP2; https:// rostl ab. org/ servi ces/ snap2 
web/). PROVEAN predicts the detrimental effects of pro-
tein variations, including in-frame insertions, deletions, 
and several amino acid changes as well as individual 
amino acid changes. A score of − 2.5 or greater is deemed 
deleterious, whereas all other levels are neutral [16]. 
PREDICTSNP integrates data from multiple tools to pre-
dict the effect of a single amino acid changes, efficiency, 
and accuracy through a consensus prediction. MAPP 
evaluates the physiochemical alterations in each protein 
sequence alignment to predict the impact of amino acid 
substitutions on protein function [17]. SNAP2 utilizes a 
neural network to categorize genetic variations. The pre-
diction method evaluates alterations induced by nsSNPs 
on the secondary structure and contrasts the solvent 
accessibility of native and mutated proteins to categorize 
them as either effect (+100, strongly predicted) or neutral 
(− 100, strongly predicted) [18]. The FASTA sequence of 
the LCN2 protein was used for input.

https://www.ncbi.nlm.nih.gov/projects/SNP)and
https://www.ncbi.nlm.nih.gov/projects/SNP)and
https://www.uniprot.org/
https://www.uniprot.org/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/
http://provean.jcvi.org/
https://loschmidt.chemi.muni.cz/predictsnp1/
https://loschmidt.chemi.muni.cz/predictsnp1/
http://www.ngrl.org.uk/Manchester/page/mapp-multivariate-analysis-proteinpolymorphism.html
http://www.ngrl.org.uk/Manchester/page/mapp-multivariate-analysis-proteinpolymorphism.html
http://www.ngrl.org.uk/Manchester/page/mapp-multivariate-analysis-proteinpolymorphism.html
https://rostlab.org/services/snap2web/
https://rostlab.org/services/snap2web/
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Analyzing the impact on protein stability
I‑MUTANT 2.0
I-MUTANT2.0 (http:// gpcr. bioco mp. unibo. it/ cgi/ predi 
ctors/I- Mutan t2.0/ I- Mutan t2.0. cgi) predicts changes in 
the stability of a mutant protein structures, estimating 
alterations in protein sequence that affect the stability 
of folded protein. I-MUTANT 2.0 utilizes support vec-
tor machines (SVMs) to forecast alterations in protein 
stability and corresponding ΔΔG values [19]. Delta Delta 
G (ΔΔG) represents the difference in Gibbs free energy, 
indicating the change in free energy of folding derived 
from the variations in the free energies between the 
native and mutant structures [20].

MUpro
MUpro (https:// mupro. prote omics. ics. uci. edu/) predicts 
changes in protein stability caused by non-synonymous 
SNPs. It predicts an energy change value, yielding a con-
fidence score ranging from −  1 to 1. This score is used 
to calculate the prediction’s confidence. Scores less than 
zero indicate that the substitution decreases protein sta-
bility, whereas scores > 0 indicate increased protein sta-
bility [21].

Conservation of amino acids using ConSurf
ConSurf (https:// consu rfdb. tau. ac. il/) is a widely used 
tool for identifying functional regions in macromolecules 
by analyzing the evolutionary patterns of amino/nucleic 
acid variations in related sequences [22]. This method 
utilizes an empirical Bayesian approach to assign conser-
vation scores to each residue, with a confidence interval, 
categorizing them as variable (scoring 1–4), intermediate 
(scoring 5–6), or conserved (scoring 7–9) [4].

Relevant solvent prediction using NetsurfP‑2.0
NetsurfP-2.0 (https:// servi ces. healt htech. dtu. dk/ servi 
ces/ NetSu rfP-2. 0/) tool accurately predicts solvent acces-
sibility, secondary structure, structural disorder, and 
backbone dihedral angles for every residue in a given 
sequence. It provides precise and fast analysis of local 
structural elements [23]. The FASTA sequence of the 
LCN2 was given as input format.

Predicting structural effects of nsSNPs and mutant analysis
The PSIPRED workbench (http:// bioinf. cs. ucl. ac. uk/ psipr 
ed/) provides a range of protein annotation tools. It func-
tions as a protein structure prediction server employing 

Fig. 1 In silico analysis of LCN2 

http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
http://gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
https://mupro.proteomics.ics.uci.edu/
https://consurfdb.tau.ac.il/
https://services.healthtech.dtu.dk/services/NetSurfP-2.0/
https://services.healthtech.dtu.dk/services/NetSurfP-2.0/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
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artificial neural networks and PSI-BLAST alignments to 
predict secondary structure [24]. The FASTA sequence of 
the LCN2 protein was provided as an input format.

Predicting the secondary structure of LCN2
SOPMA, (https:// npsa- prabi. ibcp. fr/ NPSAH LP/ npsah 
lp_ secpr edsop ma. html) an enhanced iteration of the self-
optimized prediction method, effectively forecasts the 
secondary structure (including α-helix, β-turn, and coil) 
for 69.5% of amino acids within a dataset of 126 non-
homologous (less than 25% homology) protein chains. 
Both SOPMA and a neural network method correctly 
predict 82.2% of individual residues and 74% of predicted 
amino acids [25].

Protein–Protein interaction
Protein–protein interactions (PPI) play a vital role in 
determining the functional connections of all proteins in 
the cell. PPI network information for LCN2 protein was 
obtained from the Search Tool for the Retrieval of Inter-
acting Genes database (STRING V11.0; https:// string- db. 
org/). The STRING constructs a PPI network by estab-
lishing direct or indirect links between known proteins 
and other proteins [26].

Gene–Gene interaction
Following the identification of several disease-associated 
polymorphisms by whole-genome association analy-
sis, there is an increasing interest in the detection of the 
effects of polymorphism due to interaction with other 
genetic factors [27]. The GeneMANIA uses different 
parameters including genetic and protein interaction, 
co-expression, co-localization, pathways, and protein 
domain similarities to predict the interaction of input 
gene with many other genes [28]. GeneMANIA predicted 
the gene–gene interaction network for the LCN2 gene.

3D structure prediction using AlphaFold
The 3D structure of LCN2 protein was predicted using 
AlphaFold (https:// alpha fold. ebi. ac. uk/) computationally 
with accuracy and speed. In addition to highly accurate 
domain structures, AlphaFold constructs highly accurate 
side chains [29]. The UniProt ID for the LCN2 protein 
served as the input for the AlphaFold model.

Results
Retrieval of SNP dataset from dbSNP database
A total number of 2689 SNPs for the LCN2 gene were 
retrieved from the NCBI (https:// www. ncbi. nlm. nih. gov/ 
proje cts/ SNP) dbSNP databases. Among these SNPs 180 
were missense non-synonymous SNPs (nsSNPs), 1341 
were introns SNPs, and 88 were synonymous SNPs, while 
the others belongs to different categories. The missense 

nsSNPs were selected for our study since deleterious nsS-
NPs could have structural and functional impact on the 
protein.

Prediction and functional analysis of nsSNPs in LCN2
Missense nsSNPs 180 were chosen for our study because 
they may have both structural and functional effects on 
proteins. Several in silico tools such as SIFT, Polyphen-2, 
PROVEAN, PREDICTSNP, MAPP, and SNAP2 were 
used to predict the deleterious effect on SNPs. Initially, 
180 missense SNPs were loaded to SIFT server, which 
predicted 132 nsSNPs as deleterious or tolerated. Among 
them, 35 nsSNPs were predicted as deleterious with the 
score ≤ 0.05 and remaining 97 nsSNPs were tolerated. 
Then, nsSNPs were examined for Polyphen-2 server 
analysis which shows the nsSNPs as “Probably Damag-
ing” with a score of 0.9–1, “Possibly Damaging” with a 
score of 0.7–0.9. The results from both SIFT and Poly-
phen-2 were combined to enhance the prediction accu-
racy. Further other bioinformatics tools PROVEAN, 
PREDICTSNP, MAPP, and SNAP2 were utilized. Based 
on the PROVEAN results, all 7 nsSNPs were predicted as 
deleterious. Through the PREDICTSNP results 6 nsSNPs 
were predicted as deleterious and 1nsSNPs were neutral. 
Moreover, Snap results 5 nsSNPs were predicted as dis-
ease causing and 2 nsSNPs were neutral. After prediction 
the using above-mentioned tools, 6 nsSNPs alone were 
found to be deleterious and are listed in Table  1.These 
potentially deleterious SNPs were considered to further 
analysis.

Prediction of the effect of nsSNPs on protein stability
MUpro and I-MUTANT 2.0 were used to analyze 
whether the selected missense nsSNPs predict the 
change of protein stability in LCN2 protein. Accord-
ing to I-MUTANT 2.0 server, nsSNPs rs11556770, 
rs142623708, rs200107414, rs201365744, rs368926734 
were unstable and decreased the protein stability. In 
MUpro server, all nsSNPs rs147787222, rs11556770, 
rs139418967, rs142623708, rs200107414, rs201365744, 
rs368926734 decreased the stability of protein listed in 
Table 2

Analysis of deleterious nsSNPs conservation
According to phylogenetic conservation study, amino 
acids in conserved regions were significantly harm-
ful than those in non-conserved regions. The ConSurf 
server was used to analyze the conservation profiles of 
amino acids in LCN2. The result showed that Q39H, L6P, 
M71I, Y52C, Y76H, and Y135 were found to be highly 
conserved and the variant amino acids were denoted in 
black boxes represented in Fig. 2. The result of ConSurf is 
shown in Table 2

https://npsa-prabi.ibcp.fr/NPSAHLP/npsahlp_secpredsopma.html
https://npsa-prabi.ibcp.fr/NPSAHLP/npsahlp_secpredsopma.html
https://string-db.org/
https://string-db.org/
https://alphafold.ebi.ac.uk/
https://www.ncbi.nlm.nih.gov/projects/SNP
https://www.ncbi.nlm.nih.gov/projects/SNP
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Prediction of relative solvent accessibility
NetsurfP-2.0 was employed to assess the solvent accessi-
bility, stability, and predict secondary structure variations 
with high conservation scores identified in the ConSurf 
output. According to NetsurfP-2.0 server, the result 
showed that Q39H, L6P, Y135H were predicted to be 
exposed and M71I, Y52C, Y135 were buried. The results 
are displayed in Table 3

Predicting structural analysis of nsSNPs by PSIPRED 
software
PSIPRED projected the alpha-helix, beta-sheet, and coils 
that were distributed in the LCN2 secondary structure. 
The PSIPRED server analysis indicated that the pre-
dominant secondary structure was a strand, with lesser 
occurrences of coil and helix, as illustrated in Fig. 3. The 
PSIPRED predicted the transmembrane MEMSAT topol-
ogy and the amino acid types. All of the transmembrane 
topology was cytoplasmic, the amino acid types were 
aromatic plus cysteine, and hydrophobic and polar are 
listed in Table 4.

Secondary structural analysis of LCN2 by SOPMA
SOPMA analysis indicated that LCN2’s secondary struc-
ture comprises distributions of alpha-helix, beta-sheet, 
and random coil. SOPMA secondary structure prediction 
for LCN2 is displayed in Fig. 4, where 21.21% of sites were 
alpha helixes, 51.52% were random coils, 3.54% were beta 
twists, and 23.74% were extended strands.

Protein interaction by STRING server
The STRING server result showed that LCN2 protein 
interacts with ten proteins including matrix mettalo-
proteinase-9 (MMP9), solute carrier family 22 mem-
ber 17(SLC22A17), lacto transferrin (LTF), hepcidin-20 
(HAMP), cytotoxic T-lymphocyte protein 4 (CTLA4), 
low-density lipoprotein receptor-related protein 2 
(LRP2), gamma-secretase C-terminal fragment 50 (APP), 
fibronectin (FN1), cystatin-C (CST3), hepatitis A virus 
cellular receptor 1 (HAVCR1). Based on the analysis, 
CTAL4, LTF, SLC22A17, HAVCR1, MMP9, APP, HAMP 
proteins had direct interaction with which is shown in 
Fig. 5.

Table 1 List of nsSNPs of LCN2 gene predicted as deleterious in various in silico tools

SNP ID Amino 
acid 
change

SIFT score SIFT Prediction POLYPHEN 
SCORE

POLYPHEN 
prediction

PROVEAN 
prediction

MAPP PREDICT 
SNP 
prediction

SNAP2

rs147787222 G9V 0.006 Deleterious 0.89 Possibly Damag-
ing

Deleterious Deleterious Neutral Neutral

rs11556770 Q39H 0 Deleterious 0.926 Possibly Damag-
ing

Deleterious Deleterious Deleterious Neutral

rs139418967 L6P 0.002 Deleterious 0.999 Probably Damag-
ing

Deleterious Deleterious Deleterious Deleterious

rs142623708 M71I 0 Deleterious 0.753 Possibly Damag-
ing

Deleterious Deleterious Deleterious Deleterious

rs200107414 Y52C 0.001 Deleterious 1 Probably Damag-
ing

Deleterious Deleterious Deleterious Deleterious

rs201365744 Y76H 0.033 Deleterious 1 Probably Damag-
ing

Deleterious Deleterious Deleterious Deleterious

rs368926734 Y135H 0 Deleterious 1 Probably Damag-
ing

Deleterious Deleterious Deleterious Deleterious

Table 2 Prediction of protein stability by I-MUTANT 2.0 and MUpro

SNP ID Amino acid 
change

I‑MUTANT 2.0 
prediction

RI DDG value 
prediction

MUpro prediction MUpro Score Conservation 
score

Functional/
structural 
prediction

rs11556770 Q39H Decrease 7 − 1.62 Decrease − 0.8501 8 Functional

rs139418967 L6P Increase 0 − 0.26 Decrease − 2.251 7 Structural

rs142623708 M71I Decrease 3 − 0.06 Decrease − 0.5045 7 Structural

rs200107414 Y52C Decrease 1 1.07 Decrease − 0.7949 7 Structural

rs201365744 Y76H Decrease 5 − 1.74 Decrease − 1.0111 7 Structural

rs368926734 Y135H Decrease 7 − 1.71 Decrease − 1.5404 9 Functional
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Gene–gene interaction by GeneMANIA
The GeneMANIA tool was used to analyze the gene 
interactions with the LCN2 protein. This server pre-
dicts that 9 genes matrix mettaloproteinase-9(MMP9), 
matrixmetallopeptidase2(MMP2), S100 calcium bind-
ing protein P (S100P), Lysozyme(LYZ), S100 cal-
cium binding protein A8 (S100A8), GID complex 
subunit 8 homolog (GID8), LDL receptor-related 
protein 2(LRP2), Integrin subunit alpha 9 (ITGA9), 

L-2-hydroxyglutarate dehydrogenase(L2HGDH) has 
physical and genetic interactions. 7 genes WAP four-
disulfide core domain 2(WFDC2), lacto transferrin 
(LTF), lysozyme (LYZ), secretory leukocyte peptidase 
inhibitor (SLP1), transcobalamin1 (TCN1), serpin fam-
ily B member 5 (SERPINB5), peptidase inhibitor 3(P13) 
colocalized. 1 gene progestagen-associated endome-
trial protein (PAEP) shared protein domain and 6 genes 
MMP9, MMP2, LRP2, GID8, L2HGDH, ITGA9 were 
directly bound to LCN2 gene as shown in Fig. 6

Fig. 2 Conservation analysis of LCN2 by ConSurf server. This figure represents the amino acids in conserved regions were significantly harmful 
than those in non-conserved regions. It found to be highly conserved, and the variant amino acids were denoted in black boxes represented

Table 3 Prediction of stability, secondary structure, and relative solvent accessibility

Amino acid changes Class assignment RSA (%) ASA Phi Psi Secondary 
structure

Q39H Exposed 39 89 Å − 104° 146° Coil

L6P Exposed 47 95 Å − 79° 79° Coil

M71I Buried 9 20 Å − 104° 87° Coil

Y52C Buried 9 25 Å − 114° 130° Strand

Y76H Buried 3 8 Å − 120° 141° Strand

Y135H Exposed 20 53 Å − 72° − 15° Coil
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3D structure prediction
The 3D structure of the LCN2 protein was analyzed 
by AlphaFold. The AlphaFold method assigns a con-
fidence pLDDT score to each residue ranging from 0 
to 100. The average pLDDT scores across all residues 
demonstrate an overall confidence in the entire pro-
tein chain. These 3D structure results show very high 
confidence (pLDDT > 90), while the other components 

are represented as unresolved loops with a low 
(70 > PLDDT > 50) and very low score (pLDDT50) and 
consist mostly of α-helical domains shown in Fig. 7.

Discussion
In recent years SNPs served as promising markers for 
identifying loci linked to complex diseases and for 
pharmacogenetic applications. By studying the effects 

Fig. 3 Prediction of structural analysis by PSIPRED. PSIPRED examined the alpha-helix, beta-sheet, and coils that were distributed in the LCN2 
secondary structure. This figure represents that PSIPRED revealed that the strand was the common secondary structure and less distribution of coil 
and helix

Table 4 Prediction of structural analysis of LCN2 

Amino acids PSIPRED MEMSAT3 (transmembrane topology and helix 
prediction)

Amino acid types

Q39H Coil Cytoplasmic Polar

L6P Helix Cytoplasmic Hydrophobic

M71I Strand Cytoplasmic Hydrophobic

Y52C Strand Cytoplasmic Aromatic plus cysteine

Y76H Strand Cytoplasmic Aromatic plus cysteine

Y135H Coil Cytoplasmic Aromatic plus cysteine
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of functionally encoding SNPs on disease-related pro-
teins, new drugs can be developed to correct the effects 
of these mutations in the population [30]. Many genes 
associated with disease have large databases contain-
ing deleterious SNPs, which has been a major concern 
in recent years [31]. Examining the presence of func-
tional exonic SNPs within disease-associated proteins 
aims to enable the development of new treatments that 
mitigate the effects of these mutations in the population 
[4]. When occurring in genes, SNPs can affect mRNA 
splicing, nucleo-cytoplasmic export, stability, and trans-
lation. When present within the coding sequence and 
resulting in an amino acid change (known as a non-
synonymous SNP or mutation), they can alter the pro-
tein’s activity [32]. Polymorphism in the LCN2 gene has 
been found to be associated with different diseases like 
cardiovascular disease, chronic damage to the renal sys-
tem, colorectal and pancreatic cancer. In previous stud-
ies in animal models indicate that LCN2 plays significant 

roles in various physiological and pathological processes, 
including cell differentiation, apoptosis, organogenesis, 
inflammation, kidney damage, and liver injury. Addition-
ally, LCN2 is suggested to be involved in cancer progres-
sion and metastasis [33]. A recent study has suggested, 
for the first time, that association of single nucleotide 
polymorphisms (SNPs) in the LCN2 gene may influ-
ence blood pressure without causing hypertension, yet 
still increase the risk of cardiovascular disease due to 
the continuous relationship between blood pressure and 
cardiovascular risk. Specifically, the SNP rs3814526 is 
associated with elevated blood pressure, indicating that 
lipocalin-2 may impact hypertension through inflamma-
tory pathways [34].

Using several in silico methods, our study predicted 
the most deleterious  nsSNPs  structure and function of 
LCN2. The secondary structural predictions were ana-
lyzed by SOPMA and PSIPRED, while the protein–pro-
tein interaction and gene–gene interaction were analyzed 

Fig. 4 Prediction of secondary structure using SOPMA. This figures represent the LCN2’s secondary structure as 21.21% of sites where alpha-helix, 
3.54% beta-sheet, and 51.52% were random coil distributions
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by STRING and GeneMANIA. Finally, nsSNPs were 
submitted to AlphaFold for 3D structure prediction. 
Our study found that 6 functional SNPs rs11556770, 
rs139418967, rs142623708, rs200107414, rs201365744, 
and rs368926734 that have deleterious effects as deter-
mined by the conservation of amino acids, structural 
analysis, relative solvent accessibility, secondary structure 
prediction, and assessment of gene–gene and protein–
protein interaction within the LCN2 gene. According 
to the I-MUTANT server, 5 amino acid changes were 
unstable and decreased the protein stability. In the 
MUpro server, all amino acids changes lead to decreased 
stability. The stability of proteins plays a pivotal role in 
shaping their conformational structure and functional-
ity. Alterations in protein stability can influence misfold-
ing, degradation, or the formation of abnormal protein 
aggregates [35]. Changes to amino acids that are involved 
in biological processes have a significant impact on pro-
tein function, as these amino acids are typically highly 
conserved [36]. The conservation analysis result showed 
that all 6 amino acids which are Q39H, L6P, M71I, Y52C, 
Y76H, and Y135 were found to be highly conserved. The 
exposed variations were found on the protein’s surface, 
which could result in loss of interactions and structural 

changes, notably in the transmembrane domain [37]. 
PSIPRED analysis of LCN2 results revealed that the 
strand was the common secondary structure followed by 
coil and helix. SOPMA secondary structure found del-
eterious SNPs majorly in random coils and alpha helixes 
rather than beta twists, and extended strands.

GeneMANIA facilitates the identification of func-
tional interactions between genes. GeneMANIA showed 
that interaction of 6 genes, MMP9, MMP2, LRP2, GID8, 
L2HGDH, and ITGA9, was directly bound with the LCN2 
gene. Deleterious SNPs in the LCN2 gene may disrupt 
the interaction and function of other genes in the gene–
gene interaction network. The LCN2 and MMP9 com-
bination inhibits MMP9 autodegradation and increases 
MMP9 activity in vitro. The majority of LCN2’s biologi-
cal roles were discovered through studies done on mice. 
Nowadays, six potential LCN2 receptors have been found 
(NGALR, LRP2, LRP6, MCR4, MCR1, and MCR3), and 
their structures and affinities differ significantly. The 
mouse LRP6 protein, which serves as a co-receptor for 
Wnt and shares similar structural motifs as LRP2, has 
been shown to specifically interact with mouse LCN2. 
The study found that binding LCN2 to LRP6 efficiently 
inhibits Wnt/β-catenin signaling, as demonstrated by 
co-immunoprecipitation results [38]. In several studies, 
streptozotocin injection has been shown to elevate levels 
LCN2 in body fluids, such as urine, and in various body 
tissues, including the kidney. LCN2 is commonly used 
as a biomarker for both acute and chronic kidney injury 
[39–42].

The network of protein–protein interactions is criti-
cal for understanding the biological processes. Based on 
genomics data and fundamental assessment, functional 
and evolutionary aspects, these 7 proteins, CTLA4, LTF, 
SLC22A17, HAVCR1, MMP9, APP, and HAMP, have 
strong and direct interaction with LCN2 protein. Conse-
quently, the variant protein containing damaging SNPs 
might engage with other proteins, leading to phenotypic 
alterations in protein expression (43). Recent study sug-
gested that lipocalin-2 (LCN2) and hepcidin both con-
tribute to iron homeostasis. LCN2 is a glycoprotein that 
transports hydrophobic ligands across cell membranes, 
regulates immunological responses, and keeps iron lev-
els balanced. An engineered  lipocalin generated from 
human LCN2 may bind the T cell co-receptor CTLA4 
as a specified protein target with sub-nanomolar affinity 
[44]. Lactoferrin (LTF)  and LCN2 both primarily oper-
ate in the sequestration of iron. Lactoferrin, a glyco-
protein primarily known for its metal-binding abilities 
at mucosal surfaces, is also identified within neutrophil 

Fig. 5 Protein–Protein interaction network of LCN2 gene. The 
network of protein–protein interactions is critical for understanding 
biological processes. Using STRING functional genomics data 
and structural assessment, functional and evolutionary aspects 
of the LCN2 protein were examined. Based on genomics data 
and fundamental assessment, functional CTLA4, LTF, SLC22A17, 
HAVCR1, MMP9, APP, HAMP these 7 proteins has strong and direct 
interaction with LCN2 protein
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secondary granules and adorning neutrophil extracellular 
traps (NETs) [45]. Protein network research revealed that 
the LCN2-SLC22A17-MMP9 network has a role in TME 
through its interactions with fibronectin 1 and claudin 
7, particularly in rectal tumors. LCN2, SLC22A17, and 
MMP9 expression and methylation status were consist-
ent across all TCGA tumors, demonstrating that the 
LCN2-SLC22A17-MMP9 network was tightly controlled 
by DNA methylation within TME [46].

AlphaFold forecasts 3D protein structures and pro-
duces a predicted (pLDDT), which evaluates confidence 
for each residue. The LCN2 3D structure has high con-
fidence (pLDDT > 90) and consists mostly of α-helical 
domains. This study examined the LCN2 gene poly-
morphism using various bioinformatics tools. From our 
study, 6 SNPs have been discovered to be both structur-
ally and functionally detrimental, suggesting that they 

may impact the LCN2 protein’s functions. The prediction 
of deleterious SNPs has been carried out using bioinfor-
matics tools, but well-designed experimental and clinical 
analyses are necessary to investigate the impact of these 
nsSNPs on the structure and function of LCN2 protein.

Conclusion
Several online algorithmic tools relying on sequence 
and structural conservation were employed to pinpoint 
harmful nsSNPs within the LCN2 gene. Our study iden-
tified six nsSNPs as promising biomarkers for the LCN2 
gene. Nevertheless, additional in vivo and in vitro inves-
tigations are essential to explore and confirm the involve-
ment of the LCN2 nsSNPs in various diseases. Utilizing 
a variety of computational tools enhances the predic-
tive capacity for assessing the impact of mutations on 
proteins and cost-effective screening approach to better 

Fig. 6 Gene–gene interaction of LCN2 gene. GeneMANIA facilitates the identification of functional interactions between 6 genes: MMP9, MMP2, 
LRP2, GID8, L2HGDH, and ITGA9, which were directly bound with the LCN2 gene
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inform diagnostic and experimental approaches. How-
ever, in silico tools alone are insufficient and their out-
comes must be validated through additional biological 
evidence, serving as a basis for targeting pathogenic 
sites of the LCN2 protein.
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