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Abstract

Background: Long non-coding RNAs are important regulators of gene expression and diverse biological processes.
Their aberrant expression contributes to a verity of diseases including cancer development and progression,
providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore,
they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical
modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then,
approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by
describing obstacles to the expansion of the therapeutics.

Main text: Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of
cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells
or biological fluids of patients. These properties make them excellent targets for the development of anticancer
drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent
carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their
epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and
recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long
ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard,
proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in
different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some
growth factors (e.g., neurotrophic factor) have been achieved.

Conclusions: Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the
reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different
technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies
need to be examined and further research is essential to put lncRNAs into clinical practice.
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Background
Long non-coding RNAs (lncRNAs) are a major group of
non-coding RNAs. Similar to mRNA, they are tran-
scribed by RNA polymerase II, 5′ capped, and polyade-
nylated at 3′ end. However, they do not have protein-
coding capacity. They have exon/intron and dynamic
secondary or tertiary structures [1, 2]. LncRNAs act
widely in numerous aspects of gene regulation, including
X chromosome inactivation, genomic imprinting, epi-
genetic regulation, transcription, mRNA splicing, and
nuclear and cytoplasmic trafficking [2, 3]. They are cru-
cial regulators of biological processes such as cell cycle,
proliferation, differentiation, metabolism, apoptosis, and
maintenance of pluripotency [4, 5]. LncRNAs function
in different ways. Scaffold lncRNAs have domains that
recruit various effectors [6]. Guide lncRNAs guide the ri-
bonucleoprotein complexes to specific locations [7].
Decoying lncRNAs bind to their targets and inhibit their
functions [8]. Signaling lncRNAs act as molecular signals
in cellular processes such as activation of gene transcrip-
tion by enhancer RNAs (eRNAs) or X chromosome in-
activation [9, 10].
Comparative transcriptomic and genome-wide associ-

ation studies (GWAS) indicated that single nucleotide
polymorphisms (SNPs) in lncRNAs are associated with
cancer and several other diseases [11, 12]. Engagement of
lncRNAs in all of ten cancer hallmarks has been docu-
mented [13–16]. LncRNAs show low expression in nor-
mal conditions. However, they are upregulated or
downregulated during cancers [17]. Deregulated lncRNAs
are involved in the cancer-associated alterations at tran-
scriptional and translational levels [18]. For example, some
lncRNAs are associated with transcription factors (TF).
Studies on glioblastoma revealed that dysregulation of
these lncRNAs leads to tumorigenesis. They form specific
lncRNA-TF-gene triplets such as HOX transcript
antisense RNA-max-interacting protein1 CD58 antigen,
lymphocyte function-associated antigen 3, and protein
kinase C epsilon (HOTAIR-MXI1-CD58/PRKCE) and
HOX transcript antisense RNA-activating transcription
factor 5 and neural cell adhesion molecule1 (HOTAIR-
ATF5-NCAM1). This enhances their target gene expres-
sion and, in turn, contribute glioblastoma prognosis [19].
The metastasis-associated lung adenocarcinoma transcript
1 (MALAT1) is known to regulate alternate splicing and
modulate the activity of spliceosome complex, which is es-
sential for correct splicing and activity of a transcription
factor, Myb-related protein B (B-Myb), that involves in
second growth phase G2 phase/mitosis M phase (G2/M)
transition. Thus, elevated expression of MALAT1 in can-
cer tissues leads to hyper-proliferation [20].
LncRNAs function as oncogenes and tumor suppres-

sors in cancers. Oncogenic lncRNAs such as nuclear
enriched abundant transcript1 (NEAT1), antisense non-

coding RNA in the INK4 locus (ANRIL), HOTAIR, and
MALAT1 fulfill the definitions of oncogenes. HOTAIR is
a transcript from the antisense strand of the homeobox
gene (HOXC) cluster. It is overexpressed in solid tumors
and promotes tumor progression, invasion, metastasis,
and poor prognosis [21]. HOTAIR recruits histone meth-
ylase polycomb repressive complex 2 (PRC2) and lysine-
specific histone demethylase 1A (LSD1) to the target
gene promoters. Tri-methylation at the 27th lysine resi-
due of the histone H3 protein (H3K27me3) and demeth-
ylation at lysine 4 (H3K4) occurs which can result in
gene silencing of some tumor suppressor genes [22].
LncRNA HOTAIR is deregulated in hepatocellular and
colorectal carcinomas, pancreatic tumors, ovarian can-
cer, and sarcomas [23–27]. In esophageal cancer,
HOTAIR enhances cell invasion and metastasis and pro-
motes the epithelial-mesenchymal transition (EMT),
since it functions as a miR-148a sponge and positively
regulates a transcription factor, zinc finger protein
SNAI2 (Snail2) expression [28]. MALAT1 localizes the
nucleus and participates in RNA splicing and gene ex-
pression at transcriptional and posttranscriptional levels
[29]. It involves proliferation, migration, invasion, metas-
tasis, or apoptosis of tumor cells. The upregulation of
MALAT1 is associated with various types of cancers in-
cluding breast, lung, bladder cancers, esophageal squa-
mous cell carcinoma, and glioma [30–33].
LncRNAs also act as tumor suppressors: the maternally

expressed gene 3 (MEG3), growth arrest specific 5
(GAS5), neuroblastoma-associated transcript-1 (NBAT-1),
and long intergenic non-protein coding RNA, P53-
induced transcript (LINC-PINT) have key roles in cellular
processes. They are downregulated in cancers. LINC-PINT
localizes downstream of p53 and acts as its regulatory ef-
fector and inhibits tumor invasion [34]. Its downregula-
tion contributes to tumorigenesis in mouse models and
LINC-PINT expression is lost in many tumors [35]. MEG3
is a polyadenylated lncRNA. Its imprinted gene is on the
delta-like non-canonical notch ligand1-the maternally
expressed gene 3 (DLK1-MEG3) locus of chromosome
14q32.2 [36].MEG3 has high expression in normal human
tissue, which is stimulated by cyclic adenosine monopho-
sphate (cAMP). Highly expressed MEG3 inhibits prolifera-
tion and promotes apoptosis of tumors through
interactions with different microRNAs [37–39]. Besides,
MEG3 shows decreased or no expression in many cancers
namely, brain, lung, colon, liver, and leukemia. MEG3 ex-
pression is under epigenetic control, and aberrant CpG
methylation has been demonstrated in several types of
cancer [37, 40]. MEG3 involves the modulation of trans-
forming growth factor-b (TGF-b) pathway genes that
affect cell invasion and immune regulation. In addition, it
activates p53 [41, 42]. Some lncRNAs can act both as on-
cogenes and tumor suppressors such as V-Raf murine
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sarcoma viral oncogene homolog B1 (BRAF)-activated
noncoding RNA (BANCR), lncRNA of H19 gene (H19),
X-inactive specific transcript (XIST), and MALAT1 [43].
LncRNAs have the potential to be diagnostic or prog-

nostic biomarkers and therapeutic targets, since they are
expressed in a cell, tissue, developmental, or disease-
specific manner. Several lncRNAs are only expressed in
cancer cells [44–47]. The prostate cancer antigen 3
(PCA3) promotes the proliferation and invasion of pros-
tate cancer. PCA3 has been approved as a urine biomarker
for prostate cancer. This lncRNA exhibits better specificity
and sensitivity compared to the prostate-specific antigen
(PSA) test [48, 49]. It is over-expressed 60- to 100-fold in
prostate tumors compared to benign prostatic tissue and
is undetectable in other cancer types [50, 51].
The existing approaches for the treatment of cancer

are suboptimal. Targeting lncRNAs can replace or sup-
plement present strategies because they are minimally
invasive and convenient therapeutic targets. This review
illustrates the potential of lncRNAs as prospective thera-
peutic targets in cancer. Strategies of targeting cancer-
associated lncRNAs therapeutically to modulate their
level or function are discussed. Also, chemical modifica-
tion of nucleic acid-based therapeutics to improve their
pharmacological properties is explained. Finally, ap-
proaches for the systematic delivery of reagents into the
tumor cells and challenges in targeting lncRNAs are
described.

Main text
Targeting lncRNAs in cancer treatment
LncRNAs could be promising therapeutic targets in can-
cer. They are easily detectable in the saliva, serum, plasma,
urine, and tissues of cancerous patients. Their flexible and
complex structures can be targeted while they are partici-
pating in cellular complexes. Specific expression of
lncRNAs provides the possibility of killing cancer cells se-
lectively. Their low expression allows the use of lncRNA
targeting drugs at lower doses, thereby avoiding toxicities
relevant to oligonucleotide therapies. Unlike cellular sig-
naling pathways that encompass signal amplification cas-
cade, lncRNAs function at absolute expression levels that
facilitate easier manipulation. In addition, strategies such
as enzyme replacement therapy that have been designed
to restore deficient or eliminated expression of genes have
side effects. Targeting lncRNAs might be an alternative to
upregulate such genes in a locus-specific pattern [52, 53].
In this regard, various strategies have been developed to
suppress oncogenic lncRNAs or alter their epigenetic ef-
fects. Besides, technologies to interfere with their func-
tions have been designed. LncRNAs regulatory elements
and expression patterns have been recruited for cancer
treatment. Moreover, downregulated or lost lncRNAs can
be restored as natural drugs.

Suppression of oncogenic lncRNAs
Oncogenic lncRNAs are upregulated in cancers so they
can be targeted via using different technologies to re-
duce their levels. Here, these techniques are described,
which, among them, nucleic acid-based methods have
dominated. Furthermore, these technologies allow the
functional analysis of lncRNAs and targeting epigenetic
modifications.

Antisense oligonucleotides (ASOs)
Antisense oligonucleotides (ASOs) are single-stranded
antisense oligonucleotides with a DNA stretch (at least
6mer) at the central part, which is native, or phosphor-
othioated (chemically modified) and RNA nucleotides at
flanking parts of the molecule. DNA forms RNA/DNA
heteroduplex with target lncRNA that will be cleaved by
endogenous RNaseH1 [54]. ASOs typically are used to
alter mRNA expression and have succeeded in treating
several diseases [55, 56]. They can be exploited to sup-
press highly expressed lncRNAs in cancers. Several de-
signs of ASOs including locked nucleic acid GapmeRs
(LNAGapmeRs), antagonist to NATs (antagoNAT), and
mixmers are used with different modes of action.

Locked nucleic acid GapmeRs (LNA GapmeRs)
LNA GapmeRs are very similar to ASOs in structure
and function (16 nucleotides), except that they have
chemically modified LNA in flanking arms whereas the
gap DNA segment lacks the LNA. LNA increases bind-
ing affinity and nuclease resistance. Phosphorothioated
backbones have been designed to make GapmeRs resist-
ant to enzymatic degradation [57].
Researchers designed two LNAs for targeting different

regions of repeat C on lncRNA XIST through base pair
formation. They were used to study the localization of
XIST along the X chromosome. Repeat C consists of 14
tandem repeats with a c-rich sequence, situated 3 kb
downstream of repeat A that is a silencing domain at the
5′ end [58]. A localization domain was detected, and dis-
placement of polycomb repressive complex 2 (PRC2) and
XIST coincided. This study suggested that PRC2 and XIST
bind to different sites of the X chromosome at the same
time and do not occupy all binding sites immediately,
while the displacement of XIST from X takes place with
fast kinetics. However, H3K27me3 marks and gene silen-
cing were stable. As a result, the LNA technology allows
high-throughput functional analysis of lncRNAs and may
provide an opportunity to target epigenetic modifications
in vivo for therapeutic applications [59].

Antagonist to NATs (antagoNATs)
Natural antisense transcripts (NATs) are coded from the
opposite strand to the host gene locus. They are divided
into cis-NATs that regulate the expression of the sense
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transcripts of the same locus and into trans-NATs,
which regulate the expression of a transcript from other
genomic loci [12]. NATs mediate transcriptional silen-
cing of the related loci via histone-modifying complexes.
The antagonist to NATs is a single-stranded oligo-
nucleotide that is designed to inhibit sense-antisense in-
teractions. Therefore, it can be used for the elimination
of the epigenetic silencing effect of NATs. Brain-derived
neurotrophic factor (BDNF) transcription naturally is re-
pressed by BDNF-AS. In a study to target, activate
brain-derived neurotrophic factor antisense (BDNF-AS)
in vivo, DNA-based, antagoNAT gapmer with three
LNA substitutions at each end and phosphorothioate-
modified backbones was built to activate BDNF expres-
sion. This resulted in BDNF mRNA upregulation, which
led to increased protein levels and induced neuronal
outgrowth and differentiation in vitro and in vivo [60].
Thus, antagoNAT strategy provides a useful tool for tar-
geting lncRNAs that act as natural antisense NATs to
genes of therapeutic interest.

Mixmers
Mixmers comprise chemically modified nucleotides such
as LNA and different types of monomers. They do not
have ordinary sequential DNA nucleotides and are not a
substrate for RNase H1. Therefore, they sterically inhibit
the linkage between lncRNA, ribonucleoproteins, or nu-
cleic acids. They can be used to prevent epigenetic remod-
eling complexes, alter gene expression, which is regulated
by pseudogene transcript, redirect alternative splicing, re-
pair defective RNA, and restore protein production [61,
62]. Researchers designed OMe/LNA (2′-O-methyl/LNA)
mixmers that suppressed transactivation response
element-transactivator of transactivation (TAT-TAR) in-
teractions by the steric blockade in Hella cells. The repli-
cation of human immunodeficiency virus type 1 (HIV-1)
depends on these interactions. Also, a tricyclo-DNA/oligo-
nucleotides (16 nucleotides) mixmer inhibited expression
of β-galactosidase in Hella cells [62].

Small interfering RNAs (siRNAs) and short hairpin RNA
(shRNAs)
Small interfering RNA (siRNA) is a knockdown strategy.
siRNAs are short double-stranded RNAs. They unwind into
single strands, attach to RNA-induced silencing complex
(RISC), and create a base pair with a lncRNA of interest,
leading to argonaute degradation of the target transcript
[63] (Fig. 1). RNAi has different forms, including transcrip-
tional and posttranscriptional gene silencing. RNAi libraries
consist of synthetic or enzymatic interfering RNAs. Treat-
ment of double-strand RNA (dsRNAs) with Dicer or RNase
III provides endoribonuclease-made siRNAs (esi-RNAs),
which are directly delivered into the cytoplasm. Chemically
synthesized siRNAs represent the conventional forms,

which also are delivered into the cytoplasm directly. Al-
though both siRNAs cause strong suppression of target
transcripts, their effect is temporary. Conventional siRNAs
indicate a more off-target effect compared to esi-RNAs.
Another form of RNAi is short hairpin RNA (shRNA),
which is expressed inside the cell. shRNAs yield silencing
responses that may be transient or stable and show a much
more off-target effect than esi-RNAs. Tumor cells are
transfected by shRNA or siRNA plasmid vectors [64].
A siRNA mediated knockdown of second chromosome

locus associated with prostate-1 (SChLAP1), resulting in
reduced cell proliferation and invasiveness. LncRNA
SChLAP1 causes aggressive prostate cancer by prevent-
ing the tumor-suppressive activity of the SWItch/Su-
crose Non-Fermentable (SWI/SNF) complex [65].
MALAT1 expression levels are highly increased in cer-

vical cancer (CC) cells and tissues. A plasmid vector
with a DNA fragment, encoding hairpin RNA, was used
to attenuate MALAT1 levels. Also, an shRNA vector
lacking hairpin oligonucleotides as a negative control
was built. This strategy prevented metastasis and inva-
sion in vitro and in vivo in CC cells. Downregulation of
MALAT1 increased E-cadherin and Zonula occludens-1
(ZO-1) while decreased b-catenin, vimentin, and tran-
scription factor snail. Hence, MALAT1 is a target for the
inhibition and therapy of cervical cancers [66].
Researchers demonstrated that novel pyk-reg-90-con-

taining lncRNA (N-BLR) is highly expressed in gastric
cancer cell lines and tissues compared to normal gastric
cells and adjacent normal tissues. Two siRNAs signifi-
cantly reduced cell proliferation and suppressed migra-
tion and invasion of gastric cancer cells. LncRNA N-BLR
expression was inversely associated with miR-200c,
which is known to regulate EMT. Therefore, NBLR
proves to be a regulator of the EMT process in gastric
cancer [67].
Short hairpin RNAs to knockdown three molecules,

secretory carrier membrane protein 1 lncRNA (SCAMP1),
transcription factor LIM homeobox transcription factor 1
alpha (LMX1A), and NLR family, CARD domain contain-
ing5 (NLRC5) gene, were constructed in a vector. The
oncogenic function of (SCAMP1) was repressed in glioma
cells. Inhibition of SCAMP1 prevented cell proliferation,
migration, and invasion while induced apoptosis due to
acting as a molecular sponge of miR-499a-5p. This
microRNA acts as a tumor suppressor in glioma cells
because it targets the 3′ untranslated (3′-UTR) region
of LMX1A, which is upregulated in glioma cells and
tissues. LMX1A activates the NLRC5 expression that
stimulates the Wnt/β-catenin signaling pathway,
which promotes the malignancy of glioma cells.
Therefore, targeting the SCAMP1/miR-499a-5p/
LMX1A/NLRC5 pathway can be a new therapeutic ap-
proach for glioma treatment [68].
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Scientists built siRNAs to knockdown, SOX2 overlap-
ping transcript (SOX2OT),MALAT1, and ANRIL. Further-
more, a universal siRNA as a negative control without
homology with mammalian gene sequence was designed.
Down-regulation of polycomb group RING finger protein
1 (NSPc1) expression with MALAT1, SOX2OT, and
ANRIL prevented the proliferation and raised apoptosis in
primary glioblastoma cell line (U87) cells. This result indi-
cated that MALAT1, SOX2OT, and ANRIL combine and
crosstalk with NSPc1 in U87 glioblastoma cells to modify
proliferation and apoptosis [69].
siRNAs can also be used for NAT-related dysregulation,

to target the antisense transcript in a region that does not
directly overlap the sense transcript [60, 70].

Deoxyribozymes and ribozymes
Deoxyribozymes are enzymatic DNA molecules with one
strand, synthesized to bind to the target RNA according
to Watson-Crick base pairing rule. They catalyze RNA
cleavage, resulting in fragments of 2′,3′-cyclic phosphate
and 5′-hydroxyl ends. They also mediate bond formation
via ligation between the 3′-hydroxyl and 5′-triphosphate
terminal in RNA [71, 72] with the help of Ca2, Mg2,
Pb2, andZn2 cofactors [73].
Scientists have designed site-specific cleaving deoxyribo-

zymes, which are sensitive to the modified nucleotide N6-
methyladenosine (m6A) in cellular RNAs (Fig. 2). They
were used to investigate the methylation state of DG
(m6A/A) CH motifs (D = A, G, or U; H = A, C, or U).
One type of these DNA enzymes offered faster cleavage of
methylated RNA, whereas others were significantly pre-
vented by the modified nucleotide. In humans, lncRNA
MALAT1 A 2577 contains m6A [74, 75]. Treatment of
this lncRNA with one of these DNA enzymes (VMC10)
confirmed the high methylation of the target site [76].
Engineered ribozymes with better catalytic activities

and substrate recognition domains have been designed

to gain new diagnostic and therapeutic applications.
They cleave RNA independent of protein at specific sites
in cis or trans [77].
The hammerhead ribozyme (HHRz) has been found in

all species. The secondary structure of the HHRz con-
tains three variable stems (stem I/II/III). They are linked
to a central catalytic core of 13 conserved nucleotides
that is vital for self-cleaving. The cleavage occurs behind
the nucleotides (GUC↓) (Fig. 3, hammerhead ribozyme).
The catalytic activity of the HHRz is boosted by three-
dimensional interaction between the loop in stem II and
the bulge in loop I [78]. Engineered HHRz was created
using two independent molecules. Splitting of loop III
resulted in a transformation from intramolecular cis-
cleavage to intermolecular trans-cleavage. NUX↓ group
is essential for the cleaving site. Here, N is any nucleo-
tide, U is uridine, and X stands for any nucleotide except
guanosine [79] (Fig. 3, engineered ribozyme). Any RNA
molecule containing inner NUX↓ that matches the
HHRz binding arms can be cleaved in trans [80, 81].
Some researchers claimed this ribozyme could not cleave
efficiently at GUG↓ site. They designed hammerhead
ribozymes with a new cleaving site, “DWH” (D = A/U/
G, W = A/U, and H = A/U/C) and an optimal binding
arm length of (8–9 nucleotides) to achieve trans-cleav-
age of a single-stranded RNA molecule [82].

Genome engineering tools
Zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9
system are genome-engineering approaches, which can
be recruited to decrease lncRNA expression levels. The
genome can be manipulated by ZFNs in a site-specific
manner. RNA destabilizing elements (RDE) were inte-
grated into the locus of MALAT1 by utilizing ZFNs in
human cancer cells. Its expression was decreased 1000

Fig. 1 siRNA technology to suppress oncogenic lncRNAs in cancer
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Fig. 2 Adenosine (left); N6-methyladenosine (right)

Fig. 3 The secondary structures of hammerhead and engineered ribozymes [82]
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fold in stable knockout colons, inferring a loss of func-
tion model [84, 85]. Although this inactivation did not
affect alternative splicing, fewer tumor nodules and cell
migration were observed in mouse xenograft revealing
that MALAT1 has the potential to be a therapeutic tar-
get to prevent metastasis in lung cancer [30]. RDEs are
integrated into the genome loci such as poly-A signals
leading to the silencing of downstream sequences by act-
ing as termination elements. Also, pseudogenes can be
silenced by RDE [84, 86].
Unlike protein-coding genes, long ncRNA genes are

not vulnerable to a few base insertion, deletion, or
frameshift mutations. Thus, they may act through gen-
eral structures that should be manipulated on large
scales. This is possible utilizing the CRISPR/Cas9 system
and paired single guide RNAs (sgRNAs) whereby 23 kb
of Rian, a maternally expressed lncRNA gene, was de-
leted in mice. Also, the deletion efficacy was enhanced
by using numerous sgRNAs, and deletions were inher-
ited as well [87].
Transcription of lncRNA genes can be suppressed ster-

ically by CRISPR interference (CRISPRi). CRISPRi com-
prises a guide RNA (gRNA) to recognize the target gene
and catalytically dead Cas9 (dCas9) protein without endo-
nucleolytic activity [88]. gRNAs target template strand se-
quences, or regions that are 100 bp upstream of the
promoter, or non-template DNA strand in the promoter,
or -35 regions. This is more effective in eukaryotic cells
compared to direct blockage of RNA polymerase [88].
Also, dCas9 can be integrated into a repressor domain,

Kruppel-associated box (KRAB), that leads to the silencing
of gene expression epigenetically [89].

Strategies to interfere with LncRNAs function
To target lncRNAs function several technologies namely,
small molecules, nanobodies, aptamers, and RNA decoys
have been proposed to disrupt interactions between
lncRNA/protein via competition or steric blockade [53].

Small molecules
Small molecules bind to either lncRNA or RNA-binding
proteins (RBP), change their secondary or tertiary struc-
tures, or directly mask protein-binding sequences of
RNAs or lncRNA binding domain of the RBPs to disrupt
interactions between them [90]. Thus, a profound un-
derstanding of LncRNA-protein interactions is essential
to meet this goal. Various methods have been developed
for the identification of the physical interactions between
lncRNAs and proteins. For example, using methods like
capture hybridization analysis of RNA targets (CHART)
and RNA affinity purification (RAP), proteins that bind
to functional intergenic repeating RNA element (FIRRE),
XIST, MALAT1, and NEAT1 with relevant gene se-
quences were identified. These methods are categorized
as the RNA-centric study of RNA-protein interactions
in vivo via cross-linking [91–93].
Quantitative analysis of these interactions at a large

scale is vital to investigate small molecule modulators
[94]. Technologies such as high-throughput sequencing-
RNA affinity profiling (HiTS-RAP) assay and RNA on a

Fig. 4 Chemical modifications of nucleic acid-based therapeutics [52, 83]
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massively parallel array (RNA-MaP) can be adopted for
this purpose [95]. Meanwhile, databases and libraries of
small molecules that modulate ncRNAs can be explored
[96, 97]. X-ray crystallography and nuclear magnetic res-
onance (NMR) spectroscopy may help to create structural
models to find out how small molecules are attached to
and fit in the lncRNA-protein binding cleft [94].
PerkinElmer (Waltham, MA) technology was intro-

duced to quantify the lncRNA-protein interaction,
named AlphaScreen technology. Based on AlphaScreen
technology, the interaction of HOTAIR and BDNF-AS,
with enhancer of zeste homolog 2 (EZH2), was assessed.
Besides, ellipticine was discovered, which upregulates
the BDNF transcription [90].
Targeting lncRNA-protein interactions lead to reversible

inhibition of chromatin-modifying enzymes in their non-
catalytic domains since it is illustrated that these enzymes
have different sites for long ncRNA binding [94].
In a breast cancer model, small molecules have been

used to interfere with the interactions of HOTAIR and
PRC2 or LSD1 complexes to limit the metastatic poten-
tial of tumors [98].
LncRNA MALAT1 does not have a polyA tail; how-

ever, it has a very unusual 3′-terminal structural motif,
known as the stability element for nuclear expression
(ENE) [99]. A triple helix is formed through interactions
between a U-rich hairpin and the transcript 3′ A-rich
tail. This ENE motif protects MALAT1 from degradation
and high levels of transcript accumulate in the nucleus
[100, 101]. Using a small molecule microarray strategy,
two ligands were detected, which specifically bind to the
mouse Malat1 ENE triplex. They had ~ 90% homology
with human MALAT1 ENE triplex [101]. Both ligands
decreased Malat1 RNA levels in cell culture and branch-
ing morphogenesis in a mammary tumor model by indu-
cing structural changes, (but in different ways). One of
the ligands regulated Malat1 downstream genes whereas
it did not affect lncRNA Neat1 that possesses a similar
ENE triplex structure. This illustrates the specificity of
this ligand for Malat1 over another virus-coded ENEs
and Neat1 [102].

Nanobodies
Nanobodies are capable of disrupting cancer-related
RNA-protein networks. They are a variable part of cam-
elid heavy-chain antibodies (HcAbs) with high affinity
and specificity. Besides, they are very stable and soluble
antigen-binding proteins, with similarity to human Im-
munoglobulin heavy chain V gene (VH) sequences; thus,
they are non-immunogenic. They interfere with protein-
nucleic acid or protein-protein interactions and have the
capacity to interrupt cancer-specific RNA-RBP networks
[103].

Researchers designed a gene library of synthetic nano-
bodies, able to bind to nucleic acids. A nanobody (cAbB-
C1rib3) was identified that specially binds to ϕBC1, a
structured RNA (stRNA) in nanomolar concentrations.
Also, the nanobody binds to various non-related
stRNAs. However, it did not bind to single or double-
stranded DNA/RNA or proteins with negative charges.
The thermal unfolding/refolding processes were not af-
fected by the presence or absence of nanobody. There-
fore, nanobodies can be engineered to recognize stRNA
epitopes. Nevertheless, their specificity should be im-
proved in future works [104].

Aptamers
Aptamers are single-stranded nucleic acids (DNA/RNA)
with high specificity and affinity to targets. In other words,
they are nucleic acid analogs of antibodies but with better
tissue penetration and transport and lower immunogen-
icity [105]. They act through three-dimensional structures,
recognize secondary structures of lncRNAs, and interfere
with RNA-protein interactions [105].
Systematic evolution of ligands by exponential enrichment

(SELEX) is used to recognize and expand aptamers in vitro
with the possibility of incorporating modified nucleic acids
to produce nuclease resistant RNA aptamers [18].

RNA decoy
RNA decoys could be generated as imitators of lncRNAs
and act through attachment to proteins and thus seques-
ter proteins. They may function as an approach to disrupt
the creation of functional lncRNA-RBP complexes. Scien-
tists designed an anti-HIV decoy that targets the viral pro-
tein, Tat. It has (TAR) RNA hairpin and binds to Tat
protein. This decoy localizes in the nucleolus whereas nat-
ural TAR RNA is located in the nucleus [106].

LncRNA regulatory elements or expression patterns
The gene of diphtheria toxin-A beside the H19 promoter
was integrated into a double-stranded DNA plasmid BC-
819 (DTA-H19) in overexpressed H19 tumor cells. It
was injected to intratumoral regions of various cancer
types where reduction of tumor size was reported [107].

Chemical modifications
RNA is a dramatically unstable molecule and has poor
pharmacological properties due to the presence of vari-
ous endogenous ribonucleases. RNA has a negative
charge and is hydrophilic. Besides, the 2′-OH group of
ribose sugar makes it catalytically active. Therefore,
chemical modification of RNA-based therapeutics is ne-
cessary to increase their stability without affecting bio-
logical activity [52]. (2′-OH) group of the ribose can be
replaced by 2′-methoxy (2′-OMe), 2′-methoxyethoxy
(2′-MOE), 2′-4′-O-methylene Bridge, locked nucleic
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acid (LNA), and 2′-fluoro (2′-F) to improve the pharma-
cological potential of siRNAs and ASOs [52] (Fig. 4).
In ASOs, the 2′-MOE-modified oligonucleotides are

more stable in the serum and have higher RNA affinity
compared with the 2′-OMe-modified analogs [108]. (2′-
OMe)-modified ASOs show increased stability against
nucleases and high affinity with RNA compared to un-
modified oligonucleotides. However, they are still sensi-
tive to serum nucleases [109]. To avoid this limitation,
2′-OMe was modified along the whole chain, and to re-
duce the degradation by exonucleases short phosphoro-
thioate fragments replaced 3′- and 5′-ends. Also, the
hydrophobicity of ASOs increased with cholesterol moi-
ety at the 3′-end of the chain [110]. The 2′-F group in-
creases nucleotide's affinity to the target RNA [111].
LNA is a class of bicyclic RNA analogs in which the

2′-O and 4′-C atoms are connected by a methylene link-
age so that the furanose ring of the ribose sugar is chem-
ically locked, resulting in higher thermal stability and
the highest RNA affinity among typical ASOs [62, 112]
(Fig. 4). The LNA strategy is also recruited to produce
highly stable aptamers [113].
Phosphorothioate group forms when sulfur substitutes

for non-binding oxygen atom of the phosphate group in
a nucleotide, to enhance both their stability and hydro-
phobicity [114] (Fig. 4). It is used in the synthesis of
ASOs and less often with aptamers and siRNAs [115].
Chemical modifications in the antisense strand of siR-

NAs are restricted to one or two internal nucleotides in-
cluding 2′-OMe nucleotide substitutions and at the 3′-
end. Phosphorothioate internucleotide linkages are
exerted to improve the resistance of the siRNAs to nu-
cleases. In the sense strand, more internal nucleotides
can tolerate the 2′-OMe nucleotide substitutions so that
siRNA remains functional within RISC. Such chemical
modifications improve target cell penetration of siRNAs
and assist their metabolic stability [61, 116]. Unmodified
siRNAs poorly uptake into target cells and organs and
are rapidly degraded by nucleases that circulate in the
blood [117].
The application of these strategies depends on the na-

ture of the target. siRNAs effectively target lncRNAs in
the cytoplasm [118]; however, successful silencing of
lncRNAs by siRNAs has been reported irrespective of
their intracellular location [119]. siRNAs are not as ef-
fective as ASOs and ribozymes in targeting secondary
structures of lncRNAs [30, 120–122]. ASOs are more re-
liable for silencing highly expressed lncRNAs, which
localize in the cell nuclei [123]. ASOs are less immuno-
genic and their small sizes let them enter the nucleus
easier compared to double-stranded siRNAs [124, 125].
Besides, ASOs have higher specificity and fewer off-
target effects [52]. However, ASOs have shown off-target
effects and difficulties in cellular uptake [30, 120–122].

Ribozymes exhibit less off-target effects since they are
sensitive to single nucleotide mismatches [126]. In some
cases, ASOs are preferable to small molecules owing to
their specificity and ability to impair correct folding of
lncRNAs [43].

Approaches for systemic delivery of therapeutics
The targeting strategies will be successful if they can be
delivered to the right target organs or cells with ad-
equate efficacy and safety. ASOs can be taken up freely
by cells in vivo. However, efficient delivery to the target
tissue is a major limitation of their use. Also, they have
very long half-lives when entering cells, i.e., from 2–4
weeks in the liver [127] to 4–6 months in the central
nervous system (CNS) [128]. Systemically delivered
ASOs exhibit rapid clearance from the blood and accu-
mulate in the liver and kidney [129]. Other materials ex-
ploit delivery vehicles [30].
Liposomes are mostly used for nucleic acid delivery

among lipid-based vectors. In a mouse model of ovarian
cancer, the upregulated lncRNA ceruloplasmin (NRCP)
was silenced using a phosphocholine derived, 1,2-dio-
leoyl-sn-glycero-3-phosphocholine (DOPC) nanolipo-
some containing siRNA. Substantial reduction of tumor
growth and increased sensitivity to cisplatin was ob-
served [130]. Polymeric vectors have low immunogen-
icity or toxicity, whose surfaces are manipulated to
increase stability, tissue specificity, and cellular uptake
[52]. As an example, dendrimers are utilized to deliver
siRNAs. In lung cancer, a delivery platform comprising
modified poly amidoamine (PAMAM) with polyethylene
glycol (10C PEG) and 10 bromodecanoic acids to im-
prove transfection efficiency, an aptamer for targeting
nucleolin ligand on target cancer cells and shRNA
plasmid for knockdown of B-cell lymphoma-extra large
protein (Bcl-xL) were constructed. Modified vector
markedly improved the transfection efficiency via cova-
lent or non-covalent aptamer binding compared to the
non-targeted vector [131]. Genetically engineered adeno-
virus, adeno-associated virus (AAV), retrovirus, or her-
pes simplex virus have been used for targeted delivery of
RNA [132, 133]. Viral vectors show efficacy in delivering
shRNAs in vivo and ex vivo. They suppress targeted
RNAs stably and specifically. Using lentiviral frame plas-
mids as vectors against HOTAIR prevented proliferation
and invasion of endometrial carcinoma cells in vitro and
in vivo [134]. Efficient gene knockdown has been
achieved via the fusion of aptamer to siRNA (aptamer-
guided RNAi). This strategy allows the delivery of siR-
NAs through receptor-mediated endocytosis for cell-
specific targeting. The production on large scales with
high purity and unlimited targeting of any gene in any
cell type is the advantage of this approach. Linking apta-
mers with nanoparticles have also been exploited to
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increased cellular uptake and retention of drugs in can-
cer cells and target cells selectively [135]. In a mouse
model of pancreatic cancer, engineered exosomes from
normal fibroblast-like mesenchymal cells were utilized
to deliver siRNA or shRNA against oncogenic K-
RasG12D (K-Ras genes substitution-missense, position
12, G➞D). This suppression led to increased overall sur-
vival and inhibited tumor formation [136]. LncRNAs
within exosomes remained functional when presented to
target cells. Thus, they are appropriate to retrieve the ex-
pression of tumor-suppressive lncRNAs in tumor cells
[137].

Challenges in therapeutic targeting of lncRNAs
Functional assessment and in vivo validation of thera-
peutics are challenging. The expression of human
lncRNA should be evaluated in model animals which
needs recognizing complex interactions between
lncRNA and target genes and proteins [138]. However,
lncRNAs are poorly conserved across the species. Many
human lncRNAs could not be found in mice [139, 140]
and a few orthologous lncRNAs were identified among
humans and mouse [53]. Producing engineered mouse
models with larger human genome segments or entire
chromosomes or the exchange of mouse genome pro-
teins can be beneficial [141].
Sometimes, it is difficult to gain consistent results

while studying lncRNAs. Researchers demonstrated that
MALAT1 involved in the regulation of alternative spli-
cing in human Hella cells [142]. Although, concerning
another study repression of MALAT1 in cultured cells
or mice did not alter total splicing and phosphorylation
of serine and arginine-rich (SR) proteins [143]. Further-
more, the normal phenotype was observed in defective
Neat-1, H19, and MALAT1 mice [140]. However, in
some cell lines, knockdown of MALAT1 led to apoptosis
or cell cycle arrest [144]. Thus, high-throughput func-
tional analysis is required for precise determination of
molecular mechanisms of lncRNAs actions. CRISPR-
Cas9 genome editing technology might be a strong tool
for functional screens and the determination of onco-
lncRNAs, therapeutic targets, and drug resistance [145].
Long ncRNAs have tumor-specific expression patterns

although differential lncRNA expression patterns were re-
ported in some cases. Cancer heterogeneity may be causa-
tive so that a detailed analysis of cancer tissue may be
more accurate compared to bulk tissue examination. Since
lncRNAs are highly subjected to alternative splicing, we
may lose a transcript isoform of lncRNAs by a general as-
sessment of tumor tissue [53]. In situ hybridization of
fluorescent RNA (FISH) to fresh-frozen or fixed tumor
specimens [146] as well as single-cell RNA-seq [147, 148]
might be a solution to this problem [53].

Toxicity and off-target effects are other limitations.
Sugar modifications to give a high affinity to nucleic
acids cause increased off-target cleavage of ASOs and
siRNAs [148–150]. This is because in this case, 1–2 mis-
matches are tolerable and hybridization can take place
in shorter regions of homology [151]. Phosphorothioated
oligonucleotides demonstrated pro-inflammatory prop-
erties [152]. The transfection of cultured HeLa cells with
5–10–5 gapmer phosphorothioate-antisense oligonucle-
otides (PS-ASO) which undergo 2′-F nucleoside modifi-
cations (2′-F PS-ASO) caused DNA damage and cell
death [152, 153]. It randomly bound to cellular proteins
with greater affinity than that of PS-ASOs containing 2′-
MOE or constrained-ethyl-bicyclic-nucleic-acid (cEt)
modifications [153, 154]. Remarkable loss of RNase H1
activity will occur even with a single nucleotide
mismatch in the cleavage site, three or more mismatches
result in complete loss of activity [155, 156]. Bioinfor-
matics can help to predict some nonspecific
hybridization to reduce off-target oligonucleotides base
pairing. However, only 10–50% of the designed ASOs
for gene silencing decreases the expression of the target
[157]. RNA deep sequencing approaches (RNAseq) may
contribute to eliminating off-target effects of oligonucle-
otides; however, they could not prepare quantitative in-
formation [158].

Conclusions
Long non-coding RNAs play key roles in cellular physi-
ology, development, and disease states including cancer.
Thus, they have an appealing potential to be therapeutic
targets and drugs in cancer treatment. Nevertheless, the
experience with therapeutic targeting of lncRNAs is lim-
ited. Most of the mentioned targeting strategies and de-
livery systems have been examined on mRNA and
microRNAs. Only one clinical trial (www.clinicaltrials.
gov, NCT02641847) [18] involving lncRNAs has been
reported. The obstacles to the development of lncRNAs
targeting therapeutics should be precisely explored. Bio-
informatics, comprehensive databases, and high-
throughput technologies might help establish a deep un-
derstanding of lncRNAs localization, structures, func-
tional motifs, mechanisms of action, and interrelations
with other biological molecules. The extensive functional
screen is required to identify appropriate lncRNAs as
therapeutic targets. Also, it is essential to study the exact
features of modified oligonucleotides to avoid toxicity
and produce efficient and safe drugs.
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