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Abstract

Background: Adiponectin plays key roles in regulating appetite and food intake. Altered circulating adiponectin
levels have been observed in human eating disorders such as anorexia nervosa, bulimia nervosa or binge eating. In
addition, an association between circulating adiponectin levels and human eating behaviour (EB) has been
reported. Interestingly, a disturbance in eating behaviour is the defining characteristic of human eating disorders.
However, it is unknown whether adiponectin is causally implicated in human EB. We therefore aimed to investigate
the causal effect of adiponectin on EB.

Results: Mendelian randomization (MR) analysis estimated the influence of blood adiponectin on EB by combining
data on the association of adiponectin gene (ADIPOQ) variants with adiponectin levels and with three EB factors
involving disinhibition, restraint and hunger. Using inverse-variance weighted (IVW) regression method and other
complementary MR techniques (weighted median regression, MR Egger and weighted modal regression), the MR
analysis revealed a broadly consistent evidence that higher blood adiponectin concentration was significantly
associated with increased EB factor disinhibition (beta coefficient for IVW regression [βIVW], 3.05; 95% confidence
interval [CI] 1.10, 5.00) but non-significantly associated with increased EB factor restraint (βIVW, 0.17; 95% CI − 1.85,
2.18), and increased EB factor hunger (βIVW, 1.63; 95% CI − 0.75, 4.01).

Conclusions: Overall, our findings indicate a causal role of adiponectin levels in eating disinhibition but not in
eating restraint and hunger.
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Background
Human circulating adiponectin is a well-described 30 kDa
adipocytokine implicated in a wide range of anti-
inflammatory [1], insulin-sensitizing [2] and eating dis-
order [3] pathways. Serum adiponectin levels are highly
heritable [4–7] and, in contrast to adipokines, are inversely
correlated with several cardiovascular risk factors such as
obesity, type 2 diabetes mellitus, coronary artery disease
and stroke [8–13]. Adiponectin serum levels may be influ-
enced by nutritional compounds and probably increased
food intake which may in turn serve as a positive feedback
process [14]. Besides several other loci such as ARL15
(ADP-ribosylation factor-like 15 gene locus) [15], CDH13
(cadherin 13 gene locus) and KNG (kininogen gene locus)

[16, 17], candidate and genome-wide association studies
(GWAS) have shown pronounced associations between
common polymorphisms in the adiponectin gene (ADI-
POQ) and adiponectin levels [18–21]. Interestingly, poly-
morphisms of the ligand adiponectin gene, ADIPOQ, have
been linked with a range of important clinical parameters
such as body mass index (BMI), insulin resistance, cardio-
vascular disease and type 2 diabetes [22–24].
A number of observational studies have linked altered

adiponectin levels with several eating disorders involving
anorexia nervosa, bulimia nervosa and binge eating dis-
orders [3]. In particular, several studies showed that
serum adiponectin levels are increased in patients af-
fected with anorexia nervosa [25–27] perhaps due in
part to the lack of negative feedback exerted by fat mass
in adiponectin production and/or enhanced insulin sen-
sitivity [28]. In addition, studies have shown that serum
adiponectin secretion in patients with bulimia nervosa
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could be the same, upregulated or downregulated when
compared to those found in healthy controls. Moreover,
the studies also indicated that adiponectin levels of bu-
limia nervosa patients were lower than those found in
anorexia nervosa patients (reviewed in, e.g. [3]). Further,
binge eating disorder was shown to be accompanied
with lower serum adiponectin levels than in normal indi-
viduals [29, 30]. Of note, a disturbance in eating behav-
iour is the hallmark of the above clinical eating
disorders. Patients with bulimia nervosa experience re-
current episodes of binge eating [31]. Patients with an-
orexia nervosa severely resist dietary intake and showed
a persistent disturbance in eating behaviour even after
restoration of body weight and significant improvements
in eating disordered and psychological symptoms [32].
Mendelian randomization is an efficient analytical tool

that uses genetic variants as instrumental variables to es-
timate the causal relationship between an exposure and
outcome [33]. This method relies on the random assign-
ment of genetic variants during gametogenesis to reduce
the possibility of confounding [34, 35]. In addition, since
genetic variant is established at conception (i.e. genotype
being a fixed exposure), MR reduces the possibility of re-
verse causality [33]. Taken together, this confirms MR as
an efficient tool that can substantially improve causal in-
ference from observational data [36]. If adiponectin
serum levels are altered in eating disorders, the genetic
variant associated with adiponectin concentration should
be associated with eating behaviour. We investigated this
assumption through the use of a number of complemen-
tary MR techniques to examine the causal nature of the
association between blood adiponectin level and three-
factor eating behaviour involving restraint, disinhibition
and hunger in Central European (CEU) population.

Methods
Data sources
Summary data on the association between ADIPOQ single-
nucleotide polymorphisms (SNPs) and the phenotypes of
interest were extracted from Rohde et al.’s paper (898 indi-
viduals of European ancestry) [37] and public databases of
different consortia: ADIPOGen for adiponectin (29,347 indi-
viduals of European ancestry) [38] and GIANT (Genetic In-
vestigation of ANthropometric Traits) for BMI (229,735
individuals) [39] and WC (795,447 individuals) [40].

Instrumental variables
All the six but one ADIPOQ SNPs (Table 1) for our in-
strumental variable analyses were selected from 145
SNPs strongly (P < 5 × 10−8) associated with blood adi-
ponectin levels in the European ancestry GWAS meta-
analysis from the ADIPOGen consortium [38]. The
remaining one SNP also selected from the ADIPOGen
consortium was less strongly (P = 2.3 × 10−7) associated

with adiponectin levels in the European ancestry GWAS
meta-analysis [38]. We assessed correlations (linkage dis-
equilibrium) among these SNPs using the LDlink [41]
and found these SNPs to be independent variants.

Data analysis procedure
We performed a two-sample Mendelian randomization
analysis using summary data from genome-wide associ-
ation studies (GWAS). SNPs, previously reported to be
associated with blood adiponectin levels, were used as
instrumental variables for testing the causal effect of adi-
ponectin on the three eating behaviour factors. Data on
the association of ADIPOQ SNPs with (1) adiponectin
levels (first sample) and (2) eating behaviour factors
(second samples) were combined to estimate the influ-
ence of blood adiponectin on eating behaviour. First, we
selected and obtained the beta coefficients and standard
errors of six (6) GWAS significant SNPs that predicted
adiponectin levels in the ADIPOGen consortium and
were available in the eating behaviour outcome GWAS.
Second, we re-analysed the summary data of these six
SNPs on eating behaviour using their genotype frequen-
cies, means and standard deviations as available in the
Rohde et al.’s paper [37] using allelic model of inherit-
ance to obtain the beta coefficients (β) and standard er-
rors (SE) associated with the SNPs (Additional file 1:
Table S1). These six ADIPOQ SNPs were then used
for MR analysis. We also examined the standardized
mean difference (and P values) of two eating behav-
iour risk factors involving BMI-adjusted WC and BMI
per allele of the selected ADIPOQ SNPs for evidence
of an effect of the SNPs on these risk factors. This
was to enable us to assess the presence of potential
bias (horizontal pleiotropy) or mediation of the effect
of ADIPOQ SNPs with these eating behaviour risk
factors.

Table 1 Characteristics of SNPs selected for Mendelian
randomization

ADIPOQ SNP Chr Position* EA NEA EAF† C1 S6

rs864265 3 186836503 G T 0.14 ✓

rs16861205 3 186843845 G A 0.85 ✓ ✓

rs182052 3 186842993 G A 0.61 ✓

rs17366568 3 186852664 G A 0.93 ✓

rs3821799 3 186853697 T C 0.54 ✓

rs3774261 3 186853770 A G 0.50 ✓

Chr chromosome, EA effect allele, EAF effect allele frequency, NEA non-effect
allele, S6 six SNPs used in MR analyses (all but one SNP were selected on basis
of reaching genome-wide significant levels in association with adiponectin,
P < 5 × 10−8 in ADIPOGen consortium); and C1 one SNP had a P < 2.3 × 10−7 in
association with adiponectin in the ADIPOGen consortium
*Genome Reference Consortium Human Build 38
†1000 genomes
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Estimation of causal effect
The SNP-exposure and SNP-outcome associations for each
of the eating behaviour factors were combined in a random
effect meta-analysis using the inverse-variance weighted
(IVW) regression method as described by Burgess et al.
[42]. The β-coefficient of each eating behaviour factor per
one natural log greater adiponectin level and its standard
error (SE) were calculated.

Sensitivity analysis
While we considered our MR approach unlikely to be
biased by horizontal pleiotropy given the functional rela-
tionship of ADIPOQ to adiponectin levels, yet, we investi-
gated the presence of potential bias (horizontal pleiotropy),
by running a number of sensitivity analyses involving
weighted-median regression, MR Egger and weighted
modal regression that provide causal estimates under less
stringent assumptions than the traditional MR approach.
The weighted median regression analyses can provide a
consistent estimate for the true causal effect when up to
half of the weights in the MR analysis are from ADIPOQ
variants that exert pleiotropic effects on the eating behav-
iour factors [43, 44]. MR-Egger regression relaxes the as-
sumption that the effects of our ADIPOQ variants on the
eating behaviour factors are entirely mediated via the adipo-
nectin concentration. This method allows for each ADI-
POQ variant to exhibit some pleiotropy but assumes that

each gene’s association with the adiponectin concentration
is independent in magnitude from its pleiotropic effects
(the InSIDE assumption) [45]. MR Egger achieved this by
allowing an intercept term in the weighted regression ana-
lysis. The value of the intercept provides an estimate of the
degree of pleiotropy affecting the result, while the beta
(slope) coefficient represents the causal effect between adi-
ponectin concentration and eating behaviour adjusted for
pleiotropy. Finally, the weighted modal regression analyses
relax our instrumental variable assumptions [46]. Analysis
of association ADIPOQ SNPs with eating behaviour factors
using an allelic model of inheritance was done in Statistical
Analysis System (SAS) version 9.1.0 (SAS Stat) while MR
analyses were implemented using MendelianRandomiza-
tion package in R statistical software (R version 3.5.0).

Results
Association of genetic instruments with adiponectin, EB
and EB risk factors
Figure 1 shows the associations of ADIPOQ SNPs, used
as instrumental variables with adiponectin levels, EB and
EB risk factors. Each adiponectin-increasing allele was
associated with decreased EB factor restrain (beta coeffi-
cient [β], − 0.04; 95% confidence interval [CI] − 0.15,
0.08), increased EB factor disinhibition (β, 0.21; 95% CI
0.10, 0.33), and increased EB factor hunger (β, 0.13; 95%
CI 0.02, 0.25). Of the six SNPs, there was some evidence

Fig. 1 Forest plots of mean differences in log adiponectin levels and eating behaviour factors per allele of single nucleotide polymorphism (SNP).
Analyses including six ADIPOQ SNPs associated with (1) adiponectin at genome-wide significant levels (P < 5 × 10−8) and (2) eating behaviour (EB)
factors. Results for log adiponectin included 29,347 individuals from ADIPOGen Consortium and for EB factors included 898 individuals from
Rohde et al. 2015*
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of heterogeneity (P < 0.05) between studies that contrib-
uted to ADIPOGen consortium.
None of the six ADIPOQ SNPs was associated with EB

risk factors involving WC and BMI (Table 2). In
addition, pooled effect estimates of these SNPs on these
risk factors indicated no significant association with EB
factors (Fig. 2). Finally, the adiponectin-increasing ADI-
POQ variants were not associated with these available
EB risk factors (Additional file 2: Table S2)

Effect of blood adiponectin concentration on EB
Table 3 shows the results of all MR analyses assessing the
association of genetically predicted adiponectin with the
three EB factors. Using IVW regression, higher adiponec-
tin concentration was strongly and significantly associated
with increased EB factor disinhibition (β, 3.05; 95% CI
1.10, 5.00). Similarly, using both weighted median MR and
weighted modal MR, there was strong evidence of a sig-
nificant association (weighted median β, 2.66; 95% CI
0.48, 4.84; weighted modal β, 2.63; 95% CI 0.54, 4.73).
MR-Egger point estimate (− 0.32) was non-significant and
in the opposite direction. The intercept indicated no evi-
dence of pleiotropy (β, 0.23; 95% CI − 0.04, 0.51).
For EB factor restraint, higher adiponectin concentration

was weakly and non-significantly associated with an in-
creased likelihood of the EB (IVW β, 0.17; 95% CI − 1.85,
2.18). Results were similar when using weighted median
MR (β, 0.98; 95% CI − 1.28, 3.24), MR Egger (β, − 3.85; 95%
CI − 0.52, 8.21) and weighted modal estimate (β, 1.07; 95%
CI − 1.12, 3.26). The intercept indicated no substantial evi-
dence of pleiotropy (β, − 0.25; 95% CI − 0.53, 0.02).
Finally, there was evidence of an association between

higher adiponectin concentration and increased hunger
across all but one MR techniques. Inverse-variance
weighted MR, weighted median MR and weighted modal
MR all produced beta coefficients in the same direction.
MR Egger on the other hand had a beta coefficient in the
opposite direction. However, we found no statistical evi-
dence of association for all methods (e.g. inverse-variance
weighted β, 1.63; 95% CI − 0.75, 4.01). The intercept in

the MR-Egger analysis did not indicate any substantial evi-
dence of pleiotropy (β, 0.22; 95% CI − 0.12, 0.55).

Discussion
Using data from ADIPOGen consortium and eating be-
haviour GWAS study with information for up to 29,347
and 898 participants, respectively, we find evidence for a
causal association between adiponectin levels and eating
disinhibition but not for eating restraint and hunger.
These findings suggest that the observational association
between effect allele carriers in the ADIPOQ SNPs show-
ing elevated adiponectin serum levels along with the ten-
dency to frequently overeat (eating disinhibition), also
confirmed in our datasets, may be causal. This effect was
not due to horizontal pleiotropy based on our further in-
vestigation of the effect using alternative MR approaches
(such as MR Egger, median, and mode estimators) and
our assessment of the genetic variants with known and
available potential confounders (such as WC and BMI).
The observational study of the role adiponectin in eating

behaviour [37] indicated that while some ADIPOQ SNPs
were related to disinhibition and hunger, none of the asso-
ciations withstood Bonferroni corrections for multiple
testing perhaps due to the relatively small sample size of
the study. Taken advantage of the large GWAS consor-
tium data from ADIPOGen, we have undertaken the first
MR study of the causal effect of adiponectin on eating be-
haviour. We applied a rigorous analysis plan to assess the
validity and consistency of our findings. This included (1)
adopting a conservative approach in selecting SNPs for
our instrumental variables, (2) the use of multiple eating
behaviour phenotypes, (3) exploring different MR ap-
proaches to test the robustness of our results, (4) exten-
sively investigating the presence of bias that may be due to
horizontal pleiotropy, and (5) using a two-sample MR to
avoid statistical overfitting in comparison to a one-sample
MR setting and providing an opportunity to substantially
increase our study statistical power.
Our findings reinforce and extend the earlier observation

that the minor allele carrier of several ADIPOQ loci showed

Table 2 Standardized mean difference, standard errors and P values of EB risk factors per allele of SNPs used in Mendelian
randomization analyses

SNP WC BMI

β SE P N β SE P N

rs864265 0.0100 0.0047 0.0330 229,735 0.0013 0.0022 0.5400 795,447

rs16861205 0.0077 0.0084 0.3600 136,176 0.0020 0.0033 0.5400 670,986

rs182052 − 0.0046 0.0045 0.3100 151,881 0.0010 0.0018 0.5700 691,079

rs17366568 0.0073 0.0087 0.4000 125,437 − 0.0006 0.0027 0.8300 659,138

rs3821799 0.0025 0.0045 0.5800 139,525 − 0.0025 0.0018 0.1500 673,736

rs3774261 − 0.0004 0.0035 0.9100 229,363 − 0.0031 0.0017 0.0600 791,528

After Bonferroni correction, only P values lower than 4.2× 10−3 (0.05 ÷6 SNPs ÷2 phenotypes) were considered statistically significant. BMI body mass index, WC
waist circumference, β beta coefficient, SE standard error, N sample size
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elevated adiponectin levels along with increased disinhib-
ition [37]. Interestingly, eating disinhibition, correlated with
high amount of food intake, was demonstrated to be
strongly related to overeating without hunger feelings in cer-
tain situational circumstances [47, 48]. It is thus plausible
that the increased food intake serves as a positive feedback
mechanism. As adiponectin levels are known nutritional
compound influencer [14], they can activate adenosine
monophosphate-activated protein kinase (AMPK)-mediated
signaling through adiponectin receptor binding in the hypo-
thalamus region of animal models [49, 50]. This mechanism
seems to alter energy expenditure to cause overeating and
ultimately increased body weight [49, 50]. Of note, eating
disinhibition has been most consistently reported to be re-
lated with increased BMI and obesity [51].
Some limitations of this study should be considered. First,

not all the genome-wide significant SNPs that predicted adi-
ponectin levels were available in the outcome GWAS we
used. Thus, we were not necessarily capturing the full vari-
ance with the included variants. In addition, we were not
able to test for effect modification by age and gender be-
cause of the use of summary data only. In observational
studies, the role of age and gender as modifiable factors of

eating behaviour is well recognized [52–54]. Significant dif-
ferences between male and female adiponectin serum levels
have also been reported [37, 55]. Moreover, and surprisingly
too, we did not find a positive association between circulat-
ing adiponectin and disinhibition in the MR-Egger analysis.
This is generally inconsistent with results from other MR
techniques and may likely indicate a false-negative finding.
Notably, MR-Egger regression analysis yields less precise es-
timates than other MR methods, owing to a power penalty
[36]. Further, we were not able to specifically assess the
causal effect of the biologically active and high molecular
weight adiponectin in this study. Although we explored the
violation of the assumptions of MR, we cannot completely
rule out bias due to independence and exclusion restriction
assumptions. However, when we tested the association of
our genetic instrument with the two available potential EB
risk factors (i.e. BMI and WC), the genetic instrument
showed no significant association with both. These results
strengthen our estimates of the effect of blood adiponectin
concentration on EB. Finally, MR studies require large sam-
ple sizes partly due to the very small amount of variation in
the exposure explained by genetic instruments [33]. Thus,
while we believe our study was sufficiently powered to

Fig. 2 Forest plots of mean difference in eating behaviour risk factors per allele of single nucleotide polymorphism (SNP). Analysis including six
ADIPOQ SNPs associated with adiponectin at genome-wide significant levels (P < 5 × 10−8). Results for BMI and WC included 229,735 and 795,447
individuals, respectively, from GIANT consortium

Table 3 Estimates of standardized mean difference, standard error, P values (and 95% confidence interval [CI]) of three eating
behaviour factors per 1 U increase in genetically instrumented log adiponectin levels from various Mendelian randomization
methods

MR method EB factor restraint EB factor disinhibition EB factor hunger

β SE 95% CI P β SE 95% CI P β SE 95% CI P

IVW 0.17 1.03 − 1.85, 2.18 0.87 3.05 1.00 1.10, 5.00 0.002 1.63 1.22 − 0.75, 4.01 0.18

Weighted median 0.98 1.15 − 1.28, 3.24 0.40 2.66 1.11 0.48, 4.84 0.02 1.23 1.09 − 0.90, 3.36 0.26

Weighted modal 1.07 1.12 − 1.12, 3.26 0.34 2.63 1.07 0.54, 4.73 0.01 1.12 1.03 − 0.90, 3.14 0.28

MR Egger 3.85 2.23 − 0.52, 8.21 0.08 − 0.32 2.23 − 4.69, 4.04 0.88 − 1.53 2.74 − 6.89, 3.83 0.58

Constant† − 0.25 0.14 − 0.53, 0.02 0.07 0.23 0.14 − 0.04, 0.51 0.10 0.22 0.17 − 0.12, 0.55 0.20

CI confidence interval, U unit, EB eating behaviour, IVW inverse-variance weighted regression method, β beta coefficient, SE standard error
†MR-Egger intercept
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detect relatively small effects, our analysis may have been
underpowered to detect, perhaps, very small causal effects
operating at the extremes of adiponectin distribution in eat-
ing restraint or hunger.

Conclusion
In conclusion, our MR study reported a potential association
between circulating adiponectin and eating disinhibition and
could have potential implications on pathological disorders
which include anorexia nervosa, bulimia nervosa and binge
eating.
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