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Abstract

Background: Being one of the rapidly growing dementia type diseases in the world, Alzheimer’s disease (AD) has
gained much attention from researchers in the recent decades. Many hypotheses have been developed that
describe different reasons for the development of AD. Among them, the cholinergic hypothesis depicts that the
degradation of an important neurotransmitter, acetylcholine by the enzyme acetylcholinesterase (AChE), is
responsible for the development of AD. Although, many anti-AChE drugs are already available in the market, their
performance sometimes yields unexpected results. For this reason, research works are going on to find out
potential anti-AChE agents both from natural and synthetic sources. In this study, 50 potential anti-AChE
phytochemicals were analyzed using numerous tools of bioinformatics and in silico biology to find out the best
possible anti-AChE agents among the selected 50 ligands through molecular docking, determination of the
druglikeness properties, conducting the ADMET test, PASS and P450 site of metabolism prediction, and DFT
calculations.

Result: The predictions of this study suggested that among the selected 50 ligands, bellidifolin, naringenin,
apigenin, and coptisine were the 4 best compounds with quite similar and sound performance in most of the
experiments.

Conclusion: In this study, bellidifolin, naringenin, apigenin, and coptisine were found to be the most effective
agents for treating the AD targeting AChE. However, more in vivo and in vitro analyses are required to finally
confirm the outcomes of this research.
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Background
First described by Alois Alzheimer in 1907, Alzheimer’s
Disease (AD) has become one of the most prevalent de-
mentia type diseases in the world which is increasing its
numbers rapidly [1, 2]. Intellectual morbidity, psycho-
motor dysregulation, delusions, hallucinations etc., are
some of the familiar symptoms of AD [3]. In the familial
and congenital cases of AD, genetic factors play critical
roles [4]. Different hypotheses have been developed by
the scientists that shed light on several reasons for AD
onset and development. One of these hypotheses is the
amyloid cascade hypothesis, which describes that the de-
position of β-amyloid plaques in the brain is mainly re-
sponsible for the development of AD which is the result
of abnormal processing of the amyloid precursor protein
(APP) by the β-secretase enzyme. These plaques inter-
fere with the normal functions of the brain [5]. On the
other hand, another hypothesis called the oxidative
stress hypothesis describes that because of the depos-
ition of increased amounts of ions like iron, aluminium,
and mercury, free radicals and reactive oxygen species
(ROS) are generated very rapidly in the brain which are
responsible for increased lipid peroxidation and protein
and DNA oxidation. The stresses produced by these oxi-
dation events lead the way for the AD onset [6]. There is
another hypothesis of AD development which is known
as the cholinergic hypothesis. According to this hypoth-
esis, the loss of functions of the cholinergic neurons and
thus the cholinergic signaling and neurotransmission in
the brain maybe responsible for AD [7]. Table 1 lists the
current status of therapeutic agents that are intended to
or being used to alleviate the complications related to
AD. This experiment was conducted focusing on the
cholinergic hypothesis of AD development.

The cholinergic hypothesis and the development of
Alzheimer’s disease
The cholinergic hypothesis concerns with one of the
major neurotransmitters, acetylcholine (ACh) which is
regulated by two enzymes, acetylcholinesterase (AChE)
and choline acetyltransferase (ChAT) [13]. ACh is in-
volved in many important functions of the brain like
learning and memory generation processes. It performs
its functions through binding to two types of receptors,
i.e., nicotinic (α7 and α4β2) and muscarinic receptors
(M1 muscarinic receptor). ACh is synthesized by the en-
zyme choline acetyltransferase (ChAT) which catalyzes
the transfer of an acetyl group from acetyl coenzyme A
(Ac-CoA) to choline (Ch) in the pre-synaptic neuron
and thus synthesizes the ACh. Thereafter, the ACh is se-
creted by the pre-synaptic neuron into the synapse
where it mediates its effects by binding to either the nic-
otinic receptor or the muscarinic receptor. To maintain
the optimal concentrations of ACh required for proper

functioning of the brain, another enzyme called acetyl-
cholinesterase (AChE) is synthesized by a serine hydro-
lase enzyme which hydrolyzes ACh to acetate and Ch.
Then the Ch is again taken up by the pre-synaptic
neuron for recycling and reusing. Thus, the balance of
ACh is maintained in the normal brain. However, there
is evidence that, in the brain of AD patients, the overex-
pression of AChE occurs. This phenomenon decreases
the amount of ACh required for proper functioning of
the brain which is why the neuron cells cannot operate
properly and complications like brain damage as well as
memory loss occur. These complications lead to the on-
set of AD development (Fig. 1) [14–18].
Donepezil and rivastigmine are two FDA-approved

drugs that are currently used for mild to moderate AD
treatment targeting the AChE enzyme. However, both of
them have several side effects like nausea, diarrhea, an-
orexia, syncope, abdominal pain, and vomiting [19, 20].
Therefore, scientists are searching for more effective
agents that can provide more efficacy than these drugs
with much lesser side effects. Scientists have also fo-
cused on the natural resources for potential anti-AChE
agents since the natural agents are generally much safer
than synthetic chemicals. Galantamine is such a natural
drug isolated from Galanthus woronowii which is also
currently used for AD treatment alongside other ap-
proved chemical drugs. But since none of these drugs
are found to be quite satisfactory to stop the progression
or development of AD, research is going on to find out
new compounds from natural sources with anti-AChE
properties [21–23].
Molecular docking is a widely accepted and used tech-

nique in drug R&D which reduces both time and costs of
lead discovery processes. This method is also known as
computational drug design which has already been used
for designing over 50 novel drugs, and many of them have
also gained FDA approval for marketing. By simulating
the interaction between ligand and receptor in the com-
puter software, the docking system assigns scoring func-
tions to the bound ligands which reflect their binding
affinity. The lower docking score represents the greater
binding affinity and vice-versa [24, 25]. The current study
was designed to predict the best ligands among 50 se-
lected phytochemicals with potential anti-AChE activities
based on the molecular docking analysis (Table 2). There-
after, the pharmacodynamics and physicochemical charac-
teristics of the best selected ligands were predicted by
determining their druglikeness properties, conducting the
ADMET test, PASS, and P450 site of metabolism predic-
tion and DFT calculations.

Methods
Total 50 phytochemicals were selected as ligands in this
study by reviewing numerous literatures along with their
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IC50 values. On sequential docking experiment, four
best ligands were selected as the best inhibitors of AChE.
Thereafter, their different drug-like parameters were
analysed in different experiments. Donepezil and galan-
tamine were used as the positive controls in the study.

Protein preparation and ramachandran plot generation
A three-dimensional structure of AChE (PDB ID:
1ACJ) was downloaded in PDB format from protein
data bank (www.rcsb.org). The proteins were then

prepared and refined using the Protein Preparation
Wizard in Maestro Schrödinger Suite 2018-4 [60].
During protein preparation, the bond orders were
assigned and hydrogen molecules were added to
heavy atoms as well as all the waters were deleted
and the side chains were adjusted using Prime [61].
After that, the structure was optimized and mini-
mized using force field OPLS_2005, which was
conducted setting the maximum heavy atom RMSD
(root-mean-square-deviation) to 30 Å and any

Table 1 Examples of AD treating agents, their mechanism of treatment, and their current status

Hypothesis Treating agents Mechanism of available
treatments

Current status Remarks References

Amyloid cascade
hypothesis

Plasma exchange with
albumin 1 immunoglobulin

Exchange of plasma to remove
the amyloid

Phase-III clinical
trial

Ongoing research [8, 9]

ALZT-OP1a + ALZT-OP1b Alleviation of amyloid plaque
related neuroinflammation

Phase-III clinical
trial

Ongoing research

Elenbecestat Removal of amyloid by inhibiting
Beta-secretase 1

Phase-III clinical
trial

Ongoing research

Solanezumab Monoclonal antibodies targeting
amyloid plaque

Failed Lack of efficacy

Verubecestat Removal of amyloid by inhibiting
Beta-secretase 1

Failed Lack of efficacy

Lanabecestat Removal of amyloid by inhibiting
Beta-secretase 1

Failed Lack of efficacy

CAD106 Vaccine-based therapy Phase-II clinical trial Ongoing research

CNP520 Inhibition of Beta-secretase 1 Phase-II clinical trial Ongoing research

Crenezumab Monoclonal antibody targeting
amyloid plaque

Ongoing
investigation

Ongoing research

Neflamapimod Inhibition of inflammatory protein
p38α MAPK

Ongoing
investigation

Ongoing research

Aducanumab Monoclonal antibody targeting
amyloid plaque

Phase-III clinical
trial

Ongoing research

Oxidative stress
hypothesis

Supplementation of Vitamin C
and Vitamin E

Antioxidant to neutralize the ROS Current
investigational
treatment

Ongoing study [10, 11]

Selenium Antioxidant to neutralize the ROS Ongoing
investigation

Ongoing study

Curcumin Antioxidant to neutralize the ROS Current
investigational
treatment

Ongoing study

Ginko biloba Antioxidant to neutralize the ROS Current treatment Most effective among the
available treatments

Ebenone Antioxidant to neutralize the ROS Ongoing
investigation

Ongoing study

Estrogen Antioxidant to neutralize the ROS Ongoing
investigation

Ongoing study

Colostrinin Antioxidant to neutralize the ROS Ongoing
investigation

Ongoing study

Cholinergic
hypothesis

Tacrine Inhibition of acetylcholinesterase Current treatment Approved by FDA [12]

Donepezil Inhibition of acetylcholinesterase Current treatment Approved by FDA

Galantamine Inhibition of acetylcholinesterase Current treatment Approved by FDA

Rivastigmine Inhibition of acetylcholinesterase Current treatment Approved by FDA

ROS reactive oxygen species, FDA Food and Drug Administration
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remaining water less than 3 H- bonds to non-water
was again deleted during the minimization step.

Ligand preparation
Three-dimensional structures of the 50 selected ligand
molecules as well as the control were downloaded from
PubChem database (www.pubchem.ncbi.nlm.nih.gov).
These structures were prepared for docking using the Lig-
Prep module of Maestro Schrödinger Suite [62]. Mini-
mized 3D structures of ligands were generated by Epik2.2
using OPLS_2005 force field and within pH 7.0 ± 2.0 [63].

Receptor grid generation
Grid confines the active site of the receptor protein
to a shortened specific area for the ligand to dock
specifically. In glide, a grid was generated where the
default Van der Waals radius scaling factor 1.0 and
charge cutoff 0.25 was used. The grid was then sub-
jected to OPLS_2005 force field. A cubic box was
generated around the active site (reference ligand ac-
tive site). Then, the grid box volume was adjusted to
14 × 14 × 14 for docking test.

Glide standard precision (SP) and extra precision (XP)
ligand docking, Prime MM-GBSA calculation and induced
fit docking
SP and XP adaptable glide dockings were conducted
using the Glide module in Maestro Schrödinger Suite
[64]. The Van der Waals radius scaling factor and charge
cutoff were kept at 0.80 and 0.15, respectively, for all the
ligand molecules. Final score was assigned by the mod-
ule by analyzing the pose of docked ligand within the ac-
tive site of the receptor.
After SP and XP ligand docking, the docked com-

plexes were subjected to molecular mechanics—general-
ized born and surface area (MM_GBSA) rescoring with
the help of Prime module of Maestro Schrödinger suite
for further evaluation. This technique utilizes the docked
complex and uses an implicit solvent that assigns more
accurate scoring function and improves the overall free-
binding affinity score upon the reprocessing of the com-
plex. It combines OPLS molecular mechanics energies
(EMM), surface generalized born solvation model for
polar solvation (GSGB), and a nonpolar salvation term
(GNP) for total free energy (ΔGbind) calculation. The total
free energy of binding was calculated by the following
equation [65]:

Fig. 1 Cholinergic hypothesis and role of AChE in AD development. ACh is synthesized by ChAT and released from the pre-synaptic neuron. The
ACh mediates its effects on the post-synaptic neuron through nicotinic and/or muscarinic receptors. The ACh then performs the downstream
signaling in the post-synaptic neuron. AChE enzyme breaks down the ACh and overexpression of AChE lowers the amount of ACh in the brain
which leads to the AD onset. AChE inhibitors repress the AChE activity, thus aid in the AD treatment
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Table 2 List of the 50 anti-AChE ligands with their experimental IC50 values used in the experiment

No Name of the
compound

PubChem
CID

Source plant IC50 value References

01 Geraniol 637566 Boesenbergia Pandurata 200±0.21 μg/ml [26, 27]

02 Bellidifolin 5281623 Swertia chirata 18.47 ± 0.47 μg/ml [28]

03 Mangiferin 5281647 S. chirata 4.07 ± 0.06 μg/ml [28]

04 Allocryptopine 98570 Chelidonium majus 250 ± 2.5 μM [29]

05 Chelidonine 197810 Chelidonium majus 26.8 ± 1.2 μM [30]

06 Isorhamnetin 5281654 Calendula officinalis 24.18 ± 0.74 μM [31]

07 Quercetin 5280343 Calendula officinalis 14.37 ± 0.34 μM [30]

08 Myricetin 5281672 Scabiosa arenaria 190 ± 0.41 μg/ml [26, 27]

09 Ostruthin 5281420 Peucedanum ostruthium – [32]

10 Ostruthol 6441273 Peucedanum ostruthium – [32]

11 Corynoline 177014 Corydalis incisa 30.6 μM/mL [33]

12 Imperatorin 10212 Peucedanum ostruthium, Angelica dahurica 63.7 μM [32, 33]

13 Rupicoline 633439 Tabernaemontana australis – [34]

14 Stylopine 6770 Corydalis crispa, Chelidonium majus 114 ± 2.9 μM [29, 35]

15 Scoulerine 22955 Corydalis dubia 245 μM [35]

16 Ochrobirine 629543 Corydalis crispa – [35]

17 Estragole 8815 O. basilicum, O. africanum, O.americanum, and O.
minimum

0.337 μM [36]

18 Naringenin 932 Citrus junos 28.2 to 134.5 μM [37, 38]

19 Carvacrol 10364 Thymus vulgaris 0.175 mM [39–41]

20 Myrtenal 61130 Taxus baccata 0.17 ± 0.01 mM [41]

21 Verbenone 29025 Taxus baccata 2.66 ± 1.04 mM [41]

22 Cyclonataminol 53316925 Buxus natalensis 23 μM [42, 43]

23 Buxaminol A 53324855 Buxus natalensis 29.8 ± 4.4 μM [43]

24 Skimmianine 6760 Zanthoxylum nitidum 74.09 ± 0.33 mg/
mL

[44, 45]

25 Harmaline 3564 Peganum harmala 8.4 μg/mL [46]

26 Harmine 5280953 Peganum harmala 10.9 μg/mL [46]

27 Isoimperatorin 68081 Ruta graveolens, angelica dahurica 74.6 μM [33, 47]

28 Xanthotoxin 4114 Ruta graveolens 5.4 × 10-5 M [47, 48]

29 Marmesin 334704 Ruta graveolens, angelica dahurica 13.3 mM [46, 49]

30. 1,8-cineole 2758 Inula graveolens 0.015 mg/mL [50]

31 Eugenol 3314 Inula graveolens 0.48 mg/mL [50]

32 α-terpineol 17100 Inula graveolens 1.3 mg/mL [50]

33 Apigenin 5280443 Sideritis cesarea 7.72 ± 0.15 μM [51, 52]

34 Linearol 497896 Sideritis congesta 2.66 μg/mL [52]

35 Sidol 194142985 Sideritis congesta 0.92 μg/mL [52]

36 Sideridiol 12315541 Sideritis congesta 8.04 μg/mL [52]

37 Sudachitin 12443122 Micromeria cilicica 65.2 ± 0.82 μg/mL [52]

38 Ursolic acid 64945 Nepeta sorgerae 39.19 μg/mL [52]

39 α-pinene 6654 Salvia potentillifolia 0.022 mg/mL [50, 52]

40 Liriodenine 10144 Beilschmiedia alloiophylla 3.5 ± 1.0 μM [53]

41 Secoboldine 10359075 Beilschmiedia alloiophylla 10.0 ± 0.6 μM [54]

42 Lauro-tetanine 31415 Beilschmiedia alloiophylla 3.2 ± 0.3 μM [55]
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ΔGbind ¼ Gcomplex - Gprotein - Gligand
� �

;where;G
¼ EMM þ GSGB þ GNP:

The agents with best results in the SP and XP docking
were selected for the MM_GBSA and IFD studies.
Thereafter, to carry out the IFD of the selected ligand

molecules from SP and XP docking, again OPLS_2005
force field was applied after generating grid around the
co-crystallized ligand of the receptor, and this time, the
best five ligands were docked rigidly. Receptor and lig-
and Van Der Waals screening was set at 0.70 and 0.50,
respectively, and residues within 2 Å were refined to
generate 2 best possible posses with extra precision.
Four best performing ligands were selected according to
their MM_GBSA score, IFD score, and XPGscore. The 3D
representations of the best pose interactions between the
best four ligands and their respective receptors were ob-
tained using Discovery Studio Visualizer [66]. At these
stages, the docking parameters of the compounds under
investigation were compared with the control

Ligand-based drug likeness property and ADMET
prediction
The drug likeness properties of the 4 selected ligand
molecules were analyzed using SWISSADME server
(http://www.swissadme.ch/) [67]. After that, the ADME
T for each of the ligand molecules was conducted using
the online based server, ADMETlab (http://admet.scbdd.
com/) to predict various pharmacokinetic and pharma-
codynamic properties [68, 69]. The numeric and cat-
egorical values of the results generated by the ADME
Tlab server were converted into qualitative values ac-
cording to the documentation and explanation described
in the ADMETlab server (http://admet.scbdd.com/

home/interpretation/) for the convenience of
interpretation.

PASS and SOM prediction
The PASS (Prediction of Activity Spectra for Substances)
prediction of the best four selected ligands were carried
out by the PASS-Way2Drug server (http://www.
pharmaexpert.ru/passonline/), using the canonical SMIL
ES from PubChem server (https://pubchem.ncbi.nlm.nih.
gov/) [70]. While carrying out PASS prediction, the Pa
(probability to be active) was kept greater than 70%,
since the Pa > 70% threshold generates highly reliable
prediction [71]. In the PASS prediction study, 15 pos-
sible biological activities were predicted. The P450 Site
of Metabolism (SOM) of the four best selected ligand
molecules was determined by online tool, RS-
WebPredictor 1.0 (http://reccr.chem.rpi.edu/Software/
RS-WebPredictor/) [72]. Moreover, the LD50 value and
toxicity class of the compounds were predicted using the
ProTox-II server (http://tox.charite.de/protox_II/) [73].

DFT calculations
Minimized ligand structures obtained from LigPrep were
used for DFT calculation using the Jaguar panel of
Maestro Schrödinger Suite using Becke’s three-
parameter exchange potential and Lee-Yang-Parr correl-
ation functional (B3LYP) theory with 6-31G* basis set
[74–76]. Quantum chemical properties such as surface
properties (MO, density, potential) and multipole mo-
ments were calculated along with HOMO (Highest Oc-
cupied Molecular Orbital) and LUMO (Lowest
Unoccupied Molecular Orbital) energy. Then, the global
frontier orbital was analyzed and hardness (η) and soft-
ness (S) of selected molecules were calculated using the

Table 2 List of the 50 anti-AChE ligands with their experimental IC50 values used in the experiment (Continued)

No Name of the
compound

PubChem
CID

Source plant IC50 value References

43 Asimilobine 160875 Beilschmiedia alloiophylla 8.7 ± 1.5 μM [53]

44 β-amyrone 12306160 Beilschmiedia alloiophylla 8.4 ± 2.0 μM [53]

45 Berberine 2353 Coptis chinensis, Berberis bealei and Phellodendron
chinense

1.48 ± 0.07 mg/ml [54]

46 Coptisine 72322 Coptis chinensis, Berberis bealei and Phellodendron
chinense

1.27 ± 0.06 mg/ml [54]

47 Palmatine 19009 Coptis chinensis, Berberis bealei and Phellodendron
chinense

5.21 ± 0.48 mg/ml [54]

48 Luteolin 5280445 Thymus vulgaris 135 ± 0.18 μg/ml [26, 55]

49 Rutin 5280805 Micromeria cilicica, Fraxinus angustifolia 149.0 ± 6.6 μM [52, 56]

50 Kaempferol 5280863 Cleistocalyx operculatus 30.4 μM [57]

Positive control
1

Donepezil 3152 NA 6.7 nM [58]

Positive Control
2

Galantamine 9651 Galanthus woronowii 0.35 μmol/L [59]

NA data not available
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following equation as per Parr and Pearson interpret-
ation and Koopmans theorem [77, 78]. The DFT calcula-
tion was done for the 3 best ligand molecules.

η ¼ HOMOε − LUMOεð Þ=2;
S ¼ 1=η

Result
Molecular docking study
All the 50 selected ligands were docked successfully with
their receptor protein, AchE. The ligand molecules that
had the lowest binding energy were considered the best
ligand molecules because lower binding energy or dock-
ing score represents higher binding affinity [79]. In the
MM-GBSA study, the most negative ΔGBind score is
also considered as the best ΔGBind score [80]. IFD study
was conducted to determine the accurate binding mode
and accuracy of active site geometry. The lowest values
of IFD score and XP GScore represent the best results
[81–84]. From the initial 50 ligands, the ligands that had
both SP and XP scores of less than − 8.00 Kcal/mol were
selected for MM_GBSA analysis and IFD study. Thirteen
ligands were found to have both SP and XP scores less
than − 8.00 Kcal/mol: bellidifolin, isoharmnetin, quer-
cetin, myricetin, imperatorin, naringenin, harmaline,
harmine, isoimperatorin, apigenin, coptisine, liriodenine,
and scoulerine (Table 3). From these 13 ligands, 4 ligands
were finally selected based on their lower scores in both
MM_GBSA (ΔGbind score) and IFD studies (XP Gscore

and IFD score), i.e., bellidifolin, naringenin, apigenin,
and coptisine (Table 4). These four ligands were selected
for further analysis to predict and determine their drug
potentials. When compared to the two positive controls:
donepezil and galantamine, it can be declared that these
four compounds generated sound results in the molecu-
lar docking study.

Binding mode of best ligands with respective targets
The 3D representations as well as the interaction of dif-
ferent amino acids of the binding pocket of AChE with
bellidifolin, naringenin, apigenin, and coptisine are illus-
trated in Fig. 2 and listed in Supplementary Table S1.
Bellidifolin generated an MM_GBSA score of − 55.23

Kcal/mol when docked with acetylcholinesterase. It also
generated the IFD score of − 1155.67 Kcal/mol and XP
Gscore of − 10.58 Kcal/mol against acetylcholinesterase.
It formed two hydrogen bonds with glutamic acid 199
and histidine 440 at 2.18 Å and 2.44 Å distance apart, re-
spectively. It was also reported to form multiple pi-pi
stacked hydrophobic interactions with phenylalanine 330
(×2) and tryptophan 84 (×6) amino acid residues within
the binding pocket of AChE.

Naringenin was docked with acetylcholinesterase
where it generated the MM_GBSA score of − 42.02
Kcal/mol, IFD score of − 1156.52 Kcal/mol, and XP
Gscore of − 12.24 Kcal/mol. It formed four hydrogen
bonds with histidine 440 (×2), tyrosine 70, and proline
86 at 1.69 Å, 2.38 Å, 1.66 Å, and 2.99 Å distance apart,
respectively. It was also found to form multiple pi-pi
stacked hydrophobic interactions with phenylalanine 330
and tryptophan 84 (×2) amino acid residues within the
binding pocket of AChE.
Apigenin was docked with acetylcholinesterase where

it generated the MM_GBSA score of − 49.07 Kcal/mol,
IFD score of − 1154.41 Kcal/mol, and XP Gscore of −
11.78 Kcal/mol. It formed six hydrogen bonds with glu-
tamic acid 199 (×2), glycine 117, glycine 123, serine 122,
and tyrosine 130 at 2.55 Å, 2.26 Å, 2.77 Å, 2.90 Å, 2.73 Å,
and 2.76 Å distance apart, respectively. It was also
formed multiple pi-pi stacked hydrophobic interactions
with tryptophan 84 (×5), histidine 440, and phenylalan-
ine 330 (×2) amino acid residues within the binding
pocket of AChE.
Coptisine was docked with acetylcholinesterase, and it

was found to generate the MM_GBSA score of − 59.41
Kcal/mol, IFD score of − 1160.39 Kcal/mol, and XP
Gscore of − 16.24 Kcal/mol. It formed six hydrogen bonds
with histidine 440 (×2), serine 122, and glycine 117 at
2.21 Å, 2.13 Å, 3.01 Å, 2.90 Å, and 2.53 Å distance apart,
respectively. It was also predicted to form multiple
hydrophobic interactions with tryptophan 84 (×7), tryp-
tophan 432, and phenylalanine 330 (×3) amino acid resi-
dues within the binding pocket of AChE.

Druglikeness properties
The druglikeness property experiment was conducted
for only the 4 best selected ligands: bellidifolin, narin-
genin, apigenin, and coptisine. All the 4 ligands were
predicted to follow the Lipinski’s rule of five. Moreover,
bellidifolin was found to have the highest topological
polar surface area (TPSA) value of 100.13 Å2. Again,
coptisine was predicted to have the highest molar refrac-
tivity of 87.95 as well as the highest concensus Log Po/w
of 2.40 (Table 5). All the found compounds generated
quite sound performance in the analysis when compared
with the two positive controls, donepezil and
galantamine.

ADMET prediction
The results of the ADMET test are summarized in Table
6 along with their comparison with donepezil and galan-
tamine. All the four ligands performed quite similarly in
the ADMET test. In the absorption section, all the li-
gands were predicted to be optimal Caco-2 permeable,
whereas all of them were P-gp (P-glycoprotein) non-
inhibitors and P-gp non-substrates. In the distribution
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Table 3 The results of the SP and XP docking study of the selected ligands along with their respective glide energies

No Name of the
compound

Standard Precision (SP) Docking score/
Binding energy (Kcal/mol)

Extra Precision (XP) Docking score/
Binding energy (Kcal/mol)

Glide energy
(Kcal/mol)

01 Coptisine − 11.12 − 15.98 − 48.31

02 Myricetin − 10.37 − 12.43 − 42.546

03 Quercetin − 9.82 − 11.22 − 44.872

04 Isorhamnetin − 9.66 − 10.31 − 47.76

05 Apigenin − 9.51 − 9.96 − 44.67

06 Naringenin − 9.36 − 10.22 − 53.39

07 Bellidifolin − 8.96 − 9.79 − 49.191

08 Harmine − 8.73 − 8.97 − 49.149

09 Imperatorin − 8.49 − 8.81 − 42.072

10 Harmaline − 8.34 − 9.07 − 38.62

11 Scoulerine − 8.33 − 8.14 − 41.25

12 Marmesin − 8.10 − 7.73 − 23.41

13 Isoimperatorin − 8.06 − 7.46 − 33.972

14 Liriodenine − 8.01 − 7.31 − 45.69

15 Carvacrol − 7.99 − 7.19 − 27.98

16 Xanthotoxin − 7.84 − 7.78 − 39.22

17 Corynoline − 7.69 − 7.11 − 39.95

18 Ostruthin − 7.59 − 6.90 − 48.51

19 β-amyrone − 7.41 − 7.63 − 40.65

20 Lauro-tetanine − 7.31 − 6.33 − 31.50

21 Ostruthol − 7.28 − 9.52 − 42.707

22 Sidol − 7.23 − 6.65 − 36.53

23 Berberine − 7.13 − 6.63 − 47.86

24 Buxaminol A − 6.84 − 7.44 − 24.70

25 Stylopine − 6.74 − 6.12 − 32.544

26 Ochrobirine − 6.74 − 7.87 − 28.776

27 Secoboldine − 6.71 − 8.48 − 33.87

28 Skimmianine − 6.62 − 6.13 − 40.65

29 Palmatine − 6.45 − 6.90 − 30.91

30 α-pinene − 6.33 − 8.09 − 30.32

31 Sudachitin − 6.31 − 8.26 − 21.28

32 Eugenol − 6.30 − 6.42 − 24.55

33 Kaempferol − 6.27 − 9.25 − 31.34

34 Myrtenal − 6.15 − 7.95 − 43.53

35 Cyclonataminol − 6.11 − 5.41 − 33.46

36 Rupicoline − 5.99 − 7.03 − 48.430

37 α-terpineol − 5.84 − 6.32 − 36.76

38 Estragole − 5.77 − 6.24 − 44.384

39 Luteolin − 5.74 − 6.87 − 28.76

40 Geraniol − 5.69 − 7.19 − 34.712

41 1,8-cineole − 5.67 − 4.05 − 44.68

42 Asimilobine − 5.66 − 7.05 − 22.69

43 Rutin − 5.64 − 7.30 − 43.66
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section, apigenin showed relatively poor performance
with no capacity to be blood-brain barrier (BBB) perme-
able. In the metabolism section, all of the ligands were
predicted to be CYP450 1A2 inhibitor and only apigenin
was found to be CYP450 1A2 non-substrate. However,
all of them were CYP450 2C9 and CYP450 2C19 non-
inhibitors and bellidifolin and apigenin were substrates
for CYP450 2C9. Moreover, only bellidifolin and copti-
sine were found to be substrates for CYP450 2C19 and
CYP450 2D6. In the excretion section, coptisine was
found to have the highest half-life of 1.8 h. In the toxicity
section, all the four ligands were found to be drug in-
duced liver toxicity (DILI) positive and only bellidifolin
was Ames positive as well as hERG non-blocker. More-
over, both naringenin and coptisine were found to have
human hepatotoxicity. The performance of the 4 finally

selected ligands was not very different from that of the
two positive controls.

PASS and P450 site of metabolism prediction
The predicted LD50 value for bellidifolin, naringenin,
apigenin, and coptisine were 4000mg/kg, 2000mg/kg,
2500 mg/kg, and 1000 mg/kg, respectively. Moreover,
both bellidifolin and apigenin were predicted to be in
toxicity class 5, whereas naringenin and coptisine were
found to be in toxicity class 4. The prediction of activity
spectra for substances (PASS prediction) was conducted
for the 4 ligands to identify 15 intended biological activ-
ities. The PASS prediction results of the 4 selected li-
gands along with the positive control donepezil are
listed in Table 7. Coptisine did not show any of the ac-
tivities; however, both bellidifolin and apigenin were

Table 3 The results of the SP and XP docking study of the selected ligands along with their respective glide energies (Continued)

No Name of the
compound

Standard Precision (SP) Docking score/
Binding energy (Kcal/mol)

Extra Precision (XP) Docking score/
Binding energy (Kcal/mol)

Glide energy
(Kcal/mol)

44 Sideridiol − 5.54 − 8.94 − 28.92

45 Ursolic acid − 5.40 − 6.95 − 34.12

46 Linearol − 5.24 − 6.56 − 36.59

47 Chelidonine − 5.15 − 5.89 − 40.963

48 Verbenone − 4.80 − 4.17 − 27.52

49 Mangiferin − 4.65 − 4.22 − 29.058

50 Allocryptopine − 4.39 − 2.66 − 32.638

Positive
control 1

Donepezil − 7.34 − 9.10 − 43.91

Positive
Control 2

Galantamine − 6.15 − 8.21 − 41.29

Table 4 The results of the MM_GBSA and IFD studies of the 13 ligands selected from the SP and XP docking studies along with the
positive controls

No Name MM_GBSA ΔGbind score (Kcal/mol) XP Gscore (Kcal/mol) IFD score (Kcal/mol)

01 Coptisine − 59.41 − 16.24 − 1160.39

02 Bellidifolin − 55.23 − 10.58 − 1155.67

03 Apigenin − 49.07 − 11.78 − 1154.41

04 Narigenin − 42.02 − 12.24 − 1156.52

05 Harmine − 41.20 − 10.24 − 1153.45

06 Imperatorin − 38.81 − 8.70 − 1152.22

07 Myricetin − 36.53 − 11.72 − 1149.29

08 Isoharmnetin − 35.29 − 9.69 − 1153.95

09 Scoulerine − 33.43 − 9.22 − 1140.92

10 Harmaline − 32.24 − 6.78 − 1159.54

11 Isoimperatorin − 32.96 − 7.54 − 1155.66

12 Quercetin − 30.54 − 8.01 − 1151.03

13 Liriodenine − 29.19 − 7.80 − 1152.97

Positive control 1 Donepezil − 47.06 − 8.21 − 1148.97

Positive Control 2 Galantamine − 40.92 − 7.40 − 1148.23

Sarkar et al. Egyptian Journal of Medical Human Genetics           (2021) 22:10 Page 9 of 20



Fig. 2 Figure showing the various types of bonds and amino acids that take part in the interaction between the 4 best selected ligands (a
bellidifolin, b naringenin, c apigenin, d coptisine) and their receptor, AChE. Interacting amino acid residues of target molecule are labeled in the
diagram and dotted lines depict the interaction between the ligand and receptor. Green dotted lines—conventional bond; deep pink—Pi-Pi
stacked bond; and orange—charge-charge interaction

Table 5 The druglikeness properties of the best 4 ligands and the positive controls

Drug Likeness
Properties

Rules Bellidifolin Naringenin Apigenin Coptisine Donepezil (positive
control 1)

Galantamine (positive
control 2)

Lipinski’s rule of five – Yes Yes Yes Yes Yes Yes

Molecular weight < 500 274.23 g/
mol

272.25 g/
mol

270.24 g/
mol

320.32 g/
mol

379.49 g/mol 287.35 g/mol

Concensus log Po/w ≤ 5 1.77 1.84 2.11 2.40 4.00 1.91

Num. H-bond acceptors < 10 6 5 5 4 4 4

Num. H-bond donors < 5 3 3 3 0 0 1

Molar refractivity 40–
130

72.55 71.57 73.99 87.95 115.31 84.05

No of rotatable bonds ≤ 10 1 1 1 0 6 1

TPSA (Å2) – 100.13 Å2 71.57 90.90 Å2 40.80 Å2 38.77 41.93
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predicted to have 14 activities each. Naringenin
showed all the 15 intended biological activities. On
the other hand, the possible sites of metabolism
(SOMs) by CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9,
2D6, 2E1, and 3A4 of bellidifolin, naringenin, api-
genin, and coptisine were also determined, and the
possible SOMs by these isoforms are indicated by
circles on the chemical structure of the molecule
[72] (Table 8). In both PASS and P450 SOM pre-
diction, all the 4 compounds showed quite satisfac-
tory performance which is comparable to the
positive controls, donepezil and galantamine.

Analysis of frontier’s orbitals
In the analysis of Frontier’s orbitals, the DFT calculations
were performed. The results of the DFT calculations are
listed in Table 9. Coptisine showed the lowest gap energy
of 0.047 eV as well as the highest dipole moment of 6.459
debye. On the other hand, apigenin generated the highest
gap energy of 0.130 eV and the second highest dipole mo-
ment of 2.163 debye. The order of dipole moments of
these 4 compounds were, bellidifolin < apigenin < narin-
genin < coptisine. Comparing with the positive controls, it
can be declared that all the four compounds showed
sound results in the DFT calculations (Fig. 3).

Table 6 The ADME/T test results of the best 4 ligand molecules along with the two positive controls

Class Properties Bellidifolin Naringenin Apigenin Coptisine Donepezil (positive
control 1)

Galantamine (positive
control 2)

Absorption Caco-2 permeability Optimal Optimal Optimal Optimal Optimal Optimal

Pgp-inhibitor Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Inhibitor Non-inhibitor

Pgp-substrate Non-
substrate

Non-
substrate

Non-
substrate

Non-
substrate

Non-substrate Substrate

Human Intestinal
Absorption (HIA)

HIA
positive

HIA
positive

HIA
positive

HIA
negative

HIA positive HIA positive

Distribution Plasma Protein Binding Moderate Moderate Optimal Low Optimal Low

BBB (Blood–Brain Barrier) BBB
positive

BBB
positive

BBB
negative

BBB
positive

BBB positive BBB positive

Metabolism CYP450 1A2 inhibitor Inhibitor Inhibitor Inhibitor Inhibitor Non-inhibitor Non-inhibitor

CYP450 1A2 substrate Substrate Substrate Non-
substrate

Substrate Non-substrate Substrate

CYP450 3A4 inhibitor Non-
inhibitor

Inhibitor Inhibitor Non-
inhibitor

Non-inhibitor Non-inhibitor

CYP450 3A4 substrate Non-
substrate

Non-
substrate

Non-
substrate

Substrate Substrate Substrate

CYP450 2C9 inhibitor Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Non-inhibitor Non-inhibitor

CYP450 2C9 substrate Substrate Non-
substrate

Substrate Non-
substrate

Non-substrate Non-substrate

CYP450 2C19 inhibitor Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Non-
inhibitor

Non-inhibitor Non-inhibitor

CYP450 2C19 substrate Substrate Non-
substrate

Non-
substrate

Substrate Substrate Non-substrate

CYP450 2D6 inhibitor Non-
inhibitor

Non-
inhibitor

Inhibitor Inhibitor Inhibitor Inhibitor

CYP450 2D6 substrate Substrate Non-
substrate

Non-
substrate

Substrate Substrate Substrate

Excretion T1/2 (h) 1.0 0.9 1.3 1.8 1.6 1.7

Toxicity hERG (hERG Blockers) Non-
blocker

Blocker Blocker Blocker hERG positive Non-blocker

H-HT (Human
Hepatotoxicity)

HHT
positive

HHT
negative

HHT
positive

HHT
negative

HHT positive HHT positive

Ames (Ames
Mutagenicity)

Ames
positive

Ames
negative

Ames
negative

Ames
negative

Ames negative Ames negative

DILI (Drug Induced Liver
Injury)

DILI
positive

DILI
positive

DILI
positive

DILI
positive

DILI negative DILI negative
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Discussion
Molecular docking is an effective strategy in
computer-aided drug designing which works on some
specific algorithms and assigns affinity scores depend-
ing on the poses of the ligands inside the binding
pocket of a target. In molecular docking, the lowest
docking score corresponds to the highest affinity
which reflects that the complex remains more time in
contact with good stability [85, 86].
In this study, 50 compounds that were proven to have

anti-AChE properties were selected by literature review-
ing. Initially, from these 50 compounds, 13 compounds
were selected based on their SP and XP docking scores
(compounds having both SP and XP docking scores over
− 8.0 Kcal/mol). When compared with the positive con-
trols, donepezil and galantamine, all the compounds
were found to have relatively good results in molecular
docking analysis. The 13 ligands selected from the initial
docking analysis had predicted results better than done-
pezil. Later, from these 13 compounds, according to the
MM_GBSA and IFD scores, 4 compounds, i.e., bellidifo-
lin, naringenin, apigenin, and coptisine, were selected as
final ligands for further analysis. These final compounds
were also predicted to have better results than donepezil
and galantamine in the MM_GBSA and IFD studies.

AChE possesses several notable amino acids in its
active-site gorge, i.e., serine 200, glutamic acid 327, histi-
dine 440, tryptophan 279, tyrosine 121, phenylalanine
330, and tryptophan 84. All the 4 finally selected ligands
were found to form potential hydrogen and hydrophobic
interactions with histidine 440, phenylalanine 330, and
tryptophan 84 within the active site of AChE. Since
hydrogen and hydrophobic interactions are important
for strengthening the receptor-ligand interactions, it can
be declared that these ligands might be able to effectively
inhibit the AChE enzyme at its active site [87, 88].
The prediction of druglikeness properties facilitates

the drug development processes. The molecular weight
and TPSA are two important characteristics of a drug
that affect its permeability through the biological bar-
riers. Higher molecular weight and TPSA represent
lower permeability of the drug molecule and vice-versa.
Again, the lipophilicity (expressed as LogP) influences
the absorption of the drug molecule in the body and the
higher LogP of a drug represents its lower absorption in
the body. The capability of a drug molecule to cross the
cell membrane is also influenced by the number of
hydrogen bond acceptors and donors beyond the accept-
able range. Moreover, the number of rotatable bonds
(acceptable range is less than 10) also influences the

Table 7 The PASS prediction results showing the biological activities of the best 4 ligands and the positive controls

Sl
no

Biological activities Bellidifolin Naringenin Apigenin Coptisine Donepezil
(positive
control 1)

Galantamine
(positive control
2)

Predicted LD50:
4000mg/kg

Predicted LD50:
2000mg/kg

Predicted LD50:
2500mg/kg

Predicted
LD50: 1000
mg/kg

Predicted LD50:
1500mg/kg

Predicted LD50:
2000mg/kg

Toxicity class: 5 Toxicity class: 4 Toxicity class: 5 Toxicity class:
4

Toxicity class: 4 Toxicity class: 4

Pa Pi Pa Pi Pa Pi Pa Pi Pa Pi Pa Pi

01 Antioxidant – – 0.794 0.003 0,732 0,004 – – 0.893 0.003 0.781 0.010

02 Membrane integrity agonist 0.956 0.003 0.964 0.003 0.967 0.002 – – 0.768 0.017 0.813 0.005

03 Antineoplastic 0.742 0.019 0.751 0.018 0.774 0.015 – – 0.823 0.005 0.956 0.002

04 Antimutagenic 0.891 0.002 0.857 0.003 0.921 0.002 – – 0.799 0.009 0.942 0.002

05 Mucomembranous protector 0.710 0.052 0.844 0.010 0.797 0.019 – – 0.773 0.011 0.764 0.014

06 Membrane integrity agonist 0.754 0.010 0.924 0.003 0.967 0.002 – – 0.834 0.004 0.720 0.015

07 TP53 expression enhancer 0.853 0.007 0.822 0.009 0.873 0.006 – – 0.920 0.002 0.798 0.008

08 Lipid peroxidase inhibitor 0.755 0.004 0.815 0.003 - - – – 0.875 0.009 0.909 0.005

09 HIF1A expression inhibitor 0.937 0.004 0.911 0.005 0.911 0.005 – – 0.751 0.019 0.866 0.009

10 APOA1 expression enhancer 0.702 0.005 0.836 0.003 0.826 0.003 – – 0.918 0.002 0.978 0.001

11 Free radical scavenger 0.719 0.004 0.769 0.003 0.719 0.004 – – 0.911 0.005 0.782 0.010

12 Peroxidase inhibitor 0.908 0.003 0.818 0.004 0.924 0.002 – – 0.912 0.008 0.930 0.003

13 Vasoprotector 0.758 0.007 0.707 0.010 0.891 0.003 – – 0.711 0.022 0.748 0.013

14 Histidine kinase inhibitor 0.889 0.002 0.892 0.002 0.918 0.002 – – 0.931 0.003 0.814 0.011

15 Apoptosis agonist 0.833 0.006 0.709 0.014 0.847 0.005 – 0.891 0.006 0.951 0.001
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Table 8 The P450 site of metabolism prediction of the best four ligand molecules and the positive controls
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Table 9 The results of the DFT calculations of the selected best 4 ligands and the positive controls

Compound name HOMO energy
(eV)

LUMO energy
(eV)

Gap
(eV)

Hardness (η)
(eV)

Softness (S)
(eV)

Dipole moment
(Debye)

Bellidifolin − 0.015 0.101 0.116 0.058 17.241 1.630

Naringenin − 0.005 0.094 0.099 0.049 20.408 2.278

Apigenin − 0.048 0.082 0.130 0.065 15.385 2.163

Coptisine − 0.134 − 0.087 0.047 0.023 21.276 6.459

Donepezil (positive control 1) − 0.028 0.076 0.104 0.032 18.560 2.398

Galantamine (positive control 2) − 0.022 0.081 0.103 0.047 16.141 3.041

Fig. 3 The results of HOMO and LUMO studies; a bellidifolin, b naringenin, c apigenin, and d coptisine
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druglikeness properties of a drug. Furthermore, the
Lipinski’s rule of five demonstrates that a successful
drug should have properties within the acceptable range
of the five Lipinski’s rules, i.e., molecular weight ≤ 500,
number of hydrogen bond acceptors ≤ 10, number of
hydrogen bond donors ≤ 5, molar refractivity from 40 to
130, and lipophilicity (expressed as LogP) ≤ 5 [89–92].
All the 4 selected ligands were found to follow the five
Lipinski’s rules of druglikeness properties. All of them
showed quite good results in the druglikeness property
experiment and for this reason, and all of them were
considered as potential drug candidates.
ADMET prediction of a candidate drug aids in deter-

mining the pharmacological and pharmacodynamic
properties of the drug molecule within a biological sys-
tem. For this reason, the ADMET properties are import-
ant determinants for the success of a drug development
process. BBB permeability is the most important charac-
teristic of the drugs which primarily target the brain
cells. Again, the transportation of drugs is influenced by
the P-glycoprotein (P-gp) in the cell membrane; there-
fore, inhibition of this protein severely affects the drug
transport. Moreover, if a drug is found to be permeable
in the Caco-2 cell line, then that particular drug is con-
sidered to be absorbed well in the intestine. Orally
absorbed drugs travel through the blood circulation and
deposit in the liver where they are metabolized by group
of enzymes of the Cytochrome P450 family and later ex-
creted as bile or urine. Therefore, inhibition of any of
these enzymes affects the metabolism and biodegrad-
ation of the drugs [93, 94]. Furthermore, if a drug is
found to be a substrate for one or more CYP450 enzyme
or enzymes, then that drug is considered to be metabo-
lized well by the respective CYP450 enzyme or enzymes
[95]. A drug’s pharmacodynamic properties depend on
the degree of its binding with the plasma protein. A drug
can pass through the cell layers if it binds to the plasma
proteins less efficiently and vice versa [96]. Human in-
testinal absorption (HIA) is another crucial determinant
for the orally administered drugs [97–99]. The half-life
of a drug describes that the greater the half-life, the lon-
ger it would stay in the body and the greater its potenti-
ality [100–102].
Furthermore, HERG is a K+ channel which is found in

the heart muscle. Blocking the hERG channel or signaling
may cause cardiac arrhythmia leading to death [103, 104].
On the other hand, human hepatotoxicity (H-HT) refers
to any type of acute liver injury which may lead to organ
failure and death [105, 106]. The Ames test is a mutage-
nicity assay that is used to detect the potential mutagenic
chemicals [107]. Drug induced liver injury (DILI) reflects
the injuries in the liver that are caused by administration
of drugs [108]. Bellidifolin, naringenin, and coptisine
showed quite similar and sound performance in the

AMDET prediction. However, apigenin was found to be
BBB impermeable and also a good binder to the plasma
membrane, which could affect its biodistribution through-
out the body as a potential inhibitor of AChE. As a conse-
quence, the performance of apigenin in ADMET test was
declared to be non-satisfactory.
Prediction of Activity Spectra for Substances or PASS

prediction is a process of determining the biological activ-
ities of drug candidates or drug-like molecules. The PASS
prediction estimates biological activities by predicting two
potential probabilities: Pa, which represents the probabil-
ity of a compound to be active and Pi, which represents
the probability of a compound to be inactive. By predict-
ing these two probabilities, the PASS prediction deter-
mines potential biological activities of a drug-like
molecule. The Pa value of greater than 0.7 represents the
greater probability of exhibiting the activity of a substance
in an experiment. The Pa > 70% threshold corresponds to
a highly reliable prediction, while Pa > 0.5 gives quite reli-
able prediction and the Pa > 0.3 threshold describes that a
compound is less likely to have the desired activity [70, 71,
109]. Most of the intended activities (13 activities) were
common between bellidifolin, naringenin, and apigenin,
for example, antineoplastic, antimutagenic, membrane in-
tegrity agonist, HIF1A expression inhibitor, and apoptosis
agonist (Table 8).
The toxicity classes of the 4 compounds were deter-

mined by the ProTox-II server (http://tox.charite.de/
protox_II/index.php?site=compound_input), which pre-
dicts the toxicity of a compound and then classifies the
compound into a toxicity class that ranges from 1 to 6.
To classify the compounds into toxicity classes, the ser-
ver uses the Globally Harmonized System of Classifica-
tion and Labelling of Chemicals (GHS). According this
system, since both bellidifolin and apigenin had toxicity
class 4, they would be harmful if swallowed. Again with
the toxicity class of 5, both naringenin and coptisine
might be harmful if swallowed [73, 110]. Both the posi-
tive controls, donepezil and galantamine were found to
have the toxicity class of 4.
The cytochrome P450 or CYP450 represents a family

of 57 isoforms of the heme-containing P450 enzymes.
This enzyme family is one of the most important en-
zyme family for proper metabolism within the human
body, which is responsible for catalyzing the phase-I me-
tabolism of about 90% of all the marketed drugs. They
also convert the lipophilic drugs or compounds to more
polar, hydrophilic substances. Among these 57 isoforms
of the CYP450 enzymes, 9 isoforms are most important
for biological activities, i.e., CYPs 1A2, 2A6, 2B6, 2C19,
2C8, 2C9, 2D6, 2E1, and 3A4 [111, 112]. When the P450
SOMs of the 4 best selected ligands: bellidifolin, narin-
genin, apigenin, and coptisine were predicted, all of
them showed potential SOMs where these 9 isoforms of
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P450 enzymes can act on. For this reason, all these li-
gands or compounds might be metabolized well by the
body.
Frontier’s orbitals study or DFT calculation is an im-

portant method to predict the pharmacological proper-
ties of small molecules. HOMO and LUMO help to
study the chemical reactivity and kinetic stability of the
query molecules. The term “HOMO” represents the re-
gions on a small molecule which might donate electrons
during the formation of a complex and the term
“LUMO” corresponds to the regions on a molecule that
might receive electrons from the electron donor. The
difference in HOMO and LUMO energy is regarded as
gap energy that corresponds to the electronic excitation
energy. The molecule that has greater orbital gap energy
tends to be energetically more unfavorable to undergo a
chemical reaction and vice versa [76, 113–117]. All of
the 4 ligands were predicted to have significant gap en-
ergy representing their possibility to undergo a chemical
reaction. However, among the four best selected ligands,
coptisine, with its lowest gap energy, was predicted to
have higher probability to undergo a chemical reaction
[25, 117] (Table 9 and Fig. 3).
Considering all the aspects of the study and comparing

the four best selected compounds, it can be concluded
that bellidifolin has the highest potentiality to be used as
anti-AD drug. From Table 10, it is clear that bellidifolin
generated the most sound and satisfactory performance
among the four compounds, with no poor performance
in any of the analysis. Even compared to the positive
controls, donepezil and galantamine, bellidifolin gener-
ated very good results in almost all the analyses. There-
fore, bellidifolin can be considered as the most suitable
compound as a drug for AD treatment among the

compounds considered in this study. However, further
investigation could also be conducted on other com-
pounds as they had also shown convincing results in the
docking analysis (Table 3). And the authors recommend
further in vivo and in vitro experiments to strengthen
the findings of this study.

Conclusion
As Alzheimer’s disease (AD) is one of the most rap-
idly growing dementia type diseases in the world,
more and more research studies are being conducted
to find out the best possible treatment for this dis-
ease. Although several treatments are already avail-
able, none of these treatments possesses significant
satisfactory results. Plants have been known to con-
tain many beneficial agents that can be used to treat
a variety of diseases. In this experiment, 50 anti-
AChE phytochemicals were selected to analyze their
activities against the acetylcholinesterase (AChE) en-
zyme, which is a key enzyme responsible for the de-
velopment of AD, by exploiting numerous approaches
used in computer-aided drug design. Upon continu-
ous computational experimentation, bellidifolin, narin-
genin, apigenin, and coptisine were predicted to be
the best inhibitors of AChE. Then, their drug potenti-
ality was checked in different post-screening studies
where they were also predicted to show quite similar
and sound performance, although in some aspects,
their performances were not up to the mark. How-
ever, more wet-lab based studies must be performed
on these 4 agents as well as the other remaining
agents to finally confirm their potentiality, safety, and
efficacy.

Table 10 Overall comparison of the main features of bellidifolin, naringenin, apigenin, and coptisine as potential drugs to treat AD
according to the study along with the 2 positive controls from comparison. All the compounds are ranked (excellent, good, and
poor) based on their performance in every aspect

Features Bellidifolin Naringenin Apigenin Coptisine Donepezil (positive
control 1)

Galantamine (positive
control 2)

Remarks (Best
performers)

Molecular docking
study

Good Good Good Excellent Good Poor Coptisine

Druglikeness
properties

Excellent Excellent Excellent Excellent Excellent Excellent All

Absorption Excellent Excellent Excellent Poor Good Poor Bellidifolin, naringenin,
apigenin

Distribution Excellent Excellent Poor Poor Excellent Good Bellidifolin, naringenin

Metabolism Excellent Poor Good Good Good Excellent Bellidifolin

Excretion Good Good Good Excellent Excellent Excellent Coptisine

Toxicity Good Excellent Good Excellent Excellent Excellent Naringenin & apigenin

PASS Prediction Good Good Good Good Good Good All

P450 SOM Good Excellent Excellent Poor Good Good Naringenin, apigenin

DFT calculations Good Good Poor Excellent Good Good Coptisine
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