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Abstract

Background: Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated
prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital
heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to
a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the
developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of
congenital heart diseases but also in providing us with insight towards developing new preventive and treatment
methods.

Main body: The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have
been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-
specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been
extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel
genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the
genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of
congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection,
teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in
research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention
strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic
and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are
involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial
causes of CHDs so as to pave a way for further research regarding CHDs.

Conclusion: The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing
specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of
novel genetic technologies could be the way through the discovery of etiological factors implicated in the
pathogenesis of congenital heart diseases.
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Background
Congenital heart diseases (CHDs) are the most frequent
congenital anomalies among infants and account for ap-
proximately 4–10 in 1000 live births [1]. The most com-
mon congenital heart defects are ventricular septal
defect (VSD), atrial septal defects (ASD), transposition
of greater vessels (TGV), patent ductus arteriosus
(PDA), and tetralogy of Fallot (TOF) [2]. The prevalence
of CHDs varies globally [3–15]. Congenital heart defects
are classified clinically, as cyanotic and acyanotic [16].
Bluish discoloration of mucous membrane clinically
characterizes cyanotic heart defects due to an increased
level of deoxygenated hemoglobin. Therefore, cyanotic
congenital heart defects are regarded as the most severe
forms of CHDs [17].
Clinical presentations and severity of CHDs depend on

their types or sub-types. However, most children with
CHDs present with failure to thrive, cough, repeated
chest infections, difficulty in breathing, exercise intoler-
ance, and bluish discoloration of mucous membranes
(cyanosis) [18]. Congenital heart defects are associated
with serious complications such as cognitive impairment
[19–27] and often affect families and individuals both
emotionally and financially [23, 28–31].
Recent improvements of surgical and diagnostic proce-

dures [32–34] have improved the survival of patients
with congenital heart diseases; however, still significant
mortalities among infants associated with CHDs are ob-
served [13, 14, 35–37]. The mortality is higher for low
birth weight infants even after surgical intervention [38].
Several studies have been conducted to investigate the

etiology of CHDs, but the molecular etiology and mecha-
nisms leading to CHD are still the subject of debate.
Nonetheless, advances in molecular techniques give the
possibility to study the developmental defects of the heart,
thus closing the gap of knowledge between the morph-
ology and genetics [39]. Genetic factors are postulated to
play a significant role in the pathogenesis of CHDs [40].
Point mutations of cardiac transcription factor genes,

single nucleotide polymorphism (SNPs), aneuploidy, and
chromosomal copy number variants (CNV) are directly
associated with CHDs [41–43]. Similarly, mutations in
genes encoding for receptors and ligands, which are re-
sponsible for cardiac morphogenesis signaling pathways
such as Notch and Jagged respectively are implicated in
the etiology of CHDs [44–46].
Several well-established cardiac transcription factors

that are highly expressed in cardiogenic plates such as
NKX2.5, GATA4, and TBX5 have been extensively stud-
ied in both human [47] and animal experiments [48, 49].
Mutations in these cardiac transcription factors are asso-
ciated with most non-syndromic CHDs [50]. Functional
studies on NKX2.5, GATA4, and TBX5 in animal exper-
iments have indicated high reproducibility of the results

[51], suggesting the monogenic inheritance model of
CHD pathogenesis. However, this model (monogenic in-
heritance) of CHDs pathogenesis raises two important
questions; firstly, why do we observe different CHDs
phenotypes associated with the same type of single-gene
mutations? Secondly, why do we observe the same kind
of CHDs phenotypes in different single-gene mutations?
These two questions suggest there might be many mole-
cules (multifactorial inheritance) involved in the etiology
of CHDs.
Perhaps the most intriguing feature is that the preva-

lence of the CHDs remains the same notwithstanding
the decrease in reproductive potential of the patients
with CHDs [52, 53], suggesting that the mutations might
not be inherited but rather de novo [54, 55]. Evolution-
arily, we would expect the prevalence of CHDs to be de-
creasing as the negative selection could have removed
the inherited mutation. The reasons for the expected de-
crease in prevalence being the high mortality rate associ-
ated with CHDs and the decrease in reproductive
potential among CHD patients.
The questions also remain if the CHDs mode of inher-

itance is a familial and whether its mode of inheritance
is autosomal dominant or autosomal recessive. This en-
igma is highlighted by the fact that the autosomal dom-
inant mutation is usually expressed in high penetrance,
and we would expect the high percentage of first degree
relatives to acquire the CHDs phenotypes, but the study
indicates the opposite [56]. The autosomal recessive
fashion might be the most appropriate model to define
the hereditary bases of CHDs. Studies show that the
consanguineous marriages resulted in an increased risk
of CHDs [57, 58].
Genomic wide association studies (GWAS) involve the

comparison of genetic variants of different affected indi-
viduals within the society and whether the variants are
associated with a certain trait. GWAS, therefore, can be
used to detect multiple genetic risk factors which con-
tribute to congenital heart diseases [59]. CHDs being
heterogeneous group of diseases, the use GWAS may
give us an insight to the etiology of CHDs [60].
Understanding of the hereditary causes will provide us

with an insight to the biological basis of the congenital
heart defects; therefore, allow the definition of disease
risk, which is the base of disease prevention. It will also
illuminate not only the developmental biology of the
heart, but also plans for the possibility of future novel
treatment of congenital heart diseases. Studying the eti-
ology of CHDs is essential because it may predict clinical
outcomes, get to know genetic reproductive risks, and
screen for genetic risk factors within the families. Also,
it is important to investigate genotype-phenotype correl-
ation as it can provide us with an opportunity to predict
the prognosis. Previous studies show that patients with
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CHDs may develop pulmonary hypertension (PHT), and
certain types of mutations are associated with its rapid
development [61, 62]. In this case, early intervention is
required.

Main text
Embryogenesis of the heart
The heart develops from the mesoderm [63]. It is the first
organ to develop and starts beating at approximately 22
days of gestation [64]. Its development (embryogenesis) in
early days of fetal life involves a series of events which in-
clude the following: precardiac cell migration from primi-
tive streak, the formation of 2 primitive heart tubes, fusion
of primitive tubes, cardiac looping, cardiac septation, car-
diac chamber formation, formation of cardiac conducting
system, and the coronary arteries [65–67].
The developmental process of the heart is a tightly regu-

lated process that requires intricate interplay between
transcription factors, several cardiac-specific genes, and
signaling pathways [68] .Both genetic [69, 70] and envir-
onmental factors [71] play essential roles during cardiac
development. Gene mutations [72] and some teratogens
[73, 74] can interfere with normal development (embryo-
genesis) of the heart leading to congenital heart defects.
Endodermal delivered signals such as BMP2, FGF8,

crescent, and Shh act as inducers of cardiac mesoderm
while inhibitory signals such as chordin, noggin, wnt1,
and serrate (ser) are mesodermal delivered [75, 76].
The heart looping, chamber formation, and left to

right asymmetry are under the control of cardiogenic
plate expressing genes NKX2.5, GATA, HANDS, and
TBX5 [77]. During early cardiac development, NKX2.5
[78] and MHC2A [79] genes are essential, and in later
stages, MEF2 [80], HAND1, and HAND2 genes [81, 82]
are actively transcribed. The regulation process during
cardiac development is under the control of transcrip-
tion factor genes GATA and TBX5, growth factors such
as VEGF, FGF, and PDGF, and morphogenic proteins
(BMP2, BMP4, BMP5) [79]. Besides, the Foxf genes
which control the second heart field in the hedgehog
pathway through interaction with TBX are actively in-
volved [83].

Transcription factors genes, cardiac-specific genes, and
CHDs
NKX2.5, GATA4, GATA6, and TBX5 are the most stud-
ied transcription factors genes. These genes are the key
transcription factors which are involved in early cardiac
development [84, 85]. Studies have revealed mutations
and single nucleotide polymorphism (SNPs) in these es-
sential transcription factor genes result in CHDs occur-
rence [47, 86, 87]. In one large cohort study, they
identified the novel mutations in NKX2.5 and GATA4,
both mutations were associated with mutations of

MYH6 gene (encoding for cardiac (alpha) myosin), sug-
gesting additive effect to the pathogenesis of CHDs [88].
Mutation in MYH6 is associated with familial atrial sep-
tal defect (ASD) [89]. A study among Chinese identified
the missense mutations of GATA4 in patients with tet-
ralogy of Fallot and membranous ventral septal defect.
They also identified NKX2.5 mutations in patients with
isthmus stenosis, ventral septal defect, and patent ductus
arteriosus [90].
NKX2.5, a homeodomain transcription factor, is vital in

early cardiogenesis in mammals [91]. Mutations in
NKX2.5 have been reported in patients with ventral septal
defect [92], tetralogy of Fallot, transposition of greater ves-
sels, and patent ductus arteriosus [93], atrial septal defect
and hypoplastic left heart syndrome (HLHS) [94]. The as-
sociation of mutations with clinical manifestations is of
paramount importance; NKX2.5 mutation associated ASD
was found to present with cardiac conduction defects;
thus, patients with mutation in NKX2.5 have an increased
risk of cardiac arrest [95]. Overall, more than 40 NKX2.5
transcription factor different mutations have been identi-
fied, causing impaired protein function [96] and have a
negative impact on transcriptional activity [97].
MEF2C, NKX2.5, GATA4, and GATA6 mutations have

been identified in patients with cardiac outflow tract de-
fect (OFT). Studies on the functional analysis have docu-
mented significant effect on their protein functions
affecting early cardiac development [50]. MEF2C is an es-
sential factor for cardiac development and its loss of func-
tion due to mutations results in double outlet ventricle,
ventricular septal defects, and patent ductus arteriosus
[98, 99].
GATA4, a zinc finger transcription factor, is expressed

during cardiac development as well as in adult cardio-
myocytes [100].GATA4 mutations produce GATA4 pro-
tein which reduces cardiomyocytes proliferation in vivo,
causing functional deficit [101]. GATA4 mutation is as-
sociated with cardioseptal defect [102], some of which
are familial [103]. GATA4 mutations were identified in
patients with atrial and ventral septal defects but these
mutations did not alter the transcriptional activity when
combined with other transcription factors such as
NKX2.5 and TBX20, suggesting that GATA4, as a single
factor may not have a direct effect on the heart by itself
[104].
TBX5 transcription factor is an essential regulator in

cardiac development [105] as it plays a role in gastrula-
tion process and organogenesis in vertebrates [106].
TBX5 mutation is common in patients with Holt-Oram
syndrome, a syndrome which is characterized by skeletal
abnormalities and heart diseases [54, 107, 108]. TBX5
mutations were found in patients with tetralogy of Fallot
associated with large ostium secundum defect and fea-
tures of upper limb deformities [109], and also in
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patients with the ventricular septal defects [110]. Some
studies indicate that it is not TBX5 mutations that cause
CHDs but the abnormality in the TBX5 expression levels
is responsible for congenital heart diseases [111].
Mutations in other several genes have been reported

to be associated with congenital heart diseases. These
genes include the following: ankyrin repeat domain 1
(ANKRD1) associated with septal defects, NR2F2 gene
associated with double outlet ventricle, HAND2 gene as-
sociated with familial ventral septal defect, pulmonary
stenosis, double outlet right ventricle, tetralogy of Fallot,
and CASZ1 gene associated with the ventral septal de-
fects [112–116].
Cardiac-specific genes are those genes which encode

for cardiac-specific proteins. MYH7 encodes for beta
myosin heavy chain and MYH11 encodes for the smooth
muscle heavy chain. Mutation in MYH7 is associated
with Ebstein anomaly, the condition which is character-
ized by the fusion of posterior and anterior leaflets of tri-
cuspid valves and left ventricular non-compaction [117].
ACTC is another important gene which encodes for car-
diac actin, changes in ACTC due to mutation results
into disruption of actin composition of fetal heart lead-
ing to severe deficit in both function and structure of
the heart [118, 119]. See summary in Table 1.

MicroRNAs and CHDs
MicroRNAs (miRNAs) are small non-coding RNA mole-
cules (18~26 nucleotides) that regulate eukaryotic gene
expression at the post-transcription level [120]. The
microRNAs blocks gene expression by interacting with
the 3UTR region of the messenger RNA [121]. They act
as gene suppressors by inhibiting messenger RNA trans-
lation or cause the degradation of messenger RNA.
MicroRNAs cause the RNA strand cleavage, shortening
of polyA tail of messenger RNA, and making the

messenger RNA less efficient to be translated by ribo-
somes [122].
A single microRNA has an ability to interfere with

multiple target genes; thus, perturb the entire network,
which can eventually result in a serious pathological
state [123]. miRNA exerts its canonical repressive effect
by binding to Argonaute (AGO) proteins [124]. Recent
studies have shown that miRNA can bind to other non-
AGO RNA-binding proteins. miR-328 has been found to
bind to heterogeneous nuclear ribonucleoproteins
(rhnRNPE2) within the CCAAT Enhancer Binding Pro-
tein Alpha (CEBPA) of mRNA mediating transcriptional
inhibition [125].
Apart from interfering with the messenger RNA by its

repressive activity, the miRNAs have other unconven-
tional roles. These roles include up regulation of protein
expression upon cell cycle arrest [126] and target mito-
chondrial transcript by inhibiting cytochrome c-oxidase
subunit (MT-COX I). In this case, miRNA-181c translo-
cates into the mitochondria and exerts its action by en-
hancing (MT-COX 2) mRNA expression through
miRNA-181c binding [127]. miRNAs can also activate
Toll receptor (TLR). TLR plays a crucial role in innate
immunity. Let-7 has been found to activate TLR7 caus-
ing neurodegeneration [128].
miRNAs play a crucial role in cardiac morphogenesis

with regards to patterning, proliferation, and differenti-
ation of myocardium [129]. Therefore, microRNAs are
important therapeutic target and potential in regenera-
tive medicine [130]. We can use miRNAs as biomarkers
for the diagnosis of congenital heart diseases [131], for
instance, miR-499 is regarded as a useful biomarker for
congenital heart disease diagnosis [132]. miRNAs are
significantly upregulated, and target genes that are im-
portant for cardiac development such as TBX5 gene
[133] and NOTCH 1, HAND1, and GATA3 genes which

Table 1 Summary of genes involved in cardiac morphogenesis. Mutations of these important genes lead to various phenotypes of
CHDs

Candidate
gene

CHD phenotype References

NKX2.5 Tetralogy of Fallot, patent ductus arteriosus, transposition of greater vessels, atrial septal defects with conduction defects,
and hypoplastic left heart syndrome

[93–95]

MEF2C Double outlet ventricle, ventricular septal defects, and patent ductus arteriosus [98, 99]

GATA4 Atrial and ventral septal defects [102, 104]

TBX5 Holt-Oram syndrome, ostium secondum defects, tetralogy of Fallot, and ventricular septal defects [109, 110]

ANKRD1 Septal defects [113]

NR2F2 Double outlet ventricle [112]

HAND2 Familial ventral septal defect, pulmonary stenosis, double outlet ventricle, and tetralogy of Fallot [115]

CASZ1 Ventral septal defects [114]

MYH6 Familial atrial septal defects [89]

MYH7 Ebstein anomaly and left ventricular non-compaction [117]
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are vital for the right ventricle development [134].
miRNA dysregulation is known to cause severe congeni-
tal anomaly of the heart such as hypoplastic left heart
[135], a condition which is largely characterized by mal-
development of the right side of the heart.
miRNA normally interact with the 3UTR site of the

gene; thus, a single nucleotide polymorphism to the
3UTR site of cardiac transcription factor gene GATA4 is
associated with congenital heart disease [136].miRNA-
145 targets the FXN gene (gene making a protein fra-
taxin, which is abundant in the heart) by negatively
regulating its function through apoptosis and mitochon-
drial function [137]. The downregulation of miRNA-
199a-5p favors the unfolded protein response, thus pro-
tecting the myocardium against hypoxia-induced endo-
plasmic reticulum stress in patients with congenital
heart disease and mechanistically by binding to GTP78
and ATP 6 changing their gene expression [138].
miRNA-84 has been found to be significantly down-

regulated and associated with cyanotic congenital heart
diseases; miRNA-84 decreases proliferation and in-
creases the apoptosis of cardiomyocytes [139]. In a dif-
ferent study, it has been demonstrated that miRNA-1
promotes cardiomyocyte proliferation through activation
of HANDS2 (a key gene which is involved in cardiac de-
velopment) and suppression of apoptosis by decreasing
the caspase 3-cleavage [140]. The roles of these small
non-coding RNAs are stressed in a study which found
miRNA-499 single nuclear polymorphism to be associ-
ated with congenital heart diseases. miRNA-499 inhibits
the expression of methionine synthase (MTR), a key en-
zyme in folate metabolism, thus interfering with early
development of the heart [141]. Which specific miRNAs
are upregulated or downregulated in different types of
CHDs and mechanisms on how miRNAs cause CHDs is
still elusive. High throughput miRNA sequencing in
malformed heart will provide insight to the novel miR-
NAs, which are essential in cardiac morphogenesis.

Long non-coding RNAs and CHDs
Long non-coding RNAs (LncRNAs) are made up of
more than 200 nucleotides with no coding function and
they are actively transcribed in metazoans [142].
LncRNAs have been reported to play various biological
processes by controlling gene expression through his-
tone modifications or epigenetics [143]. LncRNAs are
linked to the development of congenital heart diseases,
and therefore can be used as the potential biomarkers
for prediction of occurrence of fetal CHD in pregnant
mothers [144].
Post-transcriptional regulation during cardiac embryo-

genesis is an essential part of normal cardiac develop-
ment [145]. Long non-coding RNA and miRNAs have
been implicated to play an indispensable role during

cardiac development by influencing gene expression and
post-transcription regulation [146]. Indeed long coding
RNAs are essential in the regulation of mammalian car-
diac morphogenesis and play a role in pathogenesis of
cardiac tissue diseases [147].
Dysregulation of LncRNA in cardiac tissue was found

among patients with VSDs which indicates that there is an
association between LncRNA and congenital heart dis-
eases [148]. Aberrant expression of LnRNAs was found in
pregnant mothers with fetal congenital heart diseases
which designate that LnRNAs play a significant role in the
development of congenital heart disease [144]. LncRNA
uc 4 over expression inhibits the TGF-β signaling pathway
resulting in the development of congenital heart diseases
[149]. Long non-coding RNAs play a role in controlling
the transcription of HANDS 2 which plays an important
role in guiding cardiac morphogenesis [115], therefore
blocking the transcription of long non-coding RNA (Uph)
and results in right ventricular hypoplasia and early em-
bryonic lethality in mice [150].

Chromosomal abnormalities, copy number variants, and
CHDs
Congenital heart defects are the most common congeni-
tal malformations found among patients with chromo-
somal aberrations. Studies have shown that congenital
heart defects are associated with some forms of chromo-
somal abnormalities. The commonest form of aneu-
ploidy, the Down syndrome (trisomy 21), is usually
associated with atrial septal defect (ASDs) [151, 152].
The abnormalities in chromosomal number (aneuploidy)
are often associated with an increased risk of congenital
heart diseases. Many different cardiac phenotypes are as-
sociated with aneuploidy. About 50% of patients with tri-
somy 21 and Turner’s syndrome (45, X) develop
congenital heart diseases, and in Turner’s syndrome pre-
mature mortality is caused by CHDs complications [153,
154]. In the case of other trisomies such as trisomy 18
and trisomy 13, the prevalence of CHDs is more than
50% of the cases [155].
Children with congenital heart defects have a high in-

cidence of pathological copy number variants [156], im-
plying that subtle chromosomal changes (copy number
variants) play an essential role in the etiology of congeni-
tal heart defects. It is, therefore, necessary to find out
the copy number variants as it can give us an insight to
the etiology of CHDs [157].
Karyotyping and chromosomal microarray (CMA)

methods have been used to identify the number of ab-
normal chromosomes and copy number variants (CMV),
respectively [158–160]. These methods are used widely
for the diagnosis of fetal aneuploidy. Prenatal diagnosis
using these technologies can help to predict the fetal
outcomes. Recently, the chromosomal microarrays and
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next generation sequencing are reliable tools for investi-
gating the genetic abnormalities in patients with con-
genital heart diseases [161, 162]. We can also identify
the copy number variants in a specific genomic region
by multiplex ligation-independent probe amplification
[156, 163] and its modified form which is known for its
high sensitivity and specificity [164].
CMA and karyotyping are the two screening methods

which can supplement each other, and thus, negative
karyotyping results should be re-examined by using
chromosomal microarrays [165]. Studies have associated
the occurrence of copy number variants and congenital
heart diseases [166, 167] and other malformations such
as that of limbs [168]. Copy number variants (microdele-
tion) were found in VSD patients with normal karyotyp-
ing results [169]. Therefore, it is vital to have CMA even
in a fetus with normal karyotype.
Chromosomal microarrays (CMA) can be used to de-

tect the pathological CNVs in patients with CHDs. The
detection of pathogenic CNVs in syndromic CHD pa-
tients using CMA has been found to have the diagnostic
yield of up to 20% [170]. CMA can detect both patho-
logical CNV and those CNV of unknown significance
(VOUS) [171]. Copy number variant (gene deletion and
duplications) was found in a patient with heterotaxy,
functional analysis on the variant genes revealed that the
genes are involved in left to right patterning of the heart
[172]. Microdeletion and microduplication are highly
implicated in pathogenesis of CHDs, 240 CNVs were
found in genes which are involved in cardiac develop-
ment including, NRP1, NTRK3, MESP1, ADAM19, and
HAND1 [173].
A cohort study found that the gain of more than 200

kb or losses of 100 kb in different cardiac-specific genes
was associated with CHDs; significant enrichment were
found in patients with tetralogy of Fallot, atrial ventricu-
lar septal defect, truncus arteriosus, subaortic stenosis,
and atrial ventricular canal [174]. In patients with Down
syndrome, not only the chromosomal number abnormal-
ities are implicated in causing CHDs, but also the com-
bination of copy number variants and single nucleotide
polymorphism in certain specific genes may be found in
the same chromosome. Another cohort study found that
rs2832616 and rs1943950 SNPs and CNV in RIPK4 and
ZBTB21 genes within chromosome 21 in a Down syn-
drome patient, suggesting multiple gene aberrations
[175]. 22q11 deletion, 17p13.3, 4q35, and TBX1 dele-
tions are highly associated with conotruncal defect ab-
normalities [176] and 3.76Mb de novo gain of 9q34.2-
q34.3 is associated with tetralogy of Fallot with the ab-
sence of pulmonary valve [177]. In addition, serious car-
diac malformations have been documented due to
duplication and deletion in GATA4 and SOX7 genes re-
spectively [178] as well as in NODAL gene [179].

Signaling pathways and CHDs
Cardiogenesis is a complex process which requires early
cardiac stem cell fate, proliferation differentiation, and
organ formation. It is therefore important for the devel-
oping embryo to tightly regulate these processes through
signaling pathways. Early normal cardiac morphogenesis
depends on perfect regulation of signaling pathways, and
thus, during cardiac development intracellular crosstalk
is important for spatial-temporal precision [68]. During
the development of the heart, Notch signaling, BMP,
and TGF-β are critical pathways; they work together to
promote epithelial-mesenchymal transition (EMT) as
well as mesenchyme cell invasiveness [180].
NOTCH signaling pathway is a highly conserved path-

way which plays an important role in early cardiac devel-
opment; it is therefore important for ultimate cellular
development, differentiation, proliferation, apoptosis, ad-
hesion, and epithelial-mesenchymal transition [181].
Thus, cardiac progenitor cell ability to differentiate from
the mesoderm to mature cardiomyocytes is under the
control of the NOTCH signaling pathway. NOTCH is
also crucial for the repair of mature cardiomyoctes after
myocardial injury [125] and protects the heart from
hypertrophic responses as well as the survival of cardio-
myocytes [182]. Notch receptor interacts with the endo-
cardium and neurocrest cells forming signals to regulate
the morphogenesis of the heart, in particular, the forma-
tion of the endocardium during chamber and valve de-
velopment as well as during valve formation. NOTCH
signaling pathway promotes epithelial-mesenchymal
transition and controls endocardium-myocardium sig-
nals leading to the formation of trabecular myocytes
[183]. NOTCH signaling pathway also participates in
outflow tract formation and trabecular compaction
[184]. It is, therefore, essential to understand that any
perturbation in this important signaling pathway may
cause congenital heart disease.
Animal experiments have revealed that mutations of

NOTCH receptor and ligands can lead to several differ-
ent types of congenital malformations including the con-
genital heart defects. NOTCH 1 receptor and its ligands
jagged 1 mutations are associated with congenital heart
defects [185]. Alterations of the NOTCH signaling path-
way lead to abnormal ventricular chamber development,
non-compaction, and cardiomyopathy [186]. Novel mu-
tations of NOTCH 1 have been identified in patients
with severe forms of congenital heart disease, the hypo-
plastic left heart syndrome (HLHS) [187].
A study has shown that the induced pluripotent stem

cells generated from the patient with hypoplastic left
heart syndrome when allowed to differentiate into ma-
ture cardiomyocytes in vitro, show reduced NOTCH re-
ceptor expression, disorganization of sarcomere, and low
beating rate [188]. Also, in the same study, they found
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that the activation of NOTCH receptor through jagged
ligand interaction restores the cardiomyocytes’ ability to
differentiate and beating rate as well as reduces smooth
muscle formation [188]. iPCs generated from the HLHS
show reduced expression of NKX2-5, TBX2, and
NOTCH genes with a consequent decrease in their dif-
ferentiation potential. Co-transfection with these pro-
moters restores the potential of cells to differentiate
[189].
TGF-β signaling pathway has been found to play an

essential part in the development of embryonic myocar-
dium. Mutation in TBX20 transcription factor gene
causes abnormal signaling of TGF-β pathway in induced
pluripotent stem cells delivered from left ventricular
non-compaction cardiomyopathy [190]. β2-spectrin is an
adaptor of Smads and it plays an important role in TGF-
β signaling pathway. Animal experiments have found
that β2-spectrin loss leads to inactivation of TGF-β sig-
naling and developmental defects of the heart, particu-
larly affecting the ventricular wall [191].

Non-inherited risk factors and CHDs
Most studies have been done on genetic risk factors and
their association with congenital heart defects, therefore
giving us the way to define disease risk. However, little
information is available for the modifiable risk factors
associated with congenital heart defects. Studies have
shown non-inherited risk factors are associated with
congenital heart defects. During the embryonic period,
which normally ends at 8 weeks of gestation, mothers
are advised to avoid substances that are deemed as te-
ratogens [192, 193]. Advanced maternal age has been
implicated to the etiology of congenital heart diseases
possibly because age increases the chances of chromo-
somal aberrations; however, little evidence is available
with regard to advanced maternal age in the absence of
chromosomal abnormality [194, 195].
There is a strong correlation between drug exposure,

viral infection, and conotruncal defects [196]. Congenital
rubella infection is a risk factor for many malformations
including the CHDs [197, 198]. Smoking during preg-
nancy has been found to increase the risk of congenital
heart defects [199, 200] and women who smoke ciga-
rettes have a substantial possibility of having children
with atrial septal defects [201]. Maternal obesity is asso-
ciated with increased risk of birth defects [202] and pre-
gestational high body mass index has been found to be a
risk factor for CHD development, particularly the left
and right ventricular outflow tracts, septal defects, and
hypoplastic left heart syndrome [203, 204]. Maternal
hyperglycemia is also an important risk factor implicated
to CHDs [205]. Besides, folic acid intake has been associ-
ated with many congenital defects but many studies have
indicated that there is no association of folic acid intake

and CHDs [206–208]. With all these environmental fac-
tors implicated, in causing CHDs, it is therefore reason-
able to say both genetic and environmental factors are
being associated with congenital heart defects [209].

Conclusions
The etiology congenital heart disease is a diverse and in-
teresting area of the study. CHD multifactorial etiology
imposes a challenge in defining its pathogenesis. Large
genomic wide association studies (GWAS), well-
designed studies on non-inherited risk factors, and use
of contemporary technologies such as high throughput
sequencing may eventually pave away for understanding
the genetic and non-genetic causes of congenital heart
diseases.
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