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Abstract

Background: Melanoma cancer causes serious health problem worldwide because of its rapid invasion to other
organs and lack of satisfactory chemotherapy. The pGI50 anticancer activity values of 70 compounds from the NCI
(National Cancer Institute) on MALME-3M cell line was modeled to describe the quantitative structure-activity
relationships (QSARs) of the compounds, and some selected compounds were docked.

Results: The generated QSAR model was found to be statistically significant based on the obtained values of the
validation keys such as R2 (0.885), R2adjusted (0.868), Q2

cv (0.842), and R2pred (0.738) required to evaluate the strength
and robustness of QSAR model. Compound 39 was selected as a template due to its good pGI50 (9.205) and was
modified to design new potent compounds. The predicted pGI50 activity of the designed compounds by the built
model was N1 (9.836), N2 (12.876), N3 (10.901), and N4 (11.263) respectively. These proposed compounds were
docked with V600E-BRAF receptor and the result shows that, N1, N2, N3, and N4 with free binding energy (FBE) of
− 11.7 kcal mol−1, − 12.8 kcal mol−1, − 12.7 kcal mol−1, and − 12.9 kcal mol−1 respectively were better than the
parent structure of the template (compound 39, FBE = − 7.0 kcal mol−1) and the standard V600E-BRAF inhibitor
(Vemurafenib, FBE = − 11.3 kcal mol−1). Additionally, these compounds passed the drug-likeness criteria successfully
to be orally bioavailable.

Conclusion: The proposed compounds were considered optimal as their performances are comparable to
vemurafenib and possessed enhanced physicochemical properties. Thus recommends further research such as
synthesis, in vivo, and ex-vivo evaluation.
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Background
Melanoma is one of the most aggressive forms of skin
tumor and a serious health issue worldwide because of
its increasing incidence and the lack of satisfactory
chemotherapy for the advanced stages of the disease
[1, 2]. It has a high ability of metastasis and rapid invasion
of other organs, e.g., lymph node, lung, liver, brain, etc.
[3]. The oncoprotein BRAF, as discovered in 1988 is

responsible for nearly sixty-six percent (66%) of melano-
mas [4]. The BRAF kinase is the main target of the therap-
ies for as it is the most regularly mutated protein kinase in
human cancers [5]. The most frequent mutation of BRAF,
among more than 30 mutations of BRAF, is V600E [6, 7].
The V600E-BRAF mutation ended in 500-fold greater
constitutive kinase activity when compared to other BRAF
wild kind, and many inhibitors of V600E-BRAF have been
designed [8, 9].
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Despite thorough research and partial successes
achieved by the use of several drugs approved for the for
treatment of melanoma cancer by the U.S. Food and Drug
Administration (FDA) such as ZM336372, benzylideneox-
indoles, sorafenib, isoquinolones, triarylimidazoles, XL281,
and Vemurafenib (PLX4032) [10], currently, the effective
chemotherapy against invasive melanoma is still lacking.
Therefore, it is necessary to search for new therapeutic
approaches with better effectiveness and fewer side effects.
Ligand-based is one of the most widely practiced
approaches in drug discovery and drug design by
medicinal chemists. The ligand-based method includes
the well-known quantitative structure-activity relation-
ships (QSARs) models [11, 12], which are based on
changes in structural features of molecules such as
steric, electrostatic, and hydrophobic properties. QSAR
approaches have been utilized to identify vital struc-
tural features responsible for the anticancer activity of
compounds [13, 14]. QSAR is an important factor in
the drug design; therefore, it is quite evident why many
users of QSAR are found mostly in the research units
of industries [15–17].
It is, therefore, necessary to construct a QSAR

model for the prediction of the activity of the designed
leads before their synthesis. Because a successful
QSAR model not only helps in understanding relation-
ships between the structural features and biological
activity of any class of compounds but also provides
researchers a deep analysis of the lead compounds to
be used in further studies [13]. Furthermore, under-
standing the mechanism of the ligand/receptor
interactions is very significant in drug development,
and the molecular docking simulation method is a
proper tool for gaining such understanding. Molecular
docking simulation is a computational technique used
to predict the binding ability of the active site resi-
dues to specific groups on the receptor and to reveal
the strength of interaction [5]. Molecular docking is a
very useful and popular tool used in the drug discov-
ery arena to evaluate the binding of small molecules
(inhibitors) to the receptor (macromolecule) [18, 19].
This study was aimed to design new potent compounds
on the MALME-3M cell line through QSAR modeling
followed by molecular docking simulation based on the
compounds collected from the National Cancer Institute
(NCI).

Methods
Data collection and structure preparation
Seventy (70) sets of compounds and their pGI50 activities
on MALME-3M melanoma cell line were retrieved from
the National Cancer Institute (NCI) database. The anti-
cancer activity, chemical name, and NSC number of the
studied compounds are presented in Table 1. The 2D

structures were firstly converted into the 3D structure
using Spartan 14. Then, the structures were cleaned by
checking and minimizing using a molecular mechanic
force field (MM2) in order to remove all strain from the
molecular structure. In addition, this will ensure a well-
defined conformer relationship among compounds of
the study. Secondly, the calculation was further set to
equilibrium geometry at the ground state using the
density functional theory at the B3LYP level of theory
and 6-311G (d) basis set for the geometrical
optimization of the cleansed structures. The optimized
3D structure was formatted to the SD file and then
taken to the PaDEL descriptor tool kit to generate re-
quired descriptors for further studies [20].

QSAR model development and validation
The data set was splits into two subsets, the training set
and test set using Kennard-Stone Algorithm [21, 22].
The training set is used in building the QSAR model
which contains 70% of the data and the remaining 30%
is for the test set that was used to evaluate the predictive
ability of the model [23]. All the studied compounds
were screened through the derived QSAR model for
pGI50 activity prediction.
The genetic function algorithm (GFA) was used in the

selection of proper descriptors as this improves the
model accuracy [24]. Multiple linear regression (MLR)
was used on the training set to determine the relation-
ship between the dependent variable Y (pGI50) and inde-
pendent variable X (molecular descriptors). In regression
analysis, the contingent mean of the dependent variable
(pGI50) Y relies on (descriptors) X. The best QSAR
model was chosen based on the validation parameters
such as the correlation coefficient (R2), adjusted R2

(R2
adj), cross-validation coefficient (Q2

CV), and correl-
ation coefficient for an external prediction set (R2pred) all
are represented in Eqs. (1, 2, 3, 4):

R2 ¼ 1 −

P
Y exp − Ypred
� �2

P
YY exp − Ymtraining
� �2 ð1Þ

R2
adj ¼ 1 − 1 − R2

� � N − 1
N − P − 1

¼ N − 1ð ÞR2 − P
N − P þ 1

ð2Þ

Q2
CV ¼ 1 −

P
Ypred − Y exp
� �2

P
Y exp − Ymtraining
� �2 ð3Þ

R2
pred ¼ 1 −

P
Ypred − Y exp
� �2

P
Y exp − Ymntrng
� �2 ð4Þ

where p is the number of independent variables in the
model and N is the sample size. Yexp, Ypred, and Ymtraining

are the experimental activity, the predicted activity, and
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Table 1 NSC numbers, chemical names, experimental and predicted pGI50 of the dataset with residuals

S/N NSC Chemical name Experimental pGI50 Predicted pGI50 Residuals

1t 267,469 Deoxydoxorubicin 7.31 7.19 0.12

2 269,148 MENOGARIL 5.93 6.20 − 0.27

3 268,242 N,N-Dibenzyldaunorubicin hydrochloride 8.00 7.98 0.02

4 126,771 Dichloroallyl lawsone 4.79 5.91 − 1.12

5 136,044 RHODOMYCIN A 7.37 6.63 0.74

6 140,377 Arnebin 1 6.32 5.69 0.64

7 196,524 epsilon.-Rhodomycinone 5.71 6.00 − 0.28

8 212,509 4beta-Hydroxywithanolide 6.48 6.23 0.25

9 215,139 Bikaverin 5.93 6.33 − 0.40

10 236,613 Plumbagin 6.02 6.08 − 0.07

11t 257,450 Dermocybin 5.05 5.90 − 0.85

12 143,095 Pyrozofurin 3.43 3.89 − 0.45

13 629,971 9-Aminocamptothecin (R,S) 6.68 6.56 0.12

14t 606,173 11-Hydroxymethyl-20(RS)-camptothecin 5.34 5.46 − 0.11

15t 364,830 CAMPTOTHECIN,N-DIETHYL) GLYCINATE 6.66 6.78 − 0.12

16 94,600 Camptothecin 6.76 6.46 0.30

17 606,985 CAMPOTHECIN ANALOG 6.71 6.29 0.42

18 606,499 Camptothecin butylglycinate ester hydrochloride 5.55 5.83 − 0.29

19 606,497 Camptothecinethylglycinate esterhydrochloride 5.83 6.06 − 0.23

20t 176,323 9-Methoxycamptothecin 7.00 6.83 0.17

21 3,088 Chlorambucil 4.99 4.93 0.06

22 338,947 Clomesone 3.36 3.12 0.25

23 95,678 Picolinaldehyde 5.35 5.74 − 0.39

24 264,880 Dihydro-5-azacytidine 4.96 4.38 0.58

25t 71,851 alpha.-Thiodeoxyguanosine 3.66 3.84 − 0.18

26t 132,483 L-Aspartic acid 4.00 4.82 − 0.82

27t 308,847 Amonafide 5.48 5.41 0.07

28t 355,644 Anthra[1,9-cd]pyrazol-6(2H)-one der 10.00 8.01 1.99

29t 63,878 Cytosine, monohydrochloride 5.55 4.25 1.30

30 182,986 Diaziquone 5.19 6.08 − 0.89

31t 139,105 TRIAZINATE 6.11 6.55 − 0.44

32 409,962 Carmustine 4.08 3.90 0.18

33 337,766 BISANTRENE HYDROCHLORIDE 8.00 7.92 0.08

34 750 Busulfan 3.61 3.89 − 0.28

35t 95,382 Camptothecin, acetate 5.46 6.02 − 0.56

36t 107,124 10-Hydroxycamptothecin 7.30 7.30 0.00

37 79,037 Lomustine 4.74 4.74 0.00

38 132,313 Dianhydrodulcitol 4.14 3.74 0.41

39 376,128 AC1L2OAS 9.21 9.21 0.00

40 73,754 Fluorodopan 3.66 3.56 0.11

41 148,958 Uracil 3.27 3.64 − 0.37

42 1895 Guanazole 2.18 2.82 − 0.65

43 329,680 Hepsulfam 3.36 3.57 − 0.21

44 142,982 Hycanthone mesylate 5.40 5.77 − 0.37
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the mean experimental activity of the compounds in the
modeling set, respectively [23].

Applicability domain and in-silico screening
The applicability domain (AD) of the QSAR model is
the theoretical space in the chemical region compris-
ing of both the descriptors of the model and modeled
response. This domain permits prediction of uncer-
tainty in the identification of a particular compound
based on the data set of compounds used in the
development of the model. The AD is also used to
define the X-outliers in case of the training set and
identify the molecules residing outside the defined AD
in case of the test set utilizing the basic theory of
standardization approach [11]. Several techniques have
been used to define AD of QSAR models [25]. The
commonly used one was demonstrated by Gramatica
[26] which employed the leverages for each compound

of the data set. The leveraged approach enables the
evaluation of the position of a new compound in the
QSAR model [26]. Therefore, leverage method is uti-
lized and is shown as hi in Eq. (5):

hi ¼ xi X
TX

� � − 1
xTi ð5Þ

where x refers to the descriptor vector of the consid-
ered compound and X represents the descriptor matrix
derived from the training set descriptor values. The
warning leverage (h*) was determined as in Eq. (6):

h� ¼ 3 pþ 1ð Þ
N

ð6Þ

where N is the number of training compounds and p
is the number of descriptors in the model.
The defined AD was then viewed via a Williams plot,

the plot of the standardized residuals against the leverage

Table 1 NSC numbers, chemical names, experimental and predicted pGI50 of the dataset with residuals (Continued)

S/N NSC Chemical name Experimental pGI50 Predicted pGI50 Residuals

45 32,065 Hydroxyurea 2.95 2.52 0.43

46 153,353 Alanosine monosodium salt 4.26 4.09 0.17

47ta 249,992 Amsacrine 6.21 6.07 0.14

48t 740 Methotrexate 5.47 5.37 0.10

49 95,441 Semustine 4.59 4.61 − 0.03

50 26,980 Mitomycin C 6.04 5.32 0.73

51 353,451 Mitozolomide 4.00 3.09 0.91

52ta 268,242 N,N-Dibenzyldaunorubicin hydrochloride 5.91 6.49 − 0.58

53t 95,466 Urea, 3.67 3.50 0.16

54 25,154 Pipobroman 3.99 4.32 − 0.32

55t 56,410 Profiromycin 5.35 5.42 − 0.08

56t 366,140 Pyrazoloacridine mesylate 6.26 6.71 − 0.45

57 51,143 Pyrazoloimidazole 2.55 3.11 − 0.56

58 172,112 Spiromustine 3.68 4.88 − 1.20

59 125,973 Paclitaxel; 7.54 8.10 − 0.56

60 296,934 Teroxirone 4.51 4.38 0.14

61t 363,812 5-((4-chlorobenzyl)thio)-3-(trifluoromethyl)-1H-1,2,4-triazole 6.67 4.90 1.76

62 361,792 3-Demethylthiocolchicine; 7.53 7.55 − 0.02

63 752 6-Thioguanine 5.50 4.79 0.71

64 6396 Thiotepa 4.80 4.85 − 0.05

65 9,706 Triethylenemelamine 4.93 5.10 − 0.17

66ta 83,265 Tritylcysteine 5.77 5.36 0.41

67 49,842 Vinblastine sulfate 9.13 8.23 0.91

68 67,574 Vincristine sulfate 6.59 8.11 − 1.52

69 757 Colchicine 8.37 7.02 1.35

70 33,410 N-Benzoyl-deacetylcolchicine 7.80 6.59 1.20

‘t’ represents test sets
‘a’ Identified compounds found outside the applicability domain of the QSAR model
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values (h). A compound with hi > h* seriously influences
the model performance and may be eliminated from the
AD applicability, but it does not appear to be an outlier
since its standardized residual could be small. Further-
more, a value range of ± 3 standardized residuals is often
used as a cutoff value for accepting predictions of a com-
pound, because points which lie within ± 3 standardized
residuals from the mean cover ninety-nine percent (99%)
of the normally distributed data [27]. Thus, the leverage
and the standardized residuals were used jointly for the
characterization and determination of the applicability
domain.

Ligand-protein preparation and docking studies
The selected ligands (compounds) were optimized and
formatted to PDB files for docking utilizing Spartan 14.
The x-ray structure of the V600E-BRAF kinase (receptor)
in complex with PLX4032 (PDB CODE: 3OG7) [5, 28, 29]
was retrieved from (www.rcsb.org). The PDB file of
V600E-BRAF was prepared using Discovery studio by de-
leting the excess water molecules contained in the x-ray
structure and optimizing the hydrogen molecules and the
bound ligand (vemurafenib) was also removed from the
target before for the docking process. This complex struc-
ture comprises of two homo-dimeric chains (A and B).
Our goal was to target the mutated chain (chain A) of
V600E-BRAF. Thus, chain B was removed from the struc-
ture of 3OG7 and the bound ligand also removed from
chain A. All the selected compounds (ligands) were
docked into the active kinase domain of V600E-BRAF
using Autodock Vina of Pyrex docking program software.

Prediction of drug-likeness properties
The application of computational tools for identifying
the novel drug candidate assist to lessen the number of
experimental researches and for increasing the success
rate. For this purpose, we applied Lipinski’s rule of five
for drug-likeness as an initial screening step for oral bio-
availability and synthetic accessibility using SwissADME
(www.swissadme.ch/) online tool.

Results
To give a systematic prediction of the studied mole-
cules as antimelanoma agents on MALME-3M cell
line, the QSAR model was built using Material Studio
8.0. The modeling and prediction sets were selected
using the Kennard stone algorithm, in which 49 com-
pounds was used as a modeling data set and 21 com-
pounds as the prediction data set. The GFA lead to
the selection of six (6) descriptors and MLR was
applied to generate a new QSAR model for the
prediction of pGI50 activities of compounds on the
MALME-3M cell line. The developed model and the
corresponding statistics are shown in Eq. (7):

pGI50 UACC − 62ð Þ ¼ − 0:943686206 VE1Dzp
� �

− 1:148315477 SM1Dzið Þ −

5:287231913 SpMin3Bhmð Þ þ 3:275148676 SpMax6Bheð Þ −

1:761450481 SpMax1Bhsð Þ þ 0:013923802 TIC1ð Þ þ 12:581

ð7Þ
Nmodel ¼ 49;R2 ¼ 0:885;R2

adjusted: ¼ 0:868;Q2
cv:

¼ 0:842;Npred ¼ 21;R2
pred ¼ 0:738

The generated QSAR model was employed to predict
the pGI50 activity of the test (prediction) set molecules,
and the outcomes are displayed (Table 1). The predicted
activity values (pGI50) for the molecules in the training
data set and test data set for the MALME-3M melanoma
cell line was plotted versus the observed (pGI50) values
(Fig. 1). Also, the ME values of all the descriptors that
appear in the model are listed in Additional file 1: Table
S1. To further validate the proposed QSAR model in this
study, the pGI50 of 31 Flavone-based arylamides (FBA)
retrieved from the literature [30] was predicted using
the developed QSAR model (Eq. 7). The predicted
pGI50 results of the FBA derivatives are presented in
Additional file 1: Table S2.
The Williams plot for the built QSAR is shown in Fig. 2.

The warning leverage (h*) was found to be 0.430 for the
developed QSAR model. Furthermore, an in silico screen-
ing method was used for the design of new potent com-
pounds with pGI50 activity on the MALME-3M cell line.
The structure of compound 39 as a template used for
modifications is shown in Figs. 3 and 4. The predicted
pGI50 and leverage limit of the designed compounds are
presented in Table 2.
Furthermore, molecular docking simulation studies were

conducted between the V600E-BRAF protein kinase, com-
pound 39 (AC1L2OAS), designed compounds, and the
standard drug (Vemurafenib) approved for the treatment
of melanoma cancer (V600E-BRAF inhibitor). Firstly, the
template compound 39 (AC1L2OAS) was docked, then the
designed compounds and vemurafenib into the active kin-
ase domain of V600E-BRAF using Autodock Vina in Pyrex
version 4.0 software docking program. The best docking
pose of vemurafenib were superimposed upon co-crystal
structure of ligand as shown in Additional file 1: Figure S1.
The detail docking results are reported in Table 3 and the
best docking poses of the docked ligands are shown in Figs.
3, 4, 5, 6, 7, 8 and 9. In addition, to ensure that the
designed molecules are viable drugs, the drug-likeness
properties was predicted using SwissADME (online tool)
as presented Table 4.

Discussion
Quantitative evaluation of the structure-activity relation-
ship (QSAR) was conducted on 70 molecules with
unique organic moiety acting as anti-melanoma agents

Umar et al. Egyptian Journal of Medical Human Genetics            (2021) 22:6 Page 5 of 15

http://www.rcsb.org
http://www.swissadme.ch/


to know a quantitative relationship between their mo-
lecular structures and anti-melanoma activity. The na-
ture of the QSAR model generated was described by its
fitting and predictive ability. The correlation between ex-
perimental and predicted activity based on the developed
QSAR model was highly significant for our data set as
indicated by statistical analysis. The closeness of coeffi-
cient of determination (R2) to its absolute value of 1.0 is
an indication that the model explained a very high per-
centage of the response variable (descriptor) variation,
high enough for a robust QSAR model. Its 0.885 value
illustrates that 88.5% of the variation is residing in the
residual meaning that the model is very good.
The high adjusted R2 (R2

adj) value as seen in the model
and its closeness in value to the value of R2 implies that
the model has excellent explanatory power to the de-
scriptors in it. It also demonstrates the real influence of

applied descriptors on the pGI50. Also, the high and
closeness of Q2

cv to R2 revealed that the model was not
over-fitted. The high R2

pred as seen in the model is an in-
dication that the model is capable of providing valid pre-
diction for new compounds. Generally, a good QSAR
model has the following characteristics: R2 and R2adj
values close to one. Q2

cv > 0.5, R2 - Q2
cv ≤ 0.3, R2

pred ≥
0.6, and Npred ≥ 5 [11, 23, 31]. The built QSAR model
satisfied these criteria and was therefore statistically ac-
ceptable. Therefore, we can conclude with confidence
that the model will correctly predict the anti-melanoma
activity of a given compound.
Molecular descriptors are the physicochemical and

structural information in the form of numerical values,
each descriptor represents specific information that can
be implore to improve the overall biological effect of a
compound. By interpreting descriptors that appear in

Fig. 2 The Williams plot, the plot of the standardized residuals versus the leverage value

Fig. 1 The predicted pGI50 against the experimental values for the training and test sets
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the model, it is possible to understand the factors which
are related to the anti-melanoma activity. Also, the sig-
nificance and contribution of each descriptor of the de-
veloped model was assessed by calculating the value of
mean effect, (ME) [32] of each descriptor by applying
Eq. (8). Therefore, brief descriptions of the selected de-
scriptors and their ME values are presented in Add-
itional file 1: Table S1 and an acceptable interpretation
is provided.

ME j ¼
β j

Pi¼n
i¼1dij

Pm
j β j

Pn
i dij

ð8Þ

MEj is the ME (mean effect) of descriptor j, βj signifies
the coefficient of descriptor j, dij denotes the value of
the chosen descriptor for each molecule, and m repre-
sents the number of descriptors that appear in the
model. The ME value shows the relative importance of
each descriptor in compare to the other descriptors.

Descriptors that influence anti-melanoma activity and
show high values of ME increase anti-melanoma activity
(pIG50). The pIG50 changes with the MF values of the
descriptor, as shown in Additional file 1: Table S1. Based
on ME values, the associated descriptors are arranged in
a sequence about their contribution toward overall
pGI50 of the compounds, in the following increasing
order of pGI50 of compounds.

SpMax1_Bhs > SpMin3_Bhm > SM1_Dzi > VE1_Dzp >
TIC1 > SpMax6_Bhe
SpMax1_Bhs is defined as the largest absolute eigenvalue
of Burden modified matrix—n 1 / weighted by relative I-
state. The positive ME value of the descriptor (1.20) shows
that an increase in the value of this descriptor will increase
the pGI50 of the compounds. SpMin3_Bhm descriptor has
been proposed as the chemical structure descriptors
derived from a new representation of the molecular struc-
ture. SpMin3_Bhm is the smallest absolute eigenvalue of

Fig. 3 Structure of the template (compound 39) used for design

Fig. 4 3D diagram of the interaction between compound 39 with V600E-BRAF
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Burden modified matrix—n 3 / weighted by relative mass.
The SpMin3_Bhm has a positive mean effect (1.13). This
sign suggests that the anti-melanoma activity is directly
related to this descriptor. SM1_Dzi is defined as the Spec-
tral moment of order 1 from the Barysz matrix / weighted
by first ionization potential. The ME value of SM1_Dzi is
0.22 as shown in Additional file 1: Table S1. This positive
value suggests that the increase of value for this descriptor
will increase the anti-melanoma activity of a compound
and vice versa.
VE1_Dzp is defined as the coefficient sum of the last

eigenvector from the Barysz matrix/weighted by polariz-
abilities. The low positive value of the mean effect
(Additional file 1: Table S1) for VE1_Dzp suggests a
positive contribution to the activity, though insignificant
since the value is low. TIC1 is defined as the total infor-
mation content index (neighborhood symmetry of 1-
order). The mean effect value for this descriptor has a
negative sign (Additional file 1: Table S1). This sign sug-
gests that the anti-melanoma activity will increase with a
decrease in its value. SpMax6_Bhe a Burden modified
descriptor is defined as the largest absolute eigenvalue of
Burden modified matrix—n 6/weighted by relative
Sanderson electronegativities. It is related to electro-
negative atoms of the drug. The ME of this descriptor
was − 1.27. Its negative sign indicates that a decrease
in the number of electronegative atoms in the mo-
lecular structure of the compound increases the pGI50
values of the compounds. The descriptors used for
the constructed QSAR model in this work encoded
topological, electronic, and geometrical aspects of
molecules. Appearances of these descriptors in the
model reveal the role of electronic and steric interac-
tions in inducing anti-melanoma pGI50 activity on the
MALME-3M cell line.
To further validate the predictive ability of the pro-

posed model, a total of 31 Flavone-based arylamides
(new anticancer compounds) was chosen from the litera-
ture [30]. Their structures were subsequently optimized
and molecular descriptors calculated using the same
methods as used for the NCI dataset used in building
the model. Thereafter, the proposed QSAR model for
MALME melanoma cell line (Eq. 7) was applied to
predict the activity values of these compounds and the

results (Additional file 1: Table S2) showed that the model
could accurately predict the pGI50 of the compounds.
The good pGI50 values predicted for these compounds

only shows which structures should be targeted for use
as antimelanoma agents on the basis that they approach
the optimal values for the chosen descriptors in the
model developed in the present study. Also, the in silico
screen based on the developed QSAR model clearly
achieved its objective in identifying derivatives with im-
proved predicted activity while simultaneously identify-
ing structures that were out of the models domain of
applicability and therefore the scope of the model’s reli-
ability. This study thus demonstrates the usefulness of
constructing QSAR model which can aid in identifying
new viable targets for drug discovery.
Moreover, the Williams plot for the built QSAR is

shown in Fig. 2 and the warning leverage (h*) was
found to be 0.430 for the developed QSAR model.
Based on the leverages (hi > 0.430), only three predic-
tion set compounds (48, 52, and 66) were found to
be outside of the defined AD (Fig. 2) of the QSAR
model; so, they were identified as structurally influen-
tial chemical based on their large leverage values (hi
> h*). Furthermore, an in silico screening method was
used for the design of new potent compounds with
pGI50 activity on the MALME-3M cell line according
to the developed QSAR model and was validated by
the developed QSAR model. For this purpose, com-
pound 39 (AC1L2OAS, NSC-376,128) listed in Table
1 (pGI50 = 9.205) was chosen as a template due to its
high pGI50 activity and low residual value (− 0.001)
between the experimental and predicted activity
(pGI50). The structure of compound 39 as a template
used for modifications is shown in Fig. 3 and 4.
The compound was altered in a way that will make its

synthesis experimentally possible. Then, the in-silico
screening was applied by the insertion and substitution
of different groups at R1 and R2 positions as presented
in Fig. 3 and 4; the results of this are presented in Table
2. The model endures various AC1L2OAS substituents
since all the designed analogous were within the applic-
ability domain (hi < 0.430). The predicted pGI50 of all
the designed analogous were more than the lead com-
pound 39 used for the design and among which com-
pound N2 showed the best activity (pGI50 = 12.876).
Thus, it is clear that using a simple QSAR model, there
is a possibility to simultaneously predict and identify
compounds with better activity and to determine which
of the structural modifications do not fall within the AD.
Further, molecular docking simulation studies were

conducted between the V600E-BRAF protein kinase,
compound 39 (AC1L2OAS), designed derivatives, and
vemurafenib (V600E-BRAF inhibitor). All the prepared
ligands were docked into the active kinase domain of

Table 2 Structural modification of compound 39 and predicted
pGI50 with leverage limit

ID R1 R2 Predicted pGI50 Leverage-limit

N1 H Br 9.836 0.329

N2 H Cl 12.876 0.323

N3 H NO2 10.901 0.412

N4 H OMe 11.263 0.218
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Table 3 Docking information for the interaction of designed compounds with V600E-BRAF (PDB ID: 3OG7)

Molecular System Free binding
energy (kcal mol−1)

Category From To Types Distance

BRAF/39 − 7.0 Hbond
Hbond
Hbond
Hbond
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Comp 39
Comp 39
Comp 39
LYS483
LYS483
Comp 39
Comp 39
Comp 39
Comp 39
Comp 39
Comp 39
Comp 39
TYR538
PHE583
PHE583

GLY534
ILE463
SER465
Comp 39
Comp 39
PHE583
ILE463
VAL471
ALA481
CYS532
LYS483
LEU514
Comp 39
Comp 39
Comp 39

Carbon Hbond
Carbon Hbond
Carbon Hbond
Carbon Hbond
Pi-Cation
Pi-Pi Stacked
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

3.48655
3.56658
3.42361
3.56901
3.9777
4.29154
4.9305
4.42429
4.44566
4.74288
4.91316
5.30238
5.01065
4.98907
4.70529

BRAF/N1 − 11.7 Hbond
Hbond
Hbond
Hbond
Halogen
Other
Other
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

LYS578
N1
N1
N1
CYS532
N1
CYS532
N1
N1
N1
N1
N1
N1
N1
N1
PHE468
TRP531
TYR538
TYR538
PHE583
TRP619
TRP619

N1
N1
ASN581
ASP594
N1
PHE583
N1
PHE583
LEU618
LEU618
LEU654
LEU618
VAL471
CYS532
VAL471
N1
N1
N1
N1
N1
N1
N1

Conventional Hbond
Carbon Hbond
Carbon Hbond
Carbon Hbond
Halogen (Cl, Br, I)
Pi-Sulfur
Pi-Sulfur
Pi-Pi Stacked
Alkyl
Alkyl
Alkyl
Alkyl
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

2.17195
3.56998
3.62103
3.76296
3.36466
4.92104
5.40241
3.83358
4.40618
4.85919
4.48542
4.49995
4.49079
4.338
5.31215
4.96372
4.65719
4.38479
4.97273
4.84398
4.96805
4.76483

BRAF/N2 − 12.8 Hbond
Hbond
Hbond
Hbond
Hbond
Hbond
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

N2
SER536:HN
N2
N2
N2
SER536:CB
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
TYR538
TYR538
PHE583
TRP619

CYS532
N2
N2
GLY615
N2
N2
TYR538
TRP531
PHE583
TRP531
LEU618
LEU654
VAL471
ALA481
CYS532
ILE463
N2
N2
N2
N2

Conventional Hbond
Conventional Hbond
Carbon Hbond
Carbon Hbond
Carbon Hbond
Carbon Hbond
Pi-Sigma
Pi-Pi Stacked
Pi-Pi Stacked
Pi-Pi Stacked
Alkyl
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

2.53681
2.96436
3.46536
3.447
3.79629
3.45633
3.56439
5.58757
4.2708
4.8213
4.98968
4.74922
3.8191
4.4391
4.76504
4.99883
4.69283
4.74658
4.56957
4.81074

BRAF/N3 − 12.7 Hbond
Hbond
Hbond
Hbond
Hbond
Other
Other
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

CYS532
LYS578
N3
N3
N3
N3
CYS532
N3
N3
N3
N3
N3
N3

N3
N3
SER465
ASN581
ASP594
PHE583
N3
PHE583
LYS578
ILE617
LEU618
ILE617
ARG662

Conventional Hbond
Conventional Hbond
Carbon Hbond
Carbon Hbond
Carbon Hbond
Pi-Sulfur
Pi-Sulfur
Pi-Pi Stacked
Alkyl
Alkyl
Alkyl
Alkyl
Alkyl

2.41199
2.38112
3.6557
3.53249
3.47966
5.37771
5.43102
3.88023
4.89364
5.10057
3.97565
4.57335
4.16846
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Table 3 Docking information for the interaction of designed compounds with V600E-BRAF (PDB ID: 3OG7) (Continued)

Molecular System Free binding
energy (kcal mol−1)

Category From To Types Distance

Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

N3
N3
N3
TYR538
TRP619
TRP619

VAL471
VAL471
LEU514
N3
N3
N3

Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

4.37577
5.27903
5.49117
4.78575
4.86122
4.80602

BRAF/N4 − 12.9 Hbond
Hbond
Hbond
Hbond
Hydrophobic
Other
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

SER536
SER536
N4
N4
N4
CYS532
N4
N4
N4
N4
N4
TYR538
TYR538
TYR538
TRP619
TRP619

N4
N4
N4
N4
TYR538
N4
TRP531
PHE583
LEU618
LEU654
ILE463
N4
N4
N4
N4
N4

Conventional Hbond
Conventional Hbond
Carbon Hbond
Carbon Hbond
Pi-Sigma
Pi-Sulfur
Pi-Pi Stacked
Pi-Pi Stacked
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

2.8161
2.96186
3.58087
3.71491
3.56324
4.93206
5.60961
3.89772
5.22936
4.8599
4.78846
5.21844
4.99332
4.4122
4.76496
5.23231

BRAF/Vem − 11.3 Hbond
Hbond
Hbond
Hbond
Electrostatic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic
Hydrophobic

Vem
Vem
PHE595
GLY596
LYS483
Vem
Vem
Vem
Vem
Vem
Vem
Vem
Vem
Vem
TRP531
PHE583
PHE595

CYS532
GLN530
Vem
Vem
Vem
TRP531
PHE583
LEU505
Vem
ALA481
LEU514
CYS532
LYS483
ILE463
Vem
Vem
Vem

Conventional Hbond
Conventional Hbond
Conventional Hbond
Conventional Hbond
Pi-Cation
Pi-Pi Stacked
Pi-Pi Stacked
Alkyl
Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl
Pi-Alkyl

3.0153
2.35105
2.66721
2.06321
4.24755
5.79107
4.70902
3.98089
5.29789
3.84027
5.10949
4.96308
4.39203
4.64053
4.72282
4.8485
4.65347

Fig. 5 3D diagram of the interaction between N1 with V600E-BRAF
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V600E-BRAF using Autodock Vina in Pyrex version 4.0
software docking program and the desirable confor-
mations of the studied compounds were identified.
Validation of docking protocol is an essential step
before performing molecular docking based virtual
screening and to determine threshold parameters [33].
In order to validate the docking protocol and prod-
uctivity, the co-crystalized ligand (vemurafenib) was
also docked to the binding site of V600E-BRAF kinase
with the binding affinity of − 11.3 kcal/mol and the
RMSD value for both upper and lower bounds were
measured (0.0) which confirmed the docking protocol
and productivity. The best docking pose of vemurafe-
nib were superimposed upon co-crystal structure of
ligand (vemurafenib) (superimposed co-crystal struc-
ture is given in Additional file 1: Figure S1). Based on
the RMSD value and binding affinity, the best dock-
ing pose of vemurafenib was selected and analyzed.

Based on the free binding energies of the docked li-
gands and the type of interactions involved (Table 3), it
was found that these compounds were sufficiently
bonded to the active site. To further analyze the inter-
action, the values of the free binding energies were used
to select the best inhibitors that were found to have
good free binding energy and to some extent show simi-
lar interactions as the standard drug with the receptor.
The selected template (Comp. 39, AC1L2OAS) for the
design was docked on the active segment of V600E-
BRAF kinase with the free binding energy of − 7.0 kcal
mol−1 (Table 3). This docking simulation research re-
vealed that AC1L2OAS was found to bind in the active
segment on the protein dimer due to the formation of
four carbon-Hbond that occurred between carbonyl oxy-
gen to LYS483, methoxy group to SER465, and other
two with GLY534 and ILE463 as shown in Fig. 3 and 4.
The benzene ring moiety group intercalated in space to

Fig. 6 3D diagram of the interaction between N2 with V600E-BRAF

Fig. 7 3D diagram of the interaction between N3 with V600E-BRAF
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form pi–pi interaction stacked with PHE583 residue
similar to vemurafenib. Pi-cation electrostatic interaction
was also observed with LYS483 residue. Two alkyl
hydrophobic interactions occurred from between Comp.
39 to ILE463 and VAL471 residues. Seven pi-alkyl hydro-
phobic interaction also occurred in the complex, four
were formed from Comp. 39 to ALA481, CYS532,
LYS483, and LEU514, while the other three occurred from
TYR538 and PHE583 (2) residues to Comp. 39. The ob-
tained results of this molecular docking simulation suggest
that the selected active Comp. 39 (AC1L2OAS) can inhibit
the growth of the melanoma cell lines by inhibiting the
V600E-BRAF kinase which is supported by its high experi-
mental pGI50 (9.205) obtained from NCI as presented in
Table 1.
On conducting molecular docking simulation for the

newly designed compounds, the best four compounds in
terms of their obtained free binding energy values and
the type of interactions involved were identified and it

was found that the binding energy of the template,
Comp. 39 (AC1L2OAS) was increased from − 7.0 kcal
mol−1 to − 11.7 kcal mol−1 for N1, − 12.8 kcal mol−1 for
N2, − 12.7 kcal mol−1 for N3, and − 12.9 kcal mol−1 for
N4 respectively as shown in Table 3. Therefore, the new
compounds are the novel V600E-BRAF inhibitors, thus
their docking results were compared to the docking re-
sult of vemurafenib the standard V600E-BRAF inhibitor.
In Fig. 5, N1 binding to V600E-BRAF was presented.

N1 was bound to the active site of the receptor with
some similar residue involvement to the standard
V600E-BRAF inhibitor (vemurafenib). In most of the it-
erations, CYS532 was the most significant residue asso-
ciated with vemurafenib-V600E-BRAF (Fig. 9). One
conventional-Hbond was formed between the receptor
with LYS578 residue. There is the formation of two
carbon-Hbond from methoxy group of NI to ASN581
and ASP594 residues. Two Pi-sulfur was observed be-
tween the S-atom of the thiazole moiety to PHE583 and

Fig. 8 3D diagram of the interaction between N4 with V600E-BRAF

Fig. 9 3D diagram of the interaction between vemurafenib with V600E-BRAF
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the other one between the aromatic benzene ring to
CYS532 as shown in Fig. 5. One halogen bond was ob-
served from the Br-atom (new substituent) to CYS532.
Pi-Pi Stacked hydrophobic interaction occurred between
PHE583 and N1 and that of alkyl was between ALA543
and N1 through the C-atom. The newly introduced sub-
stituent on the parent structure of AC1L2OAS increases
the binding stability by forming three eight Pi-alkyl
hydrophobic interactions between the receptor and N1
as shown in Fig. 5.
N2 binding to V600E-BRAF was presented in Fig. 6. N2

was bound to the active site of the receptor with some
similar residue involvement to vemurafenib. Most of the
iterations, CYS532 was the most significant residue associ-
ated with vemurafenib-V600E-BRAF interaction. Two
conventional-Hbond was present, one from LYS483 to the
HN- of the thiazole moiety of N2, another one from car-
bonyl O-atom N2 to SER536. There is one carbon-Hbond
from N2 to GLY615 residue. The N2 molecule was found
to interact with the receptor through electrostatic (Pi-
Sigma) interaction with TYR538. There exist seven pi-alkyl
hydrophobic interactions between N2 to the receptor as
observed in Fig. 6 and Table 4 respectively. Pi-Pi stacked
hydrophobic interaction also exists between TRP531 and
PHE583 of the receptor to N2 similar to vemurafenib as
shown in Figs. 6 and 9. Three alkyl hydrophobic inter-
action was present from N2 to LEU618, LEU654 and
VAL471 residues respectively.
In Fig. 7, N3 binding to V600E-BRAF was presented.

N3 was bound to the active site of the receptor with
some similar residue involvement to vemurafenib. Two
conventional-Hbond was present from CYS532 to N3
through oxygen atom of the nitro group (new substitu-
ent) and the second was between O-atom of methoxy
group to LYS578 residue. Carbon-Hbond interaction
occurred between N3 to ASN581 and ASP594 residues
respectively. Pi-sulfur interaction occurred between S-
atom of the thiazole ring to PHE583, another one was
observed between benzene ring of N3 and CYS532
residue. There was the formation of one pi-pi stacked
interaction between the benzene ring and PHE583 in a

similar way to vemurafenib (Fig. 9). There are three im-
portant aromatic residues that led to the formation of
pi-alkyl hydrophobic interaction from LEU505, LEU514,
and THR529 to N3. There are four alkyl hydrophobic
interactions, one occurred from PHE468 to the C-atom
of N3, the others were from N3 to ILE463, LYS483, and
VAL471 respectively.
N4 binding to V600E-BRAF was presented in Fig. 8.

N4 was bound to the active site of the receptor with
some similar and additional residue involvement as
vemurafenib. There was the formation of important
conventional-Hbond between N4 and the receptor with
SER536. Pi-sulfur interaction occurred between CYS532
of the receptor and N4. There was one Pi-sigma inter-
action between N4 and TYR538 residue. Stacked pi-pi
interaction is the usual form of pi-interaction which
occurs between N4 and PHE583 and TRP531 residues
similar to vemurafenib (Fig. 9). Some other alkyl hydro-
phobic interaction was present between N4 to LEU618
and LEU654 residues. Other Pi-alkyl interaction appear
between the receptor to N4 with TYR538 (3) and
TRP619 (2) residues. Furthermore, it can be observed
that there is a formation of additional hydrogen bonds
from the newly introduced substituent than the template
(Comp.39) used for design and vemurafenib. Much more
interaction was found in all the newly designed com-
pounds particularly N4 which shows more similarity to
vemurafenib which if synthesize and tested was hoped to
be better V600E-BRAF inhibitor with same therapeutic
effect as Vemurafenib and more effective.
The research revealed that hydrogen bonding is the

major force controlling the interactions that exist be-
tween the docked compounds and the protein target and
also the free binding energy of the compounds increases
with the increase in the number of the Hbond [34, 35].
It could be observed that in the conventional hydrogen
bonding identified with the designed derivatives, the
number of amino acids involved was found to be better
compared to vemurafenib as shown in the Figs. 3, 4, 5,
6, 7, 8 and 9 and there are high similarities. This might
acquaint the more reliable binding scores of the chosen
compounds for V600E-BRAF. Hence, these novel com-
pounds will serve as good inhibitors of V600E-BRAF
showing competitive inhibition with vemurafenib as evi-
dent from the molecular docking results.
Furthermore, to ensure that the designed derivatives

are the viable drugs, the drug-likeness was predicted
with vemurafenib as the reference. The SwissADME [36]
online tool was used to predict the drug-likeness proper-
ties as presented in Table 4. The drug-likeness properties
are the main criteria used in screening drug candidates at
an initial stage of the drug discovery process. This
method can be described as a means to correlate the
physicochemical properties of a given compound with

Table 4 Ligand efficiency score and drug-likeness properties
based on Lipinski’s rule

SN LE score Mol.Wt. HBA HBD Log P

39 − 0.13 785.09 8 2 4.49

N1 − 0.21 863.99 8 2 4.25

N2 − 0.23 819.54 8 2 4.14

N3 − 0.22 830.09 10 2 4.39

N4 − 0.23 815.12 9 2 4.49

LE Ligand efficiency, Mol. Wt. molecular weight, HBA Hydrogen bond acceptor,
HDB Hydrogen bond donor, TPSA Topological polar surface area
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the bio-pharmaceutical aspect of it in a human body,
particularly its influence in oral bioavailability [37].
The initial thorough analysis of drug-likeness proper-

ties was performed by Lipinski’s rule [38], which argues
that good absorption or permeation is more likely when:
the molecular weight (MW) < 500, the number of hydro-
gen bond donors (HBDs) < 5 (counting the sum of all
NH and OH groups) partition coefficient octanol/water
Log P < 5, the number of hydrogen bond acceptors
(HBAs) < 10 (counting all N and O atoms). As observed
from Table 4, all the designed derivatives meet Lipinski’s
rule successfully suggesting that these compounds theor-
etically have ideal oral bioavailability. These physico-
chemical parameters are associated with acceptable
aqueous solubility and intestinal permeability that are
the first steps in oral bioavailability.

Conclusion
In this research, the GFA-MLR modeling tool was used in
the construction of a QSAR model and the in-silico screen-
ing method was applied to the developed QSAR model
which enable the design and prediction of activity (pGI50)
of new potentially active compounds on MALME-3M cell
line. The accuracy and predictability of the proposed
model was illustrated by various criteria, the model is sta-
tistically robust both internally (R2 = 0.885, R2adj = 0.868,
and Q2

cv = 0.842) and externally (R2pred = 0.738). This sat-
isfies the criteria of acceptable QSAR models proposed by
different groups. Compound 39 was selected as a template
among the data set due to its good pGI50 (9.205) and was
utilized to design new potent compounds, thereby enhan-
cing the activity of the parent structure. The activity
(pGI50) of new potent compounds were predicted by the
built QSAR model as N1 = 9.836, N2 = 12.876, N3 =
10.901, and N4 = 11.263 respectively. Moreover, molecular
docking simulation was also applied to investigate the
proper binding mode of the designed compounds on
V600E-BRAF protein kinase. All the studied ligands were
able to inhibit the receptor by totally occupying the active
segment in the target. The designed N1, N2, N3, and N4
with free binding energy (FBE) of − 11.7 kcal mol−1, − 12.8
kcal mol−1, − 12.7 kcal mol−1, and − 12.9 kcal mol−1 re-
spectively were found to be more potent than the parent
structure of the template (compound 39, FBE = − 7.0 kcal
mol−1) and vemurafenib (FBE = − 11.3 kcal mol−1) due to
the introduction of the new substituent which has the cap-
ability of increasing the overall free binding energy by in-
creasing the number of hydrogen bonds and hydrophobic
interactions shown in their complex. Additionally, these
molecules have shown good physicochemical properties.
Thus, in future studies, there is hope to include the synthe-
sis, in vivo, and in vitro evaluation of these ligands which
can establish them as potent V600E-BRAF inhibitors for
the treatment melanoma cancer.
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