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Abstract

Background: The newly emerged technology, nanotechnology, represents a promising solution for many medical
and industrial problems. Random targeting, resistance, and side effects are the main disadvantages of the available
cancer chemotherapy which are critical aspects needed to be managed. So the aim of the study was to suggest
the nanoparticles as an alternative therapy for the available therapies through detecting the cytotoxic effect of Ag
nanoparticles against cancer and normal cell lines and how they affect the apoptotic function and the genes
involved.

Results: Ag NPs exhibited a killing rate of 40% in MCF-7 cells (the cancer cell model) at a concentration of 100 μg/
ml with almost no effect on Vero cells (the normal cell model). Concerning the phenotypic apoptotic changes that
were analyzed by Acridine orange and eosin and hematoxylin, Ag NPs caused the apoptosis and Vacuole
degeneration as well as cell formation and the emergence of Necrotic cells in MCF-7 cells, whereas in the normal
cell line Vero, no change appears in its phenotype.
Treating MCF-7 and Vero cells with Ag NPs upregulated the P53 and P21 gene expression in Vero cells, but their
expression was downregulated in MCF-7 cells. PTEN was augmented in both MCF-7 and Vero cells compared to
the control.

Conclusions: The AgNPs displayed selective effect in their cytotoxicity and both induced the apoptosis effect and
might be suggested as a potential therapy since an increase in PTEN expression (up to 250-fold more compared to
the control) due to the treatment with AgNPs augments the tumor suppressor effects of the PTEN.
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Background
Cancer is a fatal disease that is initiated by environmen-
tal factors to mutate genes that are involved in regulat-
ing the cell growth. It is characterized by uncontrolled
growth of cells, where the behavior of abnormal cells de-
stroys the surrounding tissues [1]. The traditional
methods of treating cancer are surgery, radiotherapy,

immunotherapy, hormonal therapy, and chemotherapy
[2], but these treatments randomly target the tumor and
cause undesirable side effects [3]. So, efforts were made
to find alternatives such as nanoparticles. Nanoparticles
or dwarfs “ in Latin” are materials that do not exceed
100 nm in their sizes [4]. Nanotechnology offers a new
approach to treat cancer since it carries the potential to
reduce systemic toxicity by developing functional mole-
cules as directed treatment chemically or biosynthesized
such as Fe3O4/Ag nanocomposite. It also provides an al-
ternative strategy to circumvent the resistance to mul-
tiple drugs including antibiotics, such as using the
biologically synthesized CuFe2O4@Ag nanocomposite
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[5–9]. Very small size, large surface area to mass ratio,
and high reactivity, these properties make it important
in designing high-precision materials and overcoming
barriers in diagnostic and therapeutic factors [10]. Silver
nanoparticles (Ag NPs) were used due to their unique
properties and known effects in cancer treatment [11,
12]. Ag NPs have many applications in the field of
medicine such as antibacterial agents, drug delivery vec-
tors, and physical treatment agents. They have the ability
to induce oxidative stress, mitochondrial membrane
change, cell death by apoptosis, DNA damage, and cyto-
kine production [13]. Various kinds of toxicity have been
detected after exposure to nanoparticles such as changes
associated with oxidative stress such as apoptosis, gene
expression changes, and lipid oxidation [14].
So the aim of this study was to analyze the effect of

AgNPs on cytotoxicity of cells and effect on genes impli-
cated in apoptosis P53, P21, and PTEN.

Methods
Effect of nanoparticles on the growth of cell lines
Nanoparticles were prepared in distilled water using
laser beam and were characterized by TEM and UV ab-
sorbance. The cytotoxic effect of nanoparticles was per-
formed according to [15]. Confluent Vero (as a model
for normal cells) and MCF-7 (as a cancer cell line)
monolayers were simultaneously trypsinized as described
above, and then, the suspensions were adjusted to a con-
centration of 10,000 cell/ml in the growth medium. The
cells were then seeded in 96-well plates at a volume of
100 μl in each well and i the cells at 37 ° C were incu-
bated for 24 h then were treated with Ag NPs at serial
concentrations of 12.5, 25, and 100 μg/ml.
The plates were incubated for 48 h, after which the

media and nanomaterials were removed. MTT staining
was performed by adding 10 μg/ml of MTT in each well
and 90 μl of the media-free serum; the plates were again
incubated for 1.5–3 h. After incubation, MTT was re-
moved and 100 μl of DMSO was added instead for 20
min in the dark; finally, the absorbance was taken at
490 nm using ELISA. Reader and the cytotoxicity was
calculated as follows:

Cytotoxicity ¼ A − Bð Þ=A� 100

where A was the mean optical density of control well
and B was the optical density of treatment well.

Morphological characterization of cell death
Eosin and hematoxylin stain
The confluent monolayer cells were plated in 6-well
plate containing coverslips within each well and incu-
bated for 24 h. The coverslip-growing cells were treated
with nanoparticles and then incubated for 48 h to allow

enough time for the material to inhibit or kill the cells,
and then, the staining was achieved according to [16].

Acridine orange stain
Dissolve 1 μg of orange acridine and 1 μg of ethidium
bromide with 10mL of PBS, making the prepared concen-
tration 1%. The dye is prepared under dark conditions and
at room temperature. Next, stain cover slid [17].

Agarose gel electrophoresis
DNA was visualized by 1.5% agarose gel electrophoresis
stained with ethidium bromide according to SiZer ™
DNA Markers.

Converting RNA to cDNA from cell line
To convert RNA to cDNA, Accupower RocketScript RT

Premix from Bioneer, CA, K-2101, was employed relying
on reverse transcriptase enzymes.

Protocol
RNA templates were extracted from cell line converted
into complementary DNA (cDNA). The kit components
were added to the reaction mixture and completed to a
final volume of 20 ml according to Accupower Rocket-
Script RT Premix from Bioneer instruction as shown in
Tables 1 and 2.

qPCR primers
Sequences of PTEN, P21, P53, and β-actin primers that
were used in real-time PCR to evaluate gene expression
are shown in Table 3.

Preparation of the real-time PCR reaction
To prepare real-time PCR reaction, RealMOD™Green SF
2X qPCR mix from iNtRON kit was used. The reaction
was set according to instruction enclosed with RealM-
OD™Green SF 2X qPCR mix from iNtRON kit. Then,

Table 1 The reaction components of cDNA synthesis

Material Size

Oligo dT 20 1 μl

Template RNA 5 μl

Free DEPEC-D.W 14 μl

Final volume 20 μl

Table 2 Thermal cycling of cDNA synthesis (reverse
transcriptase)

Step Temperature Time

Primer annealing ( oligo dT 20) 25 10 min

cDNA synthesis 45 60 min

Heat inactivation 95 5 min
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the reaction was conducted by PCR reaction condition
(Tables 4 and 5).

Result
Ag NPs
AgNPs’ characterization results are provided as supple-
mentary 1. In order to evaluate the cytotoxic effect of
the prepared AgNps on the viability of MCF-7 and Vero
cells, the cells were left to grow in RPMI 1640 media for
24 h and then treated with (12.5, 25, 100 μg/ml) of
AgNPs for 48 h. The viability of MCF7 cells was assessed
by MTT staining of treated or control samples and the
absorbance was detected at 490 nm. MCF-7 viability was
clearly reduced in a dose-dependent manner since the
viability decreased to 60% when the concentration was
increased to 100 μg/ml. In contrast, AgNPs exhibited al-
most no effect on viability of Vero cells at 100 μg/ml
(Fig. 1). To summarize, AgNPs showed an activity that
discriminates between cell lines and the aneuploidy cells
and cancer cells.

Effect of nanoparticles on morphology of Vero and MCF-7
cells
The morphological effect of the prepared nanoparticles
on Vero and MCF-7 cells was detected by Acridine or-
ange and eosin and hematoxylin staining under fluores-
cent and light microscope. Vero and MCF-7 cells were
grown in RPMI 1640 with 10% FBS media for 24 h and
then treated with 100 μg/ml of Ag for 42 h. Acridine

orange was used to stain cells, and morphological
changes were traced in comparison with the control mo-
lecular layer. Treatment with AgNPs made the nuclei
smaller (Figs. 2, 3, 4, and 5).

Effect of nanoparticles on genomic DNA (DNA
fragmentation test)
Effect of the tested nanoparticles on genomic DNA of
different cell lines was analyzed by agarose gel staining.
MCF-7 and Vero cells were treated with 100 μg/ml of
Ag NPs for 48 h; then, the genomic DNA of each treated
sample was loaded on agarose. Obviously, the control
MCF-7 genomic DNA showed intense, sharp, and larger
band compared to the Ag-treated DNA at 100 μg/ml
(Fig. 6).

P53 relative expression in Vero and MCF-7 cells
In order to evaluate the P53 gene expression in Vero
and MCF-7 cells, RNA samples that were extracted from
cells treated with Ag NPS and were reverse transcribed
to make the first strand of DNA were used as the tem-
plates. cDNA template was mixed with primers amplify-
ing P53 to measure its gene expression using qPCR
SYBR green. AgNPs exhibited a very different outcome
on P53 expression; the treated Vero showed the highest
expression followed by the control MCF-7, treated
MCF-7, and the control Vero respectively (Fig. 7).

P21 gene expression in Vero and MCF-7 cells
Given the important role of P21 in suppressing cancer
cells, again cDNA from total RNA was made from cells
treated with AgNPs and used as templates for relative
gene expression assay normalized to the control genes.
P21 expression was upregulated due to treating Vero
cells while its level in untreated Vero or both treated
and untreated MCF-7 cells was the same (Fig. 8).

PTEN gene expression in Vero and MCF-7
Due to the position of PTEN gene as one of the most
tumor suppressor genes missing in cancer cells, PTEN

Table 3 QPCR primers

Gene Sequence Tm Product size Reference

PTEN For. 5′-AAG GCA CAA GAG GCC CTA GAT TTC T-3′ 60.0 148 bp [18]

Rev. 5′-ACT GAG GAT TGC AAG TTC CGC CA-3′ 61.2

P21 For. 5′-TGG AGA CTC TCA GGG TCG AAA-3′ 61.3 143 bp [19]

Rev. 5′-GGC GTT TGG AGT GGT AGA AAT-3′ 62.1

P53 For. 5′-CAGTTCCTGCATGGGGGGGGGGGGA-3′ [20]

Rev. 5′-CGCCGGTCTCTCCCAGGACAGGACA-3′

β-actin For. 5′-CCTGGCACCCAGCACAAT-3′ 58.4 138 bp [21]

Rev. 5′-GCCGATCCACACGGAGTACT-3′ 62.5

Table 4 Components of real-time PCR reaction

Materials Size

RealMODTMGreen SF 2X qPCR mix 10 μl

Forward for (PTENT, P21, P53, NF-KB, and B-actin) 1 μl

Revers for (PTENT, P21, P53, NF-KB, and B-actin) 1 μl

Nuclease free water 7 μl

Template cDNA 2 μl

Final size 21 μl
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mRNA expression was evaluated in both treated and un-
treated. AgNPs treatment enhanced the expression of
PTEN in both cell lines compared to its level in the cor-
responding controls (Fig. 9).

Discussion
Effect of Ag NPs on cell lines
The cells were treated with a series of concentrations of
AgNPs for 48 h. The results showed that the cell survival rate
declines with the increasing concentrations of Ag NPs in
MCF-7 cell line. This is consistent with [22–24] when HeLa
cells are treated with plant-manufactured silver nanoparti-
cles. However, MCF-7 shows the lowest sensitivity for treat-
ment with AgNPs compared to other cell lines [25]. Silver
nanoparticles show their toxicity through induction of oxida-
tive stress by generating reactive oxygen species [26, 27].
Increasing level of ROS creates oxidative stress inside the

cells and consequently leads to cell death through pro-
grammed cell death [28]. In addition, increased ROS levels
may cause mitochondrial membrane damage and conse-
quently leads to programmed cell death [29, 30]. In HeLa
cells, cells treated with Ag NPs face death due to the de-
creased glutathione levels and the increase in the level of lipid

peroxide, which in turn kills the cells due to the oxidative
stress response [31, 32]. Another critical effect of Ag NPs is
the accumulation of silver nanoparticles in the nucleus of
GBM cells which leads to instability of chromosomes and
mitosis. Ag NPs interfere with the structure of cellular actin
which eventually kills the cells [31]. Mitochondria-dependent
apoptosis can also be triggered by treatment with Ag NPs.
Ag NPs can dissociate ions, hence disrupting the mitochon-
dria membranes releasing cytochrome to the cytoplasm [31,
33, 34]. Ag NPs may also exhibit its effect on cancer cells
through the physical-chemical interaction of the cellular pro-
teins with the nanoparticles [35].

Morphological analysis of nanoparticle effect on cell lines
(apoptosis detection)
Changes in cell morphology of Vero and MCF-7 cells and
detection of apoptosis signs were investigated by Acridine
orange at 25 μg/ml of Ag NPs for 48 h. The was detected
as apoptosis or necrosis compared with the untreated con-
trols. Ag NPs did not show any phenotypic changes in Ac-
ridine orange, revealing that these substances do not affect
the normal cells, whereas treating MCF-7 cells with the
same particles created phenotypic changes such as apop-
tosis, vacuole degeneration, change in shape of some cells
to rod shape, and necrotic cells (enlarged).
Breast cancer cells treated with Ag NPs show several mor-

phological symptoms that can be easily under inverted
microscope. Most of the cellular contents are condensed and
take a position at one side of the cells, larger cytoplasm and
have a granulus appearance. Attached cells tend to look
rounded and others become loose since the junctions among
them become weaker [36]. Ag NPs-A549-treated cells for 72

Table 5 Real-time PCR program

No. Steps Temperature Time No. of cycles

I Denaturation 1 94 °C 3 min 1

II Denaturation 94 °C 30 s 40

III Annealing 60 °C 30 s

IV Extension 1 72 °C 1 min

V Extension 2 72 °C 5 min 1

Fig. 1 Cytotoxicity of Ag NPs. Effect of AgNPs on viability of MCF7 and Vero cell lines. Cells were seeded at 37 °C for 24 h prior to treatment with AgNPs.
Cells were either treated with (12.5, 25, 100 μg/ml) of AgNPs for 48 h or treated with DMSO only as control. Cell viability was measured with MTT assay
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h show typical apoptotic features such as condensed nuclei,
membrane blabbing, and apoptotic fragments [37, 38].
Morphology of HeLa cells is affected with the ex-

posure to AgNPs since they lose their regular shape
with shrank edges, loosen adhesions, more dead float-
ing cells, and decreased cellular density which sug-
gests antineoplastic action of Ag NPs through
apoptosis induction [39]. More or less the same effect
is noticed in Ag NP-treated BEAS-2B cells when Ag
NPs is gathered in endocytic vesicles genotoxic effects

with increased ROS generation, formation of micro-
nucleus, and enhanced DNA damage [40, 41].

Effect of nanoparticles on genomic DNA (DNA
fragmentation test)
To further confirm the apoptotic event, a DNA ladder
test was conducted in agarose gel. Vero and MCF-7
are treated with 100 μg/ml Ag NPS for 42 h. Genomic
DNA is extracted from the treated or control equiva-
lent cultures and the results show that the DNA is

Fig. 2 Effect of nanoparticles on morphology of Vero and MCF-7cells. Hematoxylin and eosin of Vero cell line after 42 h. A1 unstained control
confluent monolayer. A2 Stained control confluent monolayer. B1 unstained cells treated with 100 μg/ml of Ag NPS pure. B2 stained cells
treated with 100 mg/ml of Ag NPS

Fig. 3 Aciridine orange staining of Vero cell monolayers at control and NPs treated conditions. a Untreated cells. b Cells were treated with 100
μg/ml of Ag NPs
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not affected and the genomic DNA is detected as one
band at the top of the gel. No detectable fragmenta-
tion in agarose contradicts with the idea of having
apoptosis due to the treatment with the NPS and
with the results of Acridine orange staining. This
might be due to the need for further processing that
the cells need before extracting the genomic DNA
such as treating cells with hypotonic solution. Rather,
the genomic DNA showed the features of necrosis

and spread DNA in the background is detected and
this agrees with [42].
Another reason for not being able to detect the small

fragments of genomic DNA [4] is that few cell lines in-
cluding MCF-7 do not follow the DNA ladder pattern
when they die [43, 44]. Cell death without DNA frag-
mentation occurs for a reason that it might reduce the
risk of transfer of oncogenic genes from an affected cell
to an adjacent healthy cell or phagocytic cells [45].

Fig. 4 Eosin and hematoxylin of staining MCF-7 cell line after 42 h. A1 Unstained control confluent monolayer. A2 Stained control confluent
monolayer. B1 Unstained cells treated with 100 μg/ml of Ag NPS. B2 Stained cells treated with 100 μg/ml of Ag NPS

Fig. 5 Aciridine orange staining of MCF-7 cell monolayers at control and NP-treated conditions. a Untreated cells. b Cells were treated with 100
μg/ml of Ag NPs
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Effect of nanoparticles on P53 expression
To find out the effect of Ag NPs on the gene expression
of apoptotic genes, Vero and MCF-7 cells are treated
with 100 μg/ml for 48 h. Ag NPs show a different effect
on P53 expression since it increases its expression level

in Vero treated cells but reduced it in MCF-7-treated
cells. Ag NPs induce apoptosis in a P53-dependent path-
way using the p53 inhibitor pifithrin α in human breast
cancer cells [46, 47]. Continuous exposure of A549 cells
to Ag NPs for 72 h reduces the gene expression of p53

Fig. 6 DNA fragmentation test. Effect of Ag NPs on genomic DNA of MCF-7 and Vero cell lines. MCF-7 and Vero cell were seeded for 24 h and
then treated with Ag NPs for 48 h or left without treatment as control. gDNA was extracted and electrophoresed at voltage of 75 for 1 h in %1.5
agarose. The bands were visualized under UV light. Left to right direction; lane 1: Ag NPs (100 μg/ml) Vero-treated samples; lane 2 DMSO Vero-
treated sample; lane 3 1500 bp DNA ladder; lane 4 MCF-7 DMSO-treated samples; lane 5 Ag NPs (100 μg/ml) MCF-7-treated sample
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[48]. Starch-covered Ag NPs also increases the P53 gene
expression in colon cancer cells. The only explanation
for such reduction in MCF-7-treated samples can be the
48 h is a long-term exposure.

Effect of nanoparticles on P21 expression
The data showed that AgNPs treatment causes de-
crease in p21 expression in cancer cells. When treat-
ing normal cells (Vero) with Ag NPs, there is a
higher expression in P21 compared to control.
Consistent with the use of Ag NPs and Ag/C225
which are approximately 20 nm and which show an
inhibitory effect on the proliferation of the human

pharyngeal cancer cell line and the throat cancer cell
line HEP-2 has been investigated. The inhibitory ef-
fect is a reflection of a decrease in the level of P21 in
the cellular lines [49]. Continuous exposure of A549
cells reduces the gene expression of p21 [48]. Starch-
covered Ag NPs are evaluated for efficacy on HCTI16
colon cancer cells. The data disagree with [46] since
the treatment with AgNPs increases the P21 expres-
sion in the cancer cells to induce oxidative stress and
DNA damage. In general, Ag NPs effect on gene ex-
pression is represented by the activation of p53, p-
Erk1/2, and caspase-3 signaling, and downregulation
of Bcl-2 and PARP-1 results in increasing caspase-3
activity. P21 overexpression in human cell lines

Fig. 7 P53 relative expression in MCF-7 and Vero cell treated or untreated with Ag NPs. Total RNA was extracted, reverse transcribed, and the
synthesized DNA was used as a template for qPCR relative expression assay using SYBR green master mix. Data were analyzed by ΔΔ CTs and
normalized to (β-actin) house-keeping gene (t test P < 0.058, 0.007)

Fig. 8 P21 relative expression in MCF-7 and Vero cell treated or untreated with AgNPs. Total RNA was extracted, reverse transcribed, and the
synthesized DNA was used as a template for qPCR relative expression assay using SYBR green master mix. Data were analyzed by ΔΔ CTs and
normalized to (β actin) house-keeping gene (t test P < 0.058, 0.007)
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induces the senescence and growth arrest. It inhibits
the expression of genes that are implicated in in mi-
tosis and DNA replication and repair [50].

Effect of nanoparticles on PTEN expression
Interestingly, the data show an increase in PTENT expres-
sion in AgNP-treated Vero and MCF-7-treated cells but
to a lower extent in the MCF-7 cells compared to the con-
trol. PTEN is antitumor protein and restoring the function
of this protein suppresses the cancer cell proliferation and
even the resistance to chemotherapy [40, 41]. The PTEN
gene functions as a negative regulator of the PI3K/Akt
pathway. Therefore, inhibition of this pathway stimulates
programmed cell death in different types of cell lines [51].
So, it suggests it as a typical target to develop anticancer
treatment strategies for cancer patients [52]. In addition,
treatment with polymer lipid hybrid nanoparticles that re-
stores the normal function of PTEN can enhance the
apoptosis in prostate cancer [53].

Conclusion
The study was designed in order to evaluate the possibil-
ity of using the prepared AgNPs as antitumor therapy.
In cytotoxicity testing, we found that Ag NPS are select-
ive in killing cancerous cells but not the normal ones.
Moreover, treating cells with Ag NPs, apoptosis was ac-
tivated by activating the P21 and PTEN gene. In fact,
PTEN increased gene expression (due to the treatment
with AgNPs might have anti-tumor effect and suppress-
ing the cell division). Fold in MCF7 or 3 fold in Vero
cells compared to the control, PTEN abrogates the tyro-
sine kinases to control tumor cell invasion and metasta-
sis. More detailed study is needed to use the AgNPs in

experimental animals to analyze their effect in an in vivo
system or even in other cell lines.
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