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Abstract

Background: Factors contributing to the pathogenesis and progression of cervical cancer include poor attitude to
screening and health intervention, late presentation, among others. Mutations in p53 gene have been attributed to
several cancer cases. The present study was designed to find relationships between the mutation patterns in p53
gene and cervical carcinoma staging. Such knowledge could contribute to early diagnosis of cervical cancer.

Results: From the sequence analysis of p53 gene fragment isolated by polymerase chain reactions (PCR), nineteen
(19) polymorphic variants were identified. Missense mutations occurred in 47% of the samples, 32% were silent
mutations, 16% were frameshift mutations and 5% nonsense mutations. Socio-biological characteristics of the study
participants revealed that 60% have husbands with multiple sexual partners and that only 23.3% of the participants
have ever had the Papanicolaou (Pap) smear test prior to diagnosis, whilst 20% were unaware of the screening test.

Conclusions: Increased severity of cervical carcinoma staging as revealed from the histopathological analysis was
found to be associated with accumulation of higher levels of mutations in the p53 gene. Molecular analysis of p53
gene mutations may prove useful as a screening biomarker for cervical cancer.
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Background
Cancer is a multi-factorial disease that remains a serious
global concern. Cervical carcinoma is the fourth most
frequent cancer in women with a global incidence rate
of 570,000 reported in 2018, and representing 6.6% of all
cancers in females [1]. Approximately 90% of cancer-
related deaths occur in low- and middle-income countries
[2], with about 85% of the 250,000 deaths recorded annually
from cervical cancer are reported in developing countries
where most cases are presented in the late stages of the
disease. The incidence of cervical cancer in Nigeria is about
250/100,000 with about 8000 deaths annually [3].

Three major factors have been identified in cervical
cancer pathogenesis out of which two are related to
human papillomavirus (HPV) infection. These include
the consequences of HPV DNA integration in the host
genome, the effects of viral oncoproteins and the accu-
mulation of cellular genetic damage not associated with
HPV infection [4]. High risk of HPV infection, late diag-
nosis due to poor screening uptake and prognosis and
low uptake of HPV vaccination have been attributed as
the major factors culpable in the cervical cancer burden
in women [4].
HPV is the primary causative biological agent involved

in cervical cancer pathogenesis [4, 5]. The high-risk
HPV’s DNA encodes the oncoproteins E6 and E7 which
bind to p53 and retinoblastoma proteins, respectively.
The binding of the E6 protein, through its interaction
with the E6-associated protein (E6AP), to p53 induces
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the degradation of p53, the tumour suppressor protein
[6] (as schematically shown in Fig. 1). This proteasomal
degradation pathway could play a crucial role in cervical
carcinogenesis through the promotion of cell cycle entry
that leads to unregulated proliferation of invasive
cells [7, 8].
On the other hand, the protooncogenes and tumour

suppressor genes play vital roles in carcinogenesis [9].
The p53 protein (commonly referred to as the guardian
of the genome), which contains 11 exons, is a nuclear
phosphoprotein whose gene is located on the short arm
of chromosome 17 at the 17p13.1 locus [10–12]. It plays
an important role in the regulation of cell proliferation,
the cell cycle, as well as apoptosis and senescence in
response to DNA damage [13, 14], and is frequently
mutated in most human cancers [15]. Most mutations
observed in the p53 gene are single base-pair substitu-
tions and occur predominantly between codons 130 and
290 [5]. The p53 gene has been rarely observed to be
mutated in early cervical tumours [6]. In addition, some
p53 mutant proteins are unsusceptible to E6-mediated
degradation, thereby suggesting that p53 polymorphisms
might be culpable in the variation of cell responses to
the HPV infection [6].
Mutations in p53 are also associated with genomic in-

stability [16] and delay in cell cycle progression [17, 18].
The proline-rich region of the p53 protein is essential
for induction of apoptotic response to cellular stressors
[19] and inhibition of tumourigenesis [20]. However, the
E6 oncoprotein causes more efficient degradation of the
arginine polymorph at codon 72 than the proline poly-
morph, thereby, reducing cellular levels of p53 protein
and increasing the risk of HPV-associated cervical can-
cers in individuals with the arginine polymorph [21].
The first p53 gene mutation in human cancer was de-
scribed by Bakers and his team [22]. Codon 72 is located
within the proline-rich region of the gene and may have
a significant effect on the putative (sarcoma homology)
SH3-binding domain [14]. Studies have linked genetic

polymorphism of the codon 72 of p53 to cervical cancer
progression [8], and the variation in this codon can ei-
ther be arginine (GCG) or proline (GGG).
The divergence in the polymorphic variations that

exist in p53 with respect to the pathogenesis of cervical
cancer has been attributed to varying geographic loca-
tions, and the different environmental exposures [23]. It
has also been reported that greater than 85% of known
cancer-related p53 mutations are missense mutations
[2, 4]. Some of the missense mutations resulting from
single nucleotide substitutions can affect p53 conform-
ation and result in inactive protein.
The exon 4 in the p53 gene is one of the largest,

spanning 311 nucleotide base pairs (bp). It contains the
proline-rich region and is essential for DNA specific
binding, apoptosis, and transcription [10, 16].
To understand further the role of this tumour-

suppressor gene mutation-pattern in cervical cancer, we
performed a mutational analysis for the polymorphicvar-
iations in the exons 3 and 4 of p53 gene in patients diag-
nosed with cervical cancer in Ibadan, Nigeria.

Methods
Study site, ethical review and samples collection
The University College Hospital (UCH)-University of
Ibadan Institution Ethics Committee approved the study.
Written informed consents wereobtained from all study
participants before samples were taken. Cervical carcin-
oma tissues were obtained from such patients who pre-
sented at the day-casetheatre of the Obstetrics and
Gynaecology Department for examination under anaes-
thesia, staging and cervical tissue biopsy as required for
definitiveapproach to management. The tissue biopsies
for the genomic DNA isolation were preserved in a
DNA/RNA shieldTM, while about 5 g of the samples-
were preserved for histological studies at the Pathology
Department of UCH. Molecular biology procedures were
carried out at the Professor AbideenOluwasola Special
Diagnostics Centre, UCH, Ibadan.

Fig. 1 The HPV E6 oncoprotein induces p53 proteasomal degradation via the ubiquitin degradation pathway. The E6 oncoprotein binds with the
ubiquitin-protein ligase E6-associated protein (E6AP). The E6AP-E6 complex associates with p53, E6AP then catalyses multi-ubiquitination of p53
leading to the degradation of p53 [7]
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Histological analysis
Cervical tissue biopsy samples (5 g per sample) obtained
from the study subjects were sent to the Pathology
Department, College of Medicine for analysis for
tumours. This involves histological staining, sectioning
and examination under a microscope.

DNA isolation
High molecular weight genomic DNA samples were
purified from the cervical tissues using Quick-DNATM

Miniprep Plus Kit as specified in the kit’s manual. The
purified DNA was quantified on a NanoDropTM 2000
spectrophotometer.

PCR amplification of p53 gene fragment
The p53 gene fragment was amplified from the genomic
DNA using forward (5′ TGAAGTCTCATGGAAGCC
AGC 3′) and reverse (5′ GCTCTTTTTCACCCATCT
ACAG 3′) primers at the optimum PCR conditions in a
total reaction volume of 25 μl. Purified genomic DNA
from an established cancer-free individual was used as
the control. The amplification reactions were carried out
in a programmable thermal cycler using the following
sequence: Initial denaturation at 95° C for 5 min,
followed by 35 cycles of denaturation at 94° C for 45 s,
annealing at 55° C for 60 s, and extension at 72° C for
60 s, and a final extension step at 72° C for 7 min,
making a total run of about 1 h, 56 min at 9600 ramp to
ensure a complete extension of all amplicons.

Analysis of the PCR products
Four (4)-microliter aliquots of the PCR products were
applied to 1.5% agarose gel to check that the right size
product is obtained. Electrophoresis was performed in
TAE (tris-acetate-ethyl diamine tetra acetate) buffer at a
voltage of 100 volts, a current of 400 Amps for 45 min.
The ethidium-bromide stained gel was viewed on a VIVI
LBER transilluminator. The two strands of DNA were
then sequenced from the representative samples.

DNA sequencing and sequence analysis
Based on the findings from the histological analyses,
amplified DNA from representative samples for normal
cervical epithelium, well-differentiated cervical cell,
moderately differentiated malignant cells and poorly
differentiated malignant epithelial neoplasm were se-
quenced. The chromatograms were viewed and edited
using the combination of FinchTv version 1.4.0 and
SnapGene Viewer version 4.2.9 for specificity and accur-
acy. The nucleotide sequences were then exported from
the chromatogram and identified by submitting to the
NCBI BLAST-N (National Centre for Biotechnology
Information Basic Local Alignment Search Tool for
nucleotide) page. Reference nucleotide sequences were

also mined from the same web site. Furthermore, T-
COFFEE was used for the multiple sequence alignment
of the sequences. EXPASY was used to translate the
DNA nucleotide sequence to the protein amino acids
sequence. Catalogue of Somatic Mutations in Cancer
(COSMIC), International Agency for Research in Cancer
(IARC) and NCBI databases were used for the analysis
of the gene mutations. Nucleotide sequences from the
present study have been submitted to the NCBI public
database under the accession numbers MN982161 to
MN982165.

Results
The socio-biological characteristics of the participants
are as presented in Table 1.
Using genomic DNA isolated from the cervical tissues

of the study participants, highly specific amplification of
exons 3 and 4, which spans the coding region of the
gene that encompasses the proline-rich region, activa-
tion domain, and the sequence specific DNA binding
domain were successful. The PCR products analysis on
agarose gel revealed that the correct sized (~350 bps)
gene fragments were amplified in most positive reactions
(Fig. 2).
Thirty selected cases (representing the differentiation

stages) of human cervical cancer DNA sequences were
analysed for polymorphic variations in the proline-rich

Table 1 The socio-biological characteristics of the participants
(N=30)

Frequency Percentage (%)

Age range (in years)

36-45 7 23.3

46-55 3 10.0

56-65 years 8 26.7

66-75 years 3 10.0

76-85 years 6 20.0

86-95 years 3 10.0

Marital status

Married 15 50.0

Divorced 1 3.3

Widowed 14 46.7

Pap smear test awareness/uptake

Never aware 6 20.0

Ever done 7 23.3

Aware but never done 17 56.7

Husband’s known number of sexual partners

1 12 40.0

2 13 43.3

Greater than 2 5 16.7
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region, activation domain and the sequence specific
DNA binding domain of the p53 gene. Result of the
multiple sequence alignment of the sample sequences
and the reference sequence (accession number: NG_
017013) [24] is shown in Fig. 3.
The photomicrographs from the histology studies of

different staging of the cervical cancer are presented in
Fig. 3. The photomicrograph in Fig. 3a shows normal
cervical epithelium, with the epithelial wall of the cervix
still intact and normal proliferation of cells within the
cervix, whilst the one in Fig. 3b shows well-differentiated
cervical cells. These cells show extensive areas of necro-
sis and haemorrhage alongside areas revealing keratin
pearls formation by the tumour cells and underlying
infiltration of the stroma. Figure 4c shows moderately
differentiated malignant cells with focal areas of necrosis
as well as stroma infiltration by eosinophils, lymphocytes
and plasma cells, and invasion of the fibro-collagenous
stroma. Poorly differentiated, malignant epithelial neo-
plasm is shown in Fig. 3d with mass encroachment of
proliferating cells beyond the epithelial wall of the cer-
vix. It was observed that the samples accumulated more
mutations with increased severity of differentiation.

Nucleotide variations and polymorphisms from the DNA
mutation analysis
The observed distribution of nucleotide substitutions
and polymorphic variations in the samples were in the
following orders: Missense mutations occurred in 47%
of the samples, 32% were silent mutations, 16% were
frameshift mutation and 5% nonsense mutation was

observed in the cervical tissue samples. The specific
codons involved are listed below, using the standard
one-letter code for amino acids (W—Tryptophan; L—
Leucine; K—Lysine; N—Asparagine; I—Isoleucine;
M—Methionine; R—Arginine; P—Proline; A—Alanine;
V—Valine; Q—Glutamine; E—Glutamate). In addition,
fs* stands for frameshift.

Missense mutations
• At codon 30 (N30K), there was a substitution of
Lysine (K) for Asparagine (N)

• At codon 35 (L35W), there was a substitution of
Tryptophan (W) for Leucine (L)

• At codon 66 (M66I), Isoleucine (I) substituted for
Methionine (M)

• At codon 72 (P72R) and 82 (P82R), Arginine (R)
substituted for Proline (P)

• At codon 73 (V73A), Alanine (A) substituted for
Valine (V)

• At codon 77 (P77A/Q), Alanine (A) and Glutamine
(Q) substituted for Proline (P)

• At codon 86 (A86E), Glutamate (E) substituted for
Alanine (A)

Silent mutations
• codon 74 (A74A)
• codon 79 (A79A)
• codon 81 (T81T)
• codon 83 (A83A) and 84 (A84A)
• codon 85 (P85P)

Fig. 2 Representative ethidium bromide-stained agarose gel of the PCR products (350 bps) amplified from genomic DNA isolated from the
cervical tissues using primers as specified in the “Methods” section. The first lane (L) represents the marker (50 base pair DNA ladder), lane (−ve) is
the negative control (no DNA template), lane (+ve) is another control (template is genomic DNA from individual pre-tested to be cervical cancer
free) and lanes S13-S25 are PCR products using genomic DNA templates from respective biopsy samples
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Frameshift (insertion and deletion)
• At codon 26 (L26fs*), 66 (M66fs*) and 119 (A119fs*)

Nonsense mutation
• A stop codon was introduced at codon 103 (Y103X)
instead of Tyrosine (Y)

Discussion
Cervical cancer is not spontaneous but occurs through a
multistep process [22] and develops with age [25, 26].
The relationship between age and cervical cancer devel-
opment is evident in the present study. The mean age of
study participants is 59 ± 16.9 years; the age category

Fig. 3 Multiple sequence alignment (using T-COFFEE MSA tool) of the nucleotide sequences (P1-P10) showing the nucleotide sequence with
respect to the reference sequence (accession number: NG_017013). The con shows the conservation pattern of the sequences; an asterisk
illustrates a conserved nucleotide across the sequences whilst an empty con shows a variation (SNV or SNP) in the sequences
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56-65 years has the highest incidence (26.7%) of
cervical cancer cases reported in this study. This is in
agreement with the previously documented peak age
of incidence [26, 27].
There is a 92% chance of survival if cervical cancer is

detected early but as documented by early researchers,
most women still present late [3]. Although the Papani-
colaou (Pap) smear test is an efficient screening tool that
helps in early detection of cervical cancer or its predis-
position, there was a poor cervical cancer screening
(CCS) uptake by participants in this study. This is simi-
lar to the report by Ifemelumma et al. [3].
Most of the mutations detected in the samples in the

present study are located within the central DNA binding
domain (residues 102–292) of p53 and are particularly
common in the four highly conserved domains in this
region. This is consistent with previous reports [28, 29].
Silent mutations in the p53 gene have been reported to be
associated with poor prognosis of breast cancer [2] but a
definitive link for cervical cancer is yet to be established.
There is a possible synergism between silent mutations
and missense mutations in cancer development [2, 14].
The effect of missense mutations in the p53 gene brings
about single amino acid substitutions, resulting in defective
p53 conformation, leading to an inactive protein. Missense
mutations are the most common mutations observed in
our study, which is in line with report by Skaug et al. [30]
of about 90% missense mutations in their study.
The codons Phe19, Trp23, and Leu26 are present on

the transactivation domain of p53, which makes them
critical for MDM2 homologue binding, the principal p53
cellular antagonist [31]. The present study revealed a
frameshift mutation in codon 26, which may lead to

deregulation of MDM2, and its overexpression [32, 33]
targeting p53 for rapid degradation [28]. An earlier
report has suggested the primary involvement of point
mutations in the p53 gene, resulting in the substitution
of amino acids in the protein’s central region [34]. It was
observed that the E6 oncoprotein inactivates the codon
72 arginine polymorph more easily compared to the
proline polymorph, which has been associated with the
outcome of HPV infections. Hence, women that have
the arginine polymorph might be more susceptible to
the effects of the oncogenic HPV types [8]. Ten (10) se-
quences, representing the four cancer differentiation
stages were selected for analysis. Six sequences carry ar-
ginine polymorphism. This is corroborated by findings
in a study on the Greek population [23]. There was a
high presence of p53 arginine polymorphs in the tumour
suppressor, which influences the susceptibility of an
individual to cervical cancer [23]. Another finding [35]
reported that the E6 oncoprotein from high-risk human
papillomaviruses (HPVs) resulted in more efficient
degradation of the arginine polymorph (R72) than the
proline polymorph (P72). This drastically reduced cellu-
lar levels of p53 protein and increasing the risk of HPV-
associated cancers in arginine homozygotes.
The T350G sequence variation leads to the amino acid

substitution L83V in the E6 oncoprotein. Previous studies
have suggested that the missense substitution of valine for
leucine at codon 83 observed in our study (L83V) is attrib-
uted to viral persistence and thus it is regarded as a consid-
erable risk factor for the development of severe dysplasia
and cervical cancer [23]. In addition, tumour suppressor
associated single nucleotide polymorphisms might directly
or indirectly affect tumour progression as well as further

Fig. 4 Photomicrograph of biopsies from Pathology Department; P10 (a), P7 (b), P3 (c) and P2 (d) are representives of normal cervical epithelium
and cervicitis (26.7%), well-differentiated/polyp (30%), moderately differentiated (30%) and poorly differentiated (13.3%) respectively (magnification
×400). P10, P7, P3 and P2 represent the derived sequences from the PCR products

Gbadegesin et al. Egyptian Journal of Medical Human Genetics           (2021) 22:23 Page 6 of 8



interruption of cell cycles. Allelic polymorphisms that
occur in the regulatory regions of these genes are closely
associated with malignant cellular alterations [17]. Whereas
tumour suppressors are commonly inactivated by frame-
shift (insertions or deletions) or nonsense mutations, most
p53 mutations are missense and cause single amino-acid
changes at many different positions [14].
Although several studies have reported the association

of p53 protein accumulation and mutations with cancer
prognosis [14, 17, 23], few have explored the p53 gene
mutational landscape with respect to the histopatho-
logical analyses in cervical cancer, especially in African
populations. Most of the observed mutations in the
present study were missense and silent mutations which
suggest that the tumour suppressor gene, p53, does not
accumulate mutations so easily or spontaneously in
cervical carcinogenesis (consistent with the findings of
Tommasino et al. [28]). Therefore, mutation in this gene
can be a very important biomarker to evaluate the devel-
opment and extent of progression of cervical cancer [4].
An earlier report has suggested that advanced stage and
cancer subtypes with aggressive behaviour have more
frequent mutations leading to poor prognosis [14].

Conclusions
In this study, 19 mutational polymorphic variations in
exons 3 and 4 of the p53 gene were identified. Increased
accumulation of mutational polymorphic variability in p53
gene was found to be associated with increased severity of
cervical cancer; especially in the sequence-specific DNA-
binding domain. This tends to have a considerable impact
on cervical cancer progression. The present study is lim-
ited by the sample size. Further study, using larger co-
horts, will help to pinpoint specific polymorphic variability
in p53 gene with specific staging of cervical cancer. It may
also be possible to investigate the clinical significance
of the observed mutations on drug response amongst
cervical cancer patients in the study population.
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