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Identification of primary copy number
variations reveal enrichment of Calcium,
and MAPK pathways sensitizing secondary
sites for autism
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Abstract

Background: Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties
in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations
(CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or
inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs
predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of
the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional
preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary
CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation,
primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations
using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India,
with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against
global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are
deposited at the Simons Foundation Autism Research Initiative (SFARI) database.

Results: The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism
genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and
CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes
revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified
regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to
autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which
sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs
added severity to the condition.

Conclusion: These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy
cohorts, indicating their impact on secondary sites for manifestation.
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Background
Autism is a genetic and neurodevelopmental condition
with difficulties in reciprocal social interactions, abnormal-
ities in verbal and nonverbal communication, strong
repetitive behaviors, and stereotyped interests [1]. The
most exclusive autism comorbidities are hypersensitivity,
mood swings, impulsivity, agitation, and impairment in
cognitive functions at different levels [2, 3]. The prevalence
of these deficits in one or more functional domains result
in autism onset, mostly before the age of three [3, 4].
Various studies have been conducted on autism starting
from linkage studies, genome-wide association studies,
single-nucleotide polymorphism (SNP) genotyping to
present-day next-generation sequence analysis. In addition
to these approaches, copy number variation (CNV) is one
of the most promising studies, which adds another dimen-
sion to autism research. CNVs refer to the genomic struc-
tural variations with more than 1000 bases to many million
bases in terms of size with alteration to the gene dosage.
These variations can cause functional loss by disrupting
regulatory elements, generating fusion proteins, or through
position effect variegation. CNV occurrence can be limited
to a single gene or a contiguous set of genes in a dosage-
sensitive nature. Hence, the presence of these CNVs in
genes can contribute to human phenotypic variability,
complex behavioral traits, and disease susceptibility [5].
Various studies have addressed the impact of CNVs on

autism. The first familial CNV-based study in autism
identified de novo CNVs in 10% of the cases [6]. The
conceptualization of CNV studies on autism has identified
significant common and rare variants. These variants con-
ferred differential effects on autism risk in the general
population [7, 8]. Seventeen different loci, localized across
11 chromosomes, proposed a multigene model for CNV
pathogenesis [6, 9–17]. Rare CNVs resulted in increased
risk for autism by up to a 20-fold increment [17]. More
than 40 recurrent autism CNVs have been identified [18].
CNV correlation has been established for multiple loci with
significant autism genes namely SHANK2, SHANK3,
NRXN1, NLGN4, PCDH10, DIA1, NHE926, and PARK2
[19]. Notably, 1q21.1 and 16p13.11 duplication/deletions,
15q11–q13 duplication, and 16p11.2 deletion have been the
important contributors for recurrent autism CNVs [20].
CNV analysis in healthy cohorts acts as a frontier for

disease susceptibility, which is evident in various
research studies conducted over the last two decades.
These findings highlight the role of the CNV burden in
healthy groups with added contributions from other
factors. It aids in the development of biomarkers for the
diagnosis and prognosis of neurodevelopmental pheno-
types [21, 22]. Besides, various researchers have reported
a significantly higher burden of rare CNVs involving
functional genes in diseases [7, 8, 17, 23]. It is hypothe-
sized that the CNVs might not be the initiating event in

the pathogenesis, and additional preceding mutations
may be necessary to induce the condition [23]. A study
conducted by Girirajan et al. [23] has put forth a two-hit
model for disease manifestation with two promising
findings. Affected individuals with a microdeletion on
chromosome 16p12.1 are more likely to have additional
significant CNVs than healthy individuals. The second
finding of 16p12.1 (CDR2) deletion, 3q29 (DLG1)
duplication, and rare copy number variants in affected
individuals indicates an association of CNVs with the
occurrence of severe intellectual disability and neuro-
psychiatric diseases due to a variable set of outcomes
[23]. These outcomes are described as primary and
secondary hits in the two-hit model. Susceptible gene
variants present in a healthy individual, which predisposes
them to disease susceptibility, are described as primary-
hit. These primary-hits might/might not result in disease
manifestation. For a definite progression of the disease,
the occurrence of another gene variant in the individual is
necessary, which are stated as secondary-hits. Combina-
torial effect of a primary-hit and secondary-hit in an indi-
vidual results in disease development [7]. This two-hit
model could be applied to autism as well, owing to its
genetic heterogeneity.
The current investigation is aimed at identifying

primary autism gene CNVs in the healthy cohorts. The
identification of the primary-hit CNVs in the healthy co-
horts would help in uncovering the autism susceptibility
loci. These primary-hit CNVs would act as molecular
biomarkers for recognition of secondary-hits to minimize
disease progression.

Methods
The study included a sample cohort of 1715 normal
healthy individuals belonging to different ethnicities.
Firstly, it included 270 HapMap samples with 30 both-
parent-and-adult-child trios from Yoruba people in
Ibadan, Nigeria (HapMap YRI) as well as CEPH/Utah
Collection (HapMap CEU), and 45 unrelated HapMap
individuals, from Tokyo Japan (HapMap) as well as Han
Chinese in Beijing Japanese (HapMap CHB) populations
[24]. Secondly, 155 Chinese and an equal number of 472
each, from Ashkenazi Jews replicate 1 (AJI), as well as
Ashkenazi Jews, replicate 2 (AJII) populations were se-
lected. Thirdly, 184 individuals from Taiwan, 41 from
the New World population (Totonacs and Bolivians), 53
from Australia, and 31 Tibetan samples were recruited
[25]. These sample datasets were obtained from the
Array Express Archive of the European Bioinformatics
Institute. Case registries were referred for the exclusion
of subjects, wherein the samples with pre-diagnosed aut-
ism and autistic symptoms were excluded.
Thirty-eight individuals from twelve families residing

in Karnataka, India, with an age group of 13–73 years
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were selected for the comparative CNV analysis. Ethical
approval was obtained by the Institutional Human Ethics
Committee (IHEC) of the University of Mysore, Karnataka,
India. Written informed consent was obtained from each
subject as per the IHEC approved procedure. Informed
consent for minor subjects was obtained from guardians/
parents.
Five milliliter of blood was collected in K2+ EDTA

vacutainer tubes from the Indian study group. Genomic
DNA extraction was carried out using the Promega
Wizard® Genomic DNA purification kit. Visualization of
isolated and quantified DNA was performed using bio-
photometer and gel electrophoresis.
Genome-wide genotyping was performed using the

Affymetrix Genomewide Human SNP Array 6.0 chip
and Affymetrix CytoScan High-Density array. The array
contained 1.8 million SNP and 2.6 million CNV markers
with a median inter-marker distance of 500–600 bases.
These array-based studies provided the highest physical
coverage and maximum panel power for the genome.
BirdSuite algorithm (https://www.broadinstitute.org/

birdsuite/birdsuite-analysis) was implemented to detect
commonly known copy number polymorphisms (CNPs)
based on curated literature. It detected rare and com-
mon CNVs using the hidden Markov model (HMM) al-
gorithm from Affymetrix SNP 6.0 array data. For the
HMM algorithm, the hidden state mapped a specific in-
dividual to its genomic copy number. The observed
states indicated the normalized intensity measurements
for each array probe. This approach identified the
sample-specific variable copy number regions. Collation
of sample-wise CNV calls was performed from Canary
and BirdSuite algorithms using the outputs from the
previous step. The selection criteria were for filtering the
obtained CNV calls was postulated. This criteria suggest
to include BirdSuite CNV calls with a log10 of odds
score (Odds Ratio) ≥ 10 for an approximate false discov-
ery rate (FDR) of ~ 5% for further analysis. For copy
number (CN) states, all calls to be included except for
those with CN state as 2 and differential CNP calls with
CN states, in comparison to the population model.
Classification of copy number changes was performed

using CNV Finder of Welcome Trust Sanger Institute
with a varying quality score in the provided data. This
method was based on two assumptions: firstly, the ma-
jority of data points were normalized around a log2 ratio
of zero, and secondly, the data points localized outside
of centralized log2 ratio distribution, indicative of a dif-
ference in the CN between reference and test genome.
CNP analysis was performed to obtain CN state calls

in genomic regions using the Canary algorithm. Compu-
tation of single intensity summary statistics within the
CNP region was completed manually using selected
probes. An aggregative comparison of these intensity

summaries has been used to assign individual CN state
call across all samples, compared to those previously
observed in training data.
Genotyping console selected quality control (QC)

passed samples in CEL file format to call genotypes
using the Birdseed algorithm. It detected CNVs with a
threshold parameter of > 1 kb size and > 5 probes.
Genome-wide CNV study was carried out using Affy-

metrix Genotyping Console software as per standard
protocol. The results were visualized using SVS Golden
Helix Version 7. After employing Bonferroni correction
for multiple testing, the corrected data output was used
for CNV testing. For population-wise genotyped data,
the threshold for the Bonferroni method was set
between 1 × 10−7 and 7 × 10−8 for α = 0.05 on the Affy-
metrix 6.0 platform.
The stringency of CNP calls was met with a log10 of

odds score ≥ 10 and FDR of 5%. These values corre-
sponded to collated data output obtained from BirdSuite
and Canary algorithms. All the called-SNPs with a QC
call rate of > 97% were entered into the CNV analysis
across subjects. Filters on call rates were used to identify
call rates obtained from poor quality DNA for the over-
all SNPs. In the present study, contrast QC of > 2.5 with
robust strength was observed across all samples. To con-
trol the possibility of spurious or artifact CNVs, the
Eigenstrat approach of Price et al. was referred [26]. The
principal components of the correlations among gene
variants were obtained and accordingly corrected. Fifty-
five individuals were extreme outliers with ≥ 1 significant
Eigenstrat axes. These were excluded from the study
group. Failure to meet the stipulated QC threshold re-
sulted in the dropping of 543 CNVs in the selected indi-
viduals. Validation of CNVs was established based on ≥
50% reciprocal overlapping with the reference set.
Relative values between the comparisons of algorithms/
platforms/sites were quite informative, even though the
sensitivity of Jaccard statistics to the CNVs calls by each
algorithm was considered. All the overlap analyses per-
formed, handled losses and gains separately except when
otherwise stated and conducted hierarchically. The algo-
rithmic calls, called in both Canary and Birdsuite, were
not considered; instead, they were collated for inform-
ative relative values between the different comparisons
in terms of algorithms/platform/sites.
The reference autism gene list was prepared using

two-point approaches. It was performed through an
extensive well-defined PUBMED literature search matrix
and SFARI database, based on inclusion-exclusion gene
selection criteria. Inclusion-exclusion of gene selection
was included in the criteria such as: should be an autism
candidate gene expressed in brain; participate in neur-
onal development; interact with known autism genes;
non-homozygous in controls; de novo in origin; overlap
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in two or more unrelated samples; recurrent in two or
more unrelated samples; and involve in the expression
of brain development and participate in neuronal migra-
tion, axon growth, neuritis outgrowth, synaptic plasticity,
and cell adhesion (Fig. 1). Associated genes and genes
with lower significance in terms of the p value, patho-
genicity scoring, number of studies performed, and those
without validations were excluded from the final gene
list. The gene list was used for the overall analysis, and
the CNVs were accordingly filtered. Consistently repli-
cated genes found across populations were selected. The
shared map of autism genes under CNVs was generated
for all chromosomes using the Circos software package.
Function-based gene categorization for the identified

CNV autism genes was performed following GO classifi-
cation: Biological process, cellular component, and
molecular function using WEB-based Gene Set Analysis
Toolkit (WEBGASTALT). Multiple-test adjustment was
applied using the hypergeometric statistical method
following the Benjamini-Hochberg procedure. The
significance level and p value with FDR were calculated
for the top seven genes. KEGG pathways were identified
using classified genes based on two criteria. It included
the pathway associations and quantification of genes in
each pathway with p-values and its enrichment signifi-
cance. In each generated pathway map, genes from the
gene list were highlighted in red.
The pathways and molecular interactions were gener-

ated through the Ingenuity Pathway Analysis (www. in-
genuity. com). IPA was used to identify the interaction
between genes, protein-protein interactions, biological

mechanisms, location, and target gene functionality. Genes
and the chemical-based search were used to explore the
information on protein families, protein signaling, normal
cellular protein activity, and associated metabolic pathways.
Localized genes and their protein products have been inter-
connected through edges. An edge (line) represented the
relationship between two nodes. Each network edge was
described using a knowledge base of pathways and the
curated literature available within IPA software. The
cascades of protein-protein interaction, protein binding,
activation, upregulation, downregulation, and mRNA
expression by targeting a mature miRNA network were
observed in pathway enrichment [27].
The validation of the four recurrent CNV breakpoints

was performed by amplification using polymerase chain
reaction (PCR) in our laboratory and published else-
where [28].

Results
Of the total of 1715 normal healthy subjects, 34.8% of
the individuals showed significant CNVs in the autism-
specific subgenome. These CNVs were ranged between
8.88 and 49.05% (Fig. 2a). The highest and lowest CNV
frequencies of 49% and 8% were identified in Australia
and HapMap YRI respectively (Table 1). This covered
2% autism gene-specific CNV burden across the 12 pop-
ulations under study. CNVs in autism genes were seen
in all the chromosomes except chromosomes 4, 14, 22,
and Y (Fig. 2a). CNVs present in these chromosomes
were identified by 90716 SNP and CNV combined
markers with an average size and count of 261.35 kb and

Fig. 1 Inclusion and exclusion criteria for selection of autism genes for downstream analysis with 0.05 as the P value
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148.60 kb for autism CNV burden respectively
(Supplementary Table 1, Supplementary Figure 1). Of
the 2% CNV burden, duplication CNVs (73%) were
predominant over the deletion CNVs (27%) (Table 1).
The 2% CNV autism gene landscape contained 73

singleton autism genes [54–117] (Supplementary Table 2).
The notable causal autism genes mapped for these CNV
regions were ARHGAP11B, DUSP22, CHRNA7, CYFIP1,
NIPA1, TUBGCP5, CACNA1H, and CELF4. The
frequency of these genes was highest in ARHGAP11B,
followed by DUSP22 and CHRNA7 in the CNVs regions
(Fig. 2b).
Two prominent findings were comprehended for two

autism causal gene clusters—CYFIP1, NIPA1, TUBGCP5
and ARHGAP11B, DUSP22, CHRNA7. These clusters
were present in conserved CNV regions in multiple loci
across many populations under study. The cluster con-
taining CYFIP1, NIPA1, and TUBGCP5 was under recur-
rent CNV events on 15q11.2 loci. The other cluster with
ARHGAP11B, DUSP22, and CHRNA7 showed signifi-
cantly conserved CNV breakpoints across many popula-
tions under study. For example, DUSP22 showed one
start and two end breakpoints on the chromosome 6.
The start breakpoint “257341” was present in nine popu-
lations and two end breakpoints, “381131” and “382897”,
were present in six populations under study. DUSP22
and ARHGAP11B genes were represented in 5.65% and
2.85% of the identified CNVs, respectively. These were
marked as highly recurrent genes for autism CNV
burden.

All these autism genes were under the influence of
CNVs with varying CN states (Supplementary Figure 2a).
CN state can be studied to estimate the expression levels
of proteins. Hence, baseline brain expression level in silico
analysis was performed for DUSP22 and ARHGAP11B.
ARHGAP11B showed an expression level of one transcript
(ENST00000602616) out of nine with a cut-off value of
0.4. Similarly, DUSP22 showed a dosage level of 13 with
an expression of two transcripts (ENST00000419235 and
ENST00000344450) out of 16 (Table 2). DUSP22 was
under tremendous CNV burden with a frequency range of
0.09–0.16% under 70 autism genes-CNV breakpoints,
both within and across populations under study. Pair-wise
clustering of shared autism genes (in %) across all chro-
mosomes and 12 populations are presented in the Circos
image (Supplementary Figure 2b).
A total of 146 CNVs bearing 40 autism causal genes

were limited to distinct populations with a frequency of
0.25–2.73%. There were 18 genes in 113 CNVs–AJI and
AJII samples, five genes in 6 CNVs–Taiwan samples,
three genes in 6 CNVs–Australia samples, three genes in
3 CNVs–Indian samples, and two genes in 2 CNVs–Ti-
betan samples. Similarly, CNV burden of one gene in 1
CNV–HapMap CEU, two genes in 5 CNVs–New World,
four genes in 7 CNVs–China and CHB, and one gene in
3 CNVs–HapMap YRI were seen. HapMap JPT did not
show any specific gene under the CNV burden. Overall,
sex bias was absent for the CNV burden with CNV dis-
tribution of 51.36% in males and 48.47% in females.
However, negligible male and female biases were

a

b

Fig. 2 a Karyogram of autism genes across populations. CNV burden is prominent in chromosomes 15, 16, and 18 across all the populations.
Chromosome 15 has many CNV regions catering to the CNV burden. HapMap China, Tibetan and Ashkenazi Jews samples show specific CNV loci
positioned at 2q21.1, 19p13, 20p11 and 13q14, respectively. The distribution of CNVs in sex chromosome varies in all the populations except for HapMap
YRI and Tibetan populations where CNVs are absent. CNVs are absent in chromosomes 4, 14, 21, and Y. b Percentage of the top two prevalent autism
genes: DUSP22 and ARHGAP11B across populations. HapMap JPT has the highest percentage of both the genes, while India has the least (0.8%)
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observed in the majority of the populations under study
with regards to the percentage of CNVs present.
For further analysis, highly prevalent seven autism

gene CNVs in each population ranging from 4 to 53%
were chosen. Based on gene ontology (GO) study, they
were classified into major categories of biological, func-
tional processes, and location using the WEBGASTALT
tool. The encoded proteins from these genes were
localized primarily in the intracellular region, followed
by organelle lumen and intracellular organelle lumen,
while the rest were found in cell projection and cytoskel-
eton regions. Further, ARID1B, DBH, UBE3A, CDKL5,
HLA-DRB1, and VPS13B genes were identified through
enrichment analysis of autism-gene-CNVs.
The genes identified through pathway analysis were

functional in neurodevelopment, neurotransmission, and
synapse formation. These genes were recognized as
targets of multiple miRNAs. For instance, targets of
miR-499-3p were IMM2PL, UBE2G1, CACNA1B,
APBA1, and DLGAP2 mRNAs. Similarly, the targets for
miR-513a-5p included CACNA1B, NIPA1, DUSP22,

KCND2, and CACNA1C mRNAs (Fig. 3). CNVs in aut-
ism genes CACNA1C, CACNA1H, CACNA1I, DUSP22,
and CHRNA7 were enriched with calcium and MAPK
signaling pathways across all populations. However,
CHRNA7 and CHRM3 were enriched for neuroactive
ligand-receptor interactions and present exclusively in
the Chinese population (Table 3; Fig. 4).

Discussion
CNVs are genomic structural variations that contribute
to the disease pathogenesis through gene function
disruptions. Several studies on primary CNVs have been
indicative of their role in the manifestation of conditions
such as asthma, nondisjunction, Parkinson’s disease,
diabetes, migration, and olfactory receptors [7, 29–33].
CNVs in the form of duplications and deletions manifest
the gain and loss of function in a gene [34], which dis-
rupt the protein structure and alter its transcriptional
activity in the regulatory regions [35] in the autism
subgenome.

Table 1 Distribution of autism CNV duplication and deletion regions present across 12 populations

Sl. No Population Total
individuals
analyzed

No. of
individuals
with CNVs
(%)

Overall autism-specific CNVs (%) CNVs in autism genes (%)

Male Female Male Female

Duplication Deletion Duplication Deletion Duplication Deletion Duplication Deletion

1 HapMap YRI 90 9 42.86 57.14 100 0 50 50 100 0

2 CEU 90 9 25 75 57.14 42.86 33.33 66.67 50 50

3 Ashkenazi Jews
I and II

944 44 20.83 79.17 22.5 74 68.18 31.82 76.47 23.53

4 China and CHB 199 15 43.75 56.25 50 50 45.45 54.55 77.78 22.22

5 Tibet 31 48 71.43 28.57 73.33 26.67 66.67 33.33 70 30

6 India 38 18 100 0 80 20 100 0 80 20

7 HapMap JPT 45 36 33.33 66.67 31.25 68.75 33.33 66.67 33.33 66.67

8 Australia 53 49 82.5 17.5 90.47 9.52 75 25 85.71 14.29

9 New World 41 41 65.21 34.78 - - 57 43 - -

10 Taiwan 184 31 92 8 82.76 17.24 86.67 13.33 87.5 12.5*

Total 1715 35 73.19 26.81 73.66 21.95 67.14 32.86 76.38 23.61

Table 2 Baseline expression dosage of ARHGAP11B and DUSP22 in the brain using Human Gene Atlas

Gene with baseline expression dosage CNV type CNa state No. of individuals Entire/Partial Protein dosage

ARHGAP11B Deletion 1 9 Partial 0.2

1 18 Entire 0.2

Duplication 3 21 0.6

4 1 0.8

DUSP22 Deletion 1 87 Entire 6.5

Duplication 3 16 19.5
aCN copy number, EBI European Bioinformatics Institute
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The present study establishes the autism-CNV atlas,
prioritizing autism-specific CNV regions in healthy co-
horts. It uncovers the primary-hit CNVs in the autism
sub-genome which has been mainly unexplored. A simi-
lar trend is reported in the inherited CNVs with SHAN
K2 deletion, mutations with duplication in CHRNA7,
and deletions in CYFIP1 loci, which are indicative of pu-
tative multi-hit model for autism [16]. A similar trend is
consistently identified in the present investigation.
Identified CNVs are present in autism-specific subge-

nome with a mean average of 34%. Investigation of CNV
size has been limited to ≥ 100 kb due to maximum signal
to noise ratio for CNVs below 100 kb. The majority of
discovered CNVs belong to a size range of 100–500 kb.
The frequency of CNV events declined beyond 500 kb.
Higher CNV burden is observed in autism-specific

chromosomal regions 6, 15, 16, and 18, following a
similar trend as mentioned in Girirajan et al. [23]. The
chromosomes with autism genes are more susceptible to
CNV accumulation. CNV distribution in terms of size,
count, type, and state showed a different percentage for
inter and intra populations, consistent with previous
studies.
Further, autism gene-CNV duplications outnumber

the deletion regions, as evident in AJI, AJII, Australia,
and Taiwan. This can be because the genome can with-
stand duplications better than deletions. Loss of function
is more damaging and hence it results in higher dosage
and early disease manifestation. These findings are found
in accordance with a previous study on autism in the
European population and healthy cohorts [23, 32].
HapMap YRI and HapMap CEU contain an equal

Fig. 3 Ingenuity pathway analysis of enriched autism genes under CNVs. The major hubs in the pathway included the genes CACNA1, DPP6,
CHRNA7, GABRG3, and NIPA1. This pathway was built from a list of prevalent 25 causal genes in study populations. This pathway has been divided
into seven sub-pathways: 1) 4 clusters of CACNA1 genes consisting of CACNA1H, CACNA1C, CACNA1B, and CACNA1I calcium channel signalling. 2)
DPP6 is a single-pass type II membrane protein and a member of the peptidase S9B family of serine proteases. It is involved in the physiological
processes of brain function and may modulate the cell surface expression and the activity of the potassium channel KCND2. 3) DLG1 is a multi-
domain scaffolding protein, which is required for healthy development. It has a role in septate junction formation, signal transduction, cell
proliferation, synaptogenesis, and lymphocyte activation. 4) UBE3A functions, both as an E3 ligase in the ubiquitin-proteasome pathway and as a
transcriptional co-activator. 5) CHRNA7 belongs to ligand-gated ion channels mediating fast signal transmission at synapses. The protein encoded
by the gene forms a homo-oligomeric channel and displays marked permeability to calcium ions. 6) GABRG3 is the major inhibitory
neurotransmitter in the vertebrate brain. It mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor, leading to opening an
integral chloride channel. This protein is a gamma subunit, which contains the benzodiazepine binding site. GABRG3 is strongly implicated in
autism pathogenesis. It is involved in the inhibition of excitatory neural pathways and expression in early development. 7) NIPA1 encodes
magnesium transporter associated with early endosomes and the cell surface in different neuronal and epithelial cells. This protein plays a role in
development and maintenance in the nervous system
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number of duplications and deletions, suggesting that
these population-specific CNVs are random events. Nu-
merous studies advocate a similar balanced contribution
from deletion and duplication in these populations [36].
Hence, studies in a larger size cohort would be needed
to confirm the findings.
Autism genes with a 2% CNV burden show overlapping

mutations for 73 singleton genes with previously reported
autism genes. This is based on relevance, research findings
in various autism cohort consortiums, and SFARI gene
scoring [37, 38] (Supplementary Table 2). Out of these, 14
autism genes have been mapped to SFARI gene scoring 1.
These are termed as high confidence genes with clear im-
plications for autism. These are known to have at least
three de novo gene disrupting mutations reported with a
rigorous threshold FDR of < 0.1. A total of 15 genes are
scored 2 and referred as strong candidate genes with two
de novo gene disruptive mutations. These have been
implicated by genome-wide significance or replicative in
multiple studies with strong evidence. Further, 25 autism
genes are scored 3 with suggestive evidence. These
genes contain single de novo mutations identified from
significant and non-replicated association studies.
These have been reported through non-association or
rare-inherited case studies with no comparative statistical
study in controls. Three genes are scored syndromic with
the risk of autism susceptibility. An extensive literature
study shows evidence for 16 genes with no scoring and
confirmed as specific to autism. Hence, these genes con-
firmed through curated literature have been considered in
the singleton gene list (Supplementary Table 2).
The selection of seven genes for downstream analysis

is based on relevance to autism and recurrent CNVs
present across populations. Two prominent gene clus-
ters are identified. The first imprint gene cluster CYFI
P1, NIPA1, and TUBGCP5 is associated with changes in
brain-behavior, morphology, and cognitive functions,
which are key phenotypes in autism [39]. This gene clus-
ter impacts the molecular control of synaptogenesis and
neuronal connectivity in a dosage-sensitive manner [40].

Various de novo autism-specific mutations have been
reported with this cluster. Further, mutations in this
cluster have been marked as recurrent pathogenic CNV
regions for neurodevelopmental disorders such as aut-
ism. Either side of its flanking regions contains autism
genes such as UBE3A and ATP10A [41].
In the second gene cluster, ARHGAP11B and

DUSP22 are under the influence of CN states 1, 3, 4,
and 1, 3, respectively. The data points for CN states 1
and 3 depict a mirror image (when halved). Populations
with duplications are on the higher side and deletions
on the diametrically opposite lower side. CNVs with
ARHGAP11B are more frequent in the Tibetan popula-
tion, resulting in varied protein dosage. Higher CN
states (> 2) also alter the expression level of ARHG
AP11B, prominent in AJI, AJII, and Taiwan. This is in
conjunction with similar CNV studies performed for
asthma, nondisjunction, Parkinson’s disease, diabetes,
and miRNA gene regulation in healthy cohorts [29–33].
Further, multiple mutations in ARHGAP11B include
the recurrent 15q duplication and point mutations.
These mutations result in early truncation and induce
the proliferation of basal progenitors in the cranial neo-
cortex [42]. ARHGAP11B, in such situations, triggers
enhanced brain stem cell formation, which is a pre-
requisite for enlarged brain. This provides an advantage
to ARHGAP11B to incur a prominent phenotype of an
enlarged brain in autism [42]. DUSP22 shows recurrent
breakpoints on chromosome 6 across populations. The
entire protein product is affected by a protein dosage of
19.5 for deletions and duplication variants. Similarly,
the DUSP22 gene results in the formation of excess
neurons in the prefrontal brain in autism, which is the
warehouse of social, language, and cognitive functions
[43]. Thus, the presence of primary-hit CNVs for these
genes increases susceptibility toward autism upon
secondary-hit, either through point mutations or other
gene mutations.
The population-specific CNVs are identified in varying

frequencies across the sample cohort. The diversity and

Table 3 Pathway enrichment analysis of autism gene CNVs across 12 populations

Population Pathways Autism gene-specific CNVs

Ashkenazi Jews I and II Calcium signaling CHRNA7 CACNA1I CACNA1H

MAPK signaling DUSP22

Taiwan MAPK signaling DUSP22 CACNA1H

New World Calcium signaling CACNA1I CACNA1H

MAPK signaling

Australia Calcium signaling CACNA1I CACNA1H CACNA1C

MAPK signaling

China and CHB Neuroactive ligand-receptor interaction CHRNA7 CHRM3

Agarwala et al. Egyptian Journal of Medical Human Genetics           (2020) 21:55 Page 8 of 14



a

b
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exclusivity can be either because of variable sample size
or random events. Sex bias interpretation for autism
CNV regions could not be conclusive due to limited
information. All these CNV genes are autosomal. Hence,
it is challenging to infer sex bias-based interpretations of
the study. None of the established sex bias genes for
autism are identified. Therefore, sex bias is ruled out
and considered as balanced across populations.
GO analysis for the highly prevalent seven genes (>

50%) pinpoints relevant autism gene functionality in
each population. The majority of the identified autism
genes are involved in the regulation of the cellular
process, cellular response to organic substances, and
regulation of cellular signaling. In biological processes,
90% of the genes are under the cellular process regula-
tion, response to organic substances, and regulation of
signaling. Under the molecular function category, genes
encoding for cation binding and metal ion binding are
significantly high. Neuronal stability and plasticity are
regulated by actin and microtubule regulation present
in cytoskeletal regions. These play a key role in brain
functionality through neurite outgrowth and dendritic
spine formation [44, 45]. Out of these enriched genes,
VPS13B and ARID1B contribute to seizures and neuro-
logical speech impairments. These are causal for autism
and result in its early onset. One recent study has
identified an intragenic and multiexonic deletion in the
VPS13B gene [46]. The subsequent gene product
impairs the adaptive functionality, resulting in autism
on partial inactivation [46]. ARID1B is a gene with high
statistical significance and an FDR value of 0.01. It has
strong gene-based de novo mutational evidence for
autism with absence or low mutational frequency in
controls [47, 48].
Seven autism CNV genes are enriched for various

pathways such as calcium signaling, MAPK signaling,
and neuroactive ligand-receptor interactions. The
autism-specific genes for calcium signaling pathway—
CHRNA7, CACNA1H, CACNA1C, and CACNA1I—are
enriched across all 12 populations. The influx of Ca2+

from the environment or release from internal stores
causes a rapid increase in cytoplasmic calcium concen-
tration. This dysregulated modulation of Ca2+ concen-
tration results in impaired neuronal function leading to
autism [49]. Products of CHRNA7 and CACNA1H are
neurotransmitters and voltage channels responsible for
the influx of Ca2+. These are involved in the regulation

of the downstream cascade of reactions in the cellular
pathways [50, 51]. CHRNA7 microduplication has been
detected in a subject with autism and moderate cogni-
tive impairment [46]. Mutations in these genes impair
the protein product formed, which in turn affects
various downstream signaling pathways. CACNA1I,
DUSP22, CACNA1C, and CACNA1H are known to
regulate the MAPK signaling pathway [52]. CACNA1H
and CACNA1I contribute to CNV burden in most pop-
ulations, while those for CACNA1C and DUSP22 are
confined to a few populations [53]. These genes are
expressed in four distinct MAPK groups; extracellular
signal-related kinases 1/2, Jun amino-terminal kinases
1/2/3, p38 proteins, and ERK5. These genes are in-
volved in various cellular functions such as cell prolifer-
ation, differentiation, and migration.
The establishment of the enrichment pathway for

autism-gene CNVs has identified significant genes for
autism pathogenesis initiation. The minimal cut sets are
computed for physical and genetic interactions. As a re-
sult, the experimental block of essential genes inevitably
leads to mutants. These sets include CASKIN1, KCNIP1,
and KCND2 genes. These are closely linked to known
autism causal genes and might be reliable indicators as
autism candidate genes.
The primary-hit autism gene CNVs identified in

1715 individuals are cross-analyzed against 179 autism
whole-exome sequence datasets with identification of
overlapping regions for CHRNA7 and CYFIP1. The
co-occurrence of a loss of one copy of SHANK2 and
CYFIP1 increases the risk of abnormal synaptic func-
tion in autistic subjects [16]. These autism genes
CNVs contain 24 autism risk genes, resulting in aut-
ism manifestation, not found in a healthy cohort.
Therefore, it can be inferred that the secondary-hit by
the autism risk genes results in autism manifestation
in autism cases, unlike the unaffected healthy cohorts,
which escape contracting the condition.

Conclusion
Identification of recurrent CNVs in the healthy cohorts
provides another dimension to assess the role of
primary-hits toward the sensitization of the secondary-
hits for the manifestation of autism. These primary-hits
are vulnerable randomly, causing disease pathogenesis
upon secondary-hits. Therefore, understanding suscep-
tible loci in a healthy cohort would help in identifying

(See figure on previous page.)
Fig. 4 The calcium and MAPK signalling pathways contain autism genes CHRNA7, CACNA1H, CACNA1I, and DUSP22 across populations.
Enrichment of CACNA1H is seen in AJI, AJII, New World, and Australia. Calcium signalling gene, CACNA1I, is present in AJI, AJII, New World, and
Australia. In the case of the MAPK signalling pathway, the presence of CNVs in CACNA1I and CACNA1H were seen in AJI, AJII, Taiwan, New World,
and Australia, while CNVs in DUSP22 were identified in AJI, AJII, and Taiwan. Further, CNVs in CACNA1C with enriched pathways for calcium and
MAPK signalling were seen exclusively in Australia
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the soft spots to avoid increasing the probability of aut-
ism manifestation.

Limitation of the study
A detailed study in larger cohorts must be warranted to
identify ethnicity-specific markers. Overlapping studies
could be performed on similar datasets on other
platforms like next-generation sequencing, if possible,
for in silico validations.
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