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The morbidity and mortality of COVID-19
are correlated with the Ile105Val
glutathione S-transferase P1 polymorphism
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Abstract

Background: Oxidative stress is an important issue in coronavirus disease 2019 (COVID-19). Considering that glutathione
S-transferase P1 (GSTP1) is involved in cellular detoxification, it may play an important role in susceptibility to infection
with SARS-CoV-2 and/or its outcome. In the present study, the association between the Ile105Val GSTP1 polymorphism
(rs1695) and susceptibility to SARS-CoV-2 infection, as well as its outcome was investigated. Data on the prevalence (per
106 people), case-fatality (per 100 infected cases), and mortality (per 106 people) of COVID-19 and various potential
confounders (the life expectancy at birth, density of medical doctors, density of nursing and midwifery personnel, and the
gross national income per capita) were used. The latest data available for 45 countries were used for the study.

Results: In multivariate linear regression analyses, the Val105 allelic frequency showed positive association with the log-
prevalence (partial r = 0.308, p = 0.042) and log-mortality of COVID-19 (partial r = 0.316, p = 0.037). The log-fatality did not
show association with the allelic frequency. In the next step, only countries with the gross national income per capita
more than $15,000 were included in the analysis. In the selected countries, the frequency of Val105 was positively
associated with the log-prevalence (partial r = 0.456, p = 0.009) and log-mortality of COVID-19 (partial r = 0.544, p = 0.001).

Conclusions: The present findings indicate that countries with higher Val105 allelic frequency of the rs1695
polymorphism showed higher prevalence and mortality of COVID-19.

Keywords: Ecologic study, Epidemiologic measures, Pandemic

Background
Numerous gene families, including glutathione S-trans-
ferases (GSTs) superfamily, are involved in cellular de-
toxification process and neutralizing oxidative stress.
The GSTP1 (MIM: 134660, belong to class pi) has many
genetic variations in human. A missense variant A/G
(rs1695) in exon 5 of the GSTP1 result in amino acid
substitution Ile105Val. The stability of the Val105 form
is less than the other form [1]. This alteration decreased
the GSTP1 enzyme activity [2–4].
The GSTP1 is expressed in all tissues and cells, includ-

ing lung epithelial cells and lung-resident macrophages
[5–7]. In occupationally di-isocyanate-induced asthma,

the Val105 allele is positively associated with the bronchial
hyperreactivity [8]. Exposure to high “diesel exhaust par-
ticle” increased the risk of wheezing phenotypes only
among the carriers of the Val105 allele (Ile/Val and Val/
Val genotypes) [9]. Children with the Val/Val genotype
had slower lung function growth than the other genotypes
[10]. Downregulation of the GSTP1 mRNA level and
lower total GST activity were reported in a mouse model
of asthma following allergen challenge [11]. Taken to-
gether, it is concluded that the GSTP1 has a central role
in lung function.
Coronavirus disease 2019 (COVID-19) is a contagious

disease; therefore, its prevalence (per 106 people), case-
fatality (per 100 infected cases), and mortality (per 106

people) may be affected by various social factors, such as
the life expectancy at birth, country income, etc. Very
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recently some investigators suggested that some gen-
etic polymorphisms might be involved in susceptibility
to genetic polymorphisms or outcome of the disease
[12–16].
Oxidative stress is an important issue in COVID-19

[17–19]. Considering that GSTP1 is involved in cellular
detoxification and it has important role in lung function,
it is suggested that GSTP1 plays an important role in sus-
ceptibility to SARS-CoV-2 infection and/or its outcome.
Very recently, association between some genetic polymor-
phisms and morbidity/mortality of COVID-19 were re-
ported [12–16]. A study showed that the COVID-19
mortality and case-fatality are associated with the GSTT1
polymorphism [12]. There are no data on the association
between COVID-19 epidemiologic parameters and the
rs1695. These facts sufficiently provide us with a theoret-
ical hypothesis to carry out the present study.

Methods
In this study, the life expectancy at birth (LE), density of
medical doctors, density of nursing and midwifery
personnel, and the gross national income (GNI) per
capita (PPP international $) as the indices for economic
situation and health services in different countries were
considered as the potential risk factors for susceptibility

to COVID-19 or the disease outcome. The latest data
available for countries were achieved from the World
Health Organization website www.who.int/countries/en/.
The latest data for GNI per capita for countries were ob-
tained from the World Bank data (https://data.world-
bank.org/indicator/NY.GNP.PCAP.PP.CD).
The number of COVID-19 diagnostic tests performed per

one million population in each country was also used as an-
other risk variable. Data for the prevalence, fatality, mortality,
and level of performed diagnostic test of COVID-19 on July
7, 2020, were achieved from the website www.worldo meters.
info/coronavirus/countries. The Val105 allelic frequency in
different countries was obtained from previous reports
(Table S1 in supplement file). Data from 45 countries were
included in the analysis. Data from Argentina, Australia,
Brazil, Bulgaria, Canada, China, Colombia, Czech, Denmark,
Egypt, Finland, France, Germany, Hungary, Iceland, India,
Iran, Iraq, Italy, Jamaica, Japan, Jordan, Kazakhstan, Lebanon,
Mexico, Moldova, Morocco, Netherland, Norway, Poland,
Portugal, Romania, Russia, Saudi Arabia, Serbia, Singapore,
Slovenia, South Africa, South Korea, Spain, Sweden,
Thailand, Turkey, the UK, and the USA were included in the
analysis.
Variables were checked for their normality by one-

sample Kolmogorov-Smirnov test. Non-normally

Table 1 Correlation between log-transformed of epidemiologic parameters and selected risk factors

Variables Log-Prevalence Log-Mortality Log-Fatality

r P r P r p

Log-GNI per capita 0.406 0.006 0.349 0.019 0.065 0.673

Log-number of COVID-19 diagnostic tests performed (per 106 people) 0.443 0.002 0.241 0.111 − 0.159 0.297

Life expectancy at birth (years) 0.091 0.551 0.187 0.220 0.193 0.204

Density of medical doctors (per 104 people) 0.384 0.009 0.393 0.008 0.162 0.287

Density of nursing and midwifery personnel (per 104 people) 0.288 0.055 0.251 0.096 0.048 0.752

*Degree of freedom (df) for all correlations is 43

Table 2 Multivariable linear regression analysis for associations of log-mortality and log-prevalence of COVID-19 with the frequency
of the Val105 allele in the various countries around the world

Variables Unstandardized coefficients Standardized coefficients beta Partial correlations t P

B Std. Error

Log-prevalence as dependent variable

Constant − 1.067 1.231 - - − 0.867 0.391

Log-GNI per capita 0.815 0.262 0.407 0.424 3.034 0.004

Val105 allelic frequency 0.020 0.009 0.281 0.308 2.094 0.042

Log-mortality as dependent variable

Constant − 3.2348 1.648 - - − 1.971 0.055

Log-GNI per capita 0.918 0.359 0.350 0.367 2.553 0.014

Val105 allelic frequency 0.027 0.013 0.296 0.316 2.156 0.037

The first model was significant with F = 6.76; df = 2, 42; P = 0.003; adjusted R2 = 0.207. The second model was significant with F = 5.55; df = 2, 42; P = 0.007;
adjusted R2 = 0.171
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distributed variables (prevalence, mortality, case-fatality
rates, and number diagnostic test performed per 106

people) were log-transformed.
Variables with p ≤ 0.1 in the univariable analysis were

introduced into the multivariable models. Only two dif-
ferent models were fitted for combination of the epide-
miologic parameters with the rs1695 polymorphism. The
log-transformed variables were considered as outcome
variables, and the allelic frequency and the risk factors
were introduced into the model as explanatory variables.
A backward removal method was used for each model
construction. Analyses were performed using the SPSS
statistical soft-ware (Chicago, IL, USA, version 24). A p
< 0.05 was considered statistically significant difference

Results
In univariate analysis, the frequency of the Val105 allele
showed no significant correlations with the log-
prevalence (r = 0.331, df = 44, p = 0.025), log-mortality
(r = 0.363, df = 44, p = 0.013), and log-fatality (r = 0.175,
df = 44, p = 0.244) of the COVID-19.

Table 1 shows the association between potential risk
factors and the log-transformed of prevalence, mortality,
and case-fatality of COVID-19. Variables with p ≤ 0.1 in
the univariable analysis were used in multivariable linear
regression analyses (Table 1).
Two different models were fitted for combination of

prevalence and mortality with the rs1695 polymorphism.
The log-prevalence and log-mortality were considered as
outcome variables, and the Val105 allelic frequency and
the risk factors were introduced into the model as ex-
planatory variables.
Results of multivariate analysis are summarized in

Table 2. Based on multivariate analyses, the frequency of
Val105 was positively associated with the log-mortality
(partial r = 0.316, p = 0.037) and log-prevalence of
COVID-19 (partial r = 0.308, p = 0.042).
In next step, only countries with the gross national in-

come (GNI) per capita (PPP international $) more than
$15,000 were included in the analysis. Table 3 summa-
rizes the associations between the risk factors and the
log-transformed of epidemiologic parameters of COVID-
19 in the selected countries. The results of multivariate

Table 3 Correlation between log-transformed of epidemiologic parameters and possible confounders in selected countries with
GNI-per capita more than $15,000

Variables Log-Prevalence Log-Mortality Log-Fatality

r P r P r p

Log-GNI per capita 0.527 0.001 0.353 0.041 − 0.084 0.637

Log-number of COVID-19 diagnostic tests performed (per 106 people) 0.541 0.001 0.261 0.136 − 0.230 0.190

Life expectancy at birth (years) 0.141 0.426 0.240 0.171 0.191 0.278

Density of medical doctors (per 104 people) 0.469 0.005 0.461 0.006 0.139 0.434

Density of nursing and midwifery personnel (per 104 people) 0.243 0.166 0.172 0.332 − 0.030 0.866

Degree of freedom (df) for all correlations is 32

Table 4 Multivariable linear regression analysis for associations of log-mortality and log-prevalence of COVID-19 with the frequency
of the Val105 allele in the various countries around the world in selected countries with GNI-per capita more than $15,000

Variables Unstandardized coefficients Standardized coefficients beta Partial correlations t P

B Std. Error

Log-prevalence as dependent variable

Constant − 4.790 1.717 - - − 2.789 0.009

Log-test 0.429 0.194 0.319 0.374 2.209 0.035

Log-GNI per capita 1.118 0.417 0.384 0.440 2.681 0.012

Val105 allelic frequency 0.028 0.010 0.360 0.456 2.806 0.009

Log-mortality as dependent variable

Constant − 5.979 2.463 - - − 2.427 0.021

Log-GNI per capita 1.344 0.530 0.358 0.415 2.537 0.016

Val105 allelic frequency 0.051 0.014 0.509 0.544 3.606 0.001

The first model was significant with F = 10.726; df = 3, 30; P < 0.001; adjusted R2 = 0.469. The second model was significant with F = 9.63; df = 2, 31; P < 0.001;
adjusted R2 = 0.344

Saadat Egyptian Journal of Medical Human Genetics           (2020) 21:52 Page 3 of 5



analysis are summarized in Table 4. In the selected
countries, the frequency of Val105 was positively associ-
ated with the log-prevalence (partial r = 0.456, p =
0.009) and log-mortality of COVID-19 (partial r = 0.544,
p = 0.001).

Discussion
The main findings of the present study are that the fre-
quency of Val105 was positively associated with the log-
prevalence and log-mortality of COVID-19. It means
that countries with higher Val105 allelic frequency
showed higher prevalence of COVID-19 and mortality
due to COVID-19. The present findings may explain, at
least in part, some differences in COVID-19 mortality
between East Asian and European populations by the
Val105 allelic frequency.
Numerous facts are indicated that GSTP1 plays an im-

portant role in lung function [5, 8–11, 20]. GSTP1 has
pleiotropic properties; it binds directly to c-Jun N-
terminal kinases and acts as a negative regulator. It also
has a negative regulatory role in regulating tumor necro-
sis factor-alpha (TNFα)-induced MAPK signaling. These
functions are independent from its enzyme activity [21].
It is widely acknowledged that the mortality due to se-

vere respiratory problems in patients infected by SARS-
CoV-2 is high [22]. On the other hand, COVID-19 is as-
sociated with oxidative stress [17, 18]. It is suggested
that COVID-19 mortality might be associated with oxi-
dative stress and/or SARS-CoV-2-activated cytokine
storm syndrome. Both of these phenomena might be
interpreted with the pleiotropy properties of GSTP1.
It is worth mentioning that the Val105 form compared

to the other form has lower detoxification activity; there-
fore, COVID-19 patients, who are carriers of Val105,
often experience severe oxidative stress compared to the
Ile/Ile genotype. This may lead to severity of the disease
and subsequently death due to COVID-19 in the carriers
of Val105.
A literature review indicated that COVID-19 has af-

fected more males than females, and also male gender
significantly increases the case fatality [23, 24]. This dif-
ference, at least in part, may be explained by the sexual
dimorphisms of GSTP1 enzyme activity. The enzyme ac-
tivity is higher in females than males [25]. Several obser-
vational and experimental studies should be carried out
to approve the present findings and the abovementioned
hypotheses.

Conclusions
The present findings indicate that countries with Val105
higher allelic frequency of the rs1695 polymorphism
showed higher prevalence and mortality of COVID-19.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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