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Abstract

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative age-related dementia that results in
memory loss of elderly people. Many hypotheses have been formally articulated till now to decipher the
pathogenesis of this disease. According to the compelling amyloidogenic hypothesis, β-secretase is a key regulatory
enzyme in AD development and is therefore considered as one of the major targets for the development of drugs
to treat AD. In this study, 40 plant-derived phytocompounds, proven to have β-secretase inhibitory activity in
different laboratory experiments, were evaluated using computational approaches in order to identify the best
possible β-secretase inhibitor(s).

Results: Amentoflavone (IFD score: − 7.842 Kcal/mol), Bilobetin (IFD score: − 7.417 Kcal/mol), and Ellagic acid (IFD
score: − 6.923 Kcal/mol) showed highest β-secretase inhibitory activities with high binding affinity among all the
selected phytocompounds and interacted with key amino acids, i.e., Asp32, Tyr71, and Asp228 in the catalytic site
of β-secretase. Moreover, these three molecules exhibited promising results in different drug potential assessment
experiments and displayed signs of correlation with significant pharmacological and biological activities.

Conclusion: Amentoflavone, Biolbetin, and Ellagic acid could be investigated further in developing β-secretase-
dependent drug for the effective treatment of AD. However, additional in vivo and in vitro experiments might be
required to strengthen the findings of this experiment.
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Background
Alzheimer’s disease (AD) is a perilous and progressive
neurodegenerative disorder that worsens over time and ul-
timately culminates in dementia [1, 2]. AD manifests dif-
ferent types of characteristic symptoms, such as cognitive
dysfunction (memory loss and language difficulties), be-
havioral disturbances (depression and hallucinations, also
known as non-cognitive symptoms), and impairment in
daily activities in affected individuals [3–5]. AD predomin-
antly results from genetic heritability, age, and abnormal

deposition of proteins inside as well as outside of brain
cells. These proteins include amyloid β (Aβ, extracellu-
larly) which is derived from the proteolysis of amyloid pre-
cursor protein (APP). APP is not only an integral but also
a type 1 transmembrane protein that is found in various
types of tissues but predominantly in neurons. It has been
suggested that APP might be responsible for the forma-
tion of synapses and repairment of neurons [6]. Extracel-
lular deposition of amyloid β proteins called amyloid
plaques constitute the fundamental pathogenic driver of
AD. Generated by the proteolytic activity of the β-
secretase enzyme, it is the prime drug target for the inhib-
ition of Aβ production in AD [7]. Presently, it is a matter
of great concern as AD is the sixth prevalent cause of
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death in the USA, killing more people than other diseases
such as breast and prostate cancers. Astonishingly, deaths
from AD have increased by 89% since 2000 such that it is
now estimated that someone develops AD in every 33 s in
the USA. Much to our dismay, the number will continue
to rise as high as 16 million by 2050 [8].

Amyloidogenic and non-amyloidogenic pathways and
role of β-secretase in AD
β-secretase, also known as beta-site amyloid precursor
protein cleavage enzyme 1 (BACE 1), is an aspartyl pro-
tease enzyme. Both APP and β-secretase mature in the
endoplasmic reticulum (ER) and are later transported to
the plasma membrane through the participation of the
Golgi body (Fig. 1) [9, 10]. As endosomes internalize
more than half of the APP, only a small amount is
cleaved by α-secretase enzyme (located on the cell sur-
face). Some of the APP are transported back to the
plasma membrane, while some are degraded by lyso-
somes. The enzyme α-secretase competes with the β-
secretase in the trans-Golgi network (TGN) for cleaving
and processing APP. β-secretase is located in the TGN
and endosomes [11]. It causes impairment in the traf-
ficking of APP in the cell surface upon finding an endo-
somal dysfunction. The internalization of APP increases
with the mediation of the β-secretase cleavage of APP

[12, 13]. The cleaved portion of APP by α or β-secretase
is further cleaved by γ-secretase (found in the ER), TGN,
and endosomes [11].
Several hypotheses propose that β-secretase enzyme gener-

ates Aβ protein in neurons. The active site of the enzyme β-
secretase is located in the extracellular domain and contains
two key aspartate residues: Asp332 and Asp28 [11, 12].
In normal health condition (in the absence of β-

secretase) and non-amyloidogenic pathway, amyloid pre-
cursor protein (APP) is cleaved sequentially. Firstly, the
amino-terminal portion of the protein is cleaved by α-
secretase. This secretes APP and produces carboxyterm-
inal fragment (CTF83), which precludes the generation
of Aβ protein. CTF83 is further cleaved by γ-secretase
and produces P3, a soluble and amino-terminal APP
intracellular domain (AICD). On the contrary, the β-
secretase enzyme processes APP through another path-
way named the amyloid pathway (for AD). In this path-
way, β-secretase enzyme trims the APP generating
secreted APP (sAPPβ) and carboxyterminal fragment
(CTF99). They are further cleaved by γ-secretase and
generates highly insoluble Aβ protein and AICD. These
insoluble Aβ proteins lead to the formation of amyloid
plaques and impair the activity of neurons. These pla-
ques destroy synapses, thus contributing to the develop-
ment of AD [13–16].

Fig. 1 Role of β-secretase in Alzheimer’s disease and amyloidogenic and non-amyloidogenic pathways. In non-amyloidogenic pathway, cleavage
of APP sequentially by α- and γ-secretase produces sAPPα and soluble P3, respectively. On the other hand, in amyloidogenic pathway, β-and γ-
secretase produces sAPPβ and insoluble Aβ protein, respectively, leading to the formation of β amyloid plaques. Matured APP and β-secretase
are transported to the plasma membrane by Golgi body. A portion of APP is degraded by lysosome
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Treatment of Alzheimer’s disease
Acetylcholinesterase inhibitor drugs are the most
prescribed drugs for the treatment of Alzheimer’s
disease owing to their beneficial effects in cognitive,
non-cognitive, and behavioral symptoms. These
drugs include donepezil (reversible and selective in-
hibitor), rivastigmine (selective and pseudoreversible
inhibitor), galantamine, tacrine (irreversible and
nonselective inhibitor), metrifonate (pseudoreversi-
ble inhibitor), eptastigmine (reversible and selective
inhibitor) as well as a newly approved drug, mem-
antine, an NMDA (N-methyl-D-aspartate receptor)
channel blocker [11, 17, 18]. Although these drugs are
widely used to treat AD, several reports have shown that
some of these drugs are not useful in mild cognitive im-
pairment. Some of them are not effective in severe cogni-
tive impairment either and have various side effects
including nausea, vomiting, decreased appetite, and gastric
acid production. In some cases, patients even show symp-
toms of hallucination, fatigue, dizziness, etc. Therefore,
there are a few detrimental effects that result from the
prolonged use of these drugs [19, 20]. Complementary
medicines, such as extracts from medicinal plants, also
have beneficial effects on cognitive and non-cognitive
symptoms of AD. These medicines are thought to have
less toxicity or side effects [19].
In this study, we evaluated the potentiality of 40

plant-derived phytocompounds to inhibit β-
secretase which have already shown β-secretase in-
hibition activity in different laboratory experiments.
We selected 3 best inhibitors from those 40 com-
pounds and subsequently analyzed them for their
drug-like potentials (Fig. 2).

Methods
Selection of ligand molecules
An extensive literature survey was carried out to identify
phytochemicals from plants that showed β-secretase in-
hibition in laboratory experiments. Forty ligands were
selected from literature review that displayed a β-
secretase inhibitory effect to varying extents in different
in vitro assays. Table 1 enlists the selected compounds
from various plant sources that were used in the next
phases of this study.

Molecular docking study
Protein preparation
The three-dimensional crystallographic structure of
human β-secretase (PDB ID:2OHM) was down-
loaded in PDB format from Protein Data Bank
(www.rcsb.org) [50]. The structure was then pre-
pared and processed using the Protein Preparation
Wizard in Maestro Schrödinger Suite (v11.4). Bond
orders were assigned to the structures and hydro-
gens were added to heavy atoms. All of the water
molecules were erased from the atoms, missing side
chains were added to the protein backbone using
Prime, and the states were generated with Epik at
pH 7 ± 2 [51]. At last, the structures were refined
and then minimized utilizing the Optimized Poten-
tials for Liquid Simulations force field (OPLS_
2005). Minimization was performed by setting the
greatest substantial particle RMSD (root-mean-
square deviation) to 30 Å, and any extraordinary
water under 3H bonds to non-water was again
eradicated during the minimization step.

Fig. 2 Strategies employed in this study to select best β-secretase inhibitor(s)
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Table 1 Selected phytocompounds known to inhibit β-secretase from different plants. MW molecular weight. (Molecular weight
was calculated from Molinspiration Cheminformatics server; https://www.molinspiration.com/cgi-bin/properties)

SL. no. Compound name PubChem CID Plant source MW miLogP IC50 (μM) References

01. 2,3-Dihydro-6-methylginkgetin 46911278 Cephalotaxus lanceolata 582.56 5.79 0.35 [21–23]

02. 2,3-Dihydroamentoflavone 44420106 Cycas beddomei 540.48 4.81 0.75 [24, 25]

03. α-Turmerone 14632996 Curcuma longa 218.33 3.78 39 [26]

04. β-Turmerone 196216 Curcuma longa 218.34 3.56 62 [26]

05. Aloe-emodin 10207 Cassia obtusifolia 270.24 2.42 19.8 [27]

06. Aloenin A 162305 Aloe arborescens 410.38 0.17 12.8 [28]

07. Amentoflavone 5281600 Selaginella tamariscina 538.46 5.16 1.54 [21, 29, 30]

08. Ar-Turmerone 160512 Curcuma longa 216.32 4.48 92 [26]

09. Bakuchiol 5468522 Psoralea corylifolia 256.39 5.90 0.7 [31]

10. Bavachalcone 6450879 Psoralea corylifolia 324.38 5.02 10.5 [31]

11. Bilobetin 5315459 Cephalotaxus harringtonia 552.49 5.44 2.02 [21]

12. Biochanin A 5280373 Trifolium pratense 284.27 2.80 0.28 [32, 33]

13. Bisdemethoxycurcumin 5315472 Curcuma longa 308.33 2.67 17 [34]

14. Boeravinone D 15081178 Abronia nana 342.30 3.13 4.24 [35]

15. Byakangelicine 10211 Angelica dahurica 334.32 1.79 220 [36]

16. Byakangelicol 3055167 Angelica dahurica 316.31 2.90 105 [36]

18. Catechin gallate 6419835 Camellia sinensis 442.38 2.54 6.0 [37]

19. Cinnamaldehyde 637511 Cinnamomum zeylanicum 132.16 2.48 947 [26]

20. Cis-scirpusin A 5279245 Smilax Rhizoma 368.52 5.76 0.1 [38]

21. Curcumin 969516 Curcuma longa 470.48 4.28 340 [34]

22. Demethoxycurcumin 5469424 Curcuma longa 368.38 2.30 217 [34]

Demethylsuberosin 5316525 Angelica gigas 412 [36]

23. Ellagic acid 5281855 Punica granatum 338.36 2.48 3.9 [39]

24. Epiberberine 160876 Coptidis rhizoma 302.19 0.94 8.6 [40]

25. Epicatechin 72276 Smilacis chinae 336.37 0.00 0.28 [37, 41, 42]

26. Epicurzerenone 5317062 Curcuma zedoaria 290.27 1.37 408 [26]

27. Epigallocatechin 72277 Camellia sinensis 230.31 3.88 2.5 [37]

28. Ethyl-4-methoxycinnamate 5281783 Kaempferia galanga 306.27 1.08 676 [26]

29. Eugenol 3314 Piper betle 206.24 2.96 580 [26]

30. Gallocatechin 65084 Camellia sinensis 254.29 -2.15 2.5 [37]

31. Ginkgetin 5271805 Ginkgo biloba 306.27 1.08 4.18 [21, 43]

32. Ginsenoside RG1 441923 Panax ginseng 306.27 1.08 6.18 [44, 45]

33. Heveaflavone 15559724 Hevea brasiliensis 566.5 5.97 10 [21]

34. Hispidin 54685921 Phellinus linteus 801.02 2.77 10 [46]

35. 2-Hydroxy-6-(12-phenyldodecyl) benzoic acid 14655079 Homalomena occulta 580.54 6.51 7.93 [47]

36. Imperatorin 10212 Angelica dahurica 246.22 1.80 91.8 [36]

37. Isoginkgetin 5318569 Podocarpus macrophyllus 566.5 5.97 3.01 [21]

38. Oxyresveratrol 5281717 Smilax Rhizoma 244.24 2.72 7.6 [38]

39. Veraphenol 185848 Smilax Rhizoma 242.23 2.65 4.2 [38]

40. Quercetin 5280343 Olea europaea 270.28 3.95 5.4 [48, 49]

Ullah et al. Egyptian Journal of Medical Human Genetics           (2021) 22:26 Page 4 of 15

https://www.molinspiration.com/cgi-bin/properties


Ligand preparation
A total of 40 selected ligand molecules were downloaded
in SDF format from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). These structures were then
processed and prepared using the LigPrep wizard of
Maestro Schrödinger suite [52]. Minimized 3D struc-
tures of ligands were generated using Epik2.2 within pH
7.0 ± 2.0 in the suite. Minimization was again carried
out using the OPLS_2005 force field which generated a
maximum of 32 possible stereoisomers depending on
available chiral centers on each molecule.

Receptor grid generation
Grid usually restricts the active site to a particular area
of the receptor protein for the ligand to dock specifically
within that area. A grid was generated using default Van
der Waals radius scaling factor 1.0 and charge cutoff
0.25, which was then subjected to OPLS_2005 force field
for the minimized structure in Glide [53]. A cubic box
was generated around the active site (co-crystallized ref-
erence ligand) of the target molecule. Then the grid box
dimension was adjusted to 14 Å × 14 Å ×14 Å for dock-
ing to be carried out.

Glide standard precision (SP) and extra precision (XP)
ligand docking
Usually, extra precision (XP) ligand docking is more ac-
curate in predicting the binding affinity of small ligand
libraries than standard precision (SP) ligand docking; the
latter is generally recommended for large ligand collec-
tions and sometimes may come with imperfection [54].
However, both of the docking methods were applied for
the selected ligand molecules to make a comparison be-
tween two different docking scores. The Van der Waals
radius scaling factor and charge cutoff was set to 0.80
and 0.15 respectively for all the ligand molecules under
study. The final score was assigned according to the
pose of docked ligand within the active site of the recep-
tor molecules. The best possible poses and types of lig-
and–receptor interactions were then analyzed using the
Discovery Studio Visualizer (v4.5) [55].

Prime MM-GBSA rescoring
After SP and XP ligand docking, the ligands were then
again subjected to MM-GBSA (Molecular mechanics–
generalized born and surface area) rescoring using the
Prime module of Maestro Schrödinger suite for further
evaluation. This technique utilizes the docked complex
and uses an implicit solvent, which then assigns a more
accurate scoring function and improves the overall free
binding affinity score upon the reprocessing of the com-
plex [54, 56]. It combines OPLS molecular mechanics
energies (EMM), a surface generalized born solvation
model for polar solvation (GSGB), and a nonpolar

salvation term (GNP) for total free energy (ΔGbind) calcu-
lation. The total free energy of binding was calculated by
the following equation:

ΔGbind ¼ Gcomplex − Gprotein −Gligand
� �

;where G
¼ EMM þ GSGB þ GNP

Induced fit docking
Ten compounds were selected based on the MM-GBSA
score for further evaluation as it is a more rigorous scor-
ing method. After that, these ligands were subjected to
induced fit docking (IFD), which is an even more accur-
ate docking method to generate the native poses of the
ligands from different sources [57]. Again, OPLS_2005
force field was applied after generating a grid around the
co-crystallized ligand of the receptor. This time the ten
best ligands docked rigidly. Receptor and Ligand Van
Der Waals screening was set at 0.70 and 0.50, respect-
ively. Residues within 2 Å were refined to generate the 2
best possible poses with extra precision. Three best li-
gands were selected based on the IFD score.

ADME/toxicity profiling
In silico testing of absorption, distribution, metabolism,
excretion, and toxicity of candidate drug molecule have
become an essential tool in assessing the preclinical
safety that contributes to reducing the later stage failure
of the investigated drug molecule [58]. The three best-
selected ligand molecules were analyzed using admet-
SAR (http://lmmd.ecust.edu.cn/admetsar2) and pKCSM
(http://biosig.unimelb.edu.au/pkcsm/prediction) server
to predict different ADME/T parameters [59, 60].

Pharmacological and biological activity prediction
Pharmacological activities of the three best ligand mole-
cules were predicted using PASS online server (http://
www.pharmaexpert.ru/passonline/) and the biological
activities with GPCR (G protein-coupled receptor) lig-
and, ion channel, enzymes, etc., were predicted again
using Molinspiration Cheminformatics server (https://
www.molinspiration.com/cgi-bin/properties) [61, 62].
Prediction of Activity Spectra for Substances (PASS) es-
timates the pharmacological activities based on the com-
pound’s native chemical structure. PASS predicts the
function of a compound based on Structure–Activity Re-
lationship Base (SAR Base), which assumes that the ac-
tivity of a compound is related to its structure. It
functions by comparing the 2D structure of an unknown
compound to other well-known compounds possessing
specific biological activities existing in the database with
almost 95% accuracy [63].
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Density functional theory (DFT) calculation
Minimized ligand structures obtained from LigPrep were
used for DFT calculation using the Jaguar panel of
Maestro Schrödinger Suite. Becke’s three-parameter ex-
change potential and Lee-Yang-Parr correlation func-
tional (B3LYP) theory with 6-31G* basis set were used
for DFT calculation [64–67]. Quantum chemical proper-
ties such as surface properties (MO, density, potential)
and multipole moments were calculated along with
HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) energy. After-
wards, the global frontier orbital was analyzed, and hard-
ness (η) and softness (S) of selected molecules were
calculated using the following equation as per Parr and
Pearson interpretation and Koopmans theorem [68, 69].

η ¼ HOMOɛ − LUMOɛð Þ=2; S ¼ 1=η

Results
Molecular docking study
In this experiment, 40 selected ligand molecules that
have been shown to have in vitro β-secretase inhibitory
effect were docked against an intended target protein.
Initially, 10 ligand molecules were selected based on free
binding energy (Table 2). A significant correlation
among the IC50 value, SP docking score, XP docking
score, and free binding energy was observed for the mol-
ecules having molecular weight between 330 and 580 Da
with minimal exception. However, a slight variation be-
tween SP and XP docking scores was observed among
the different ligand molecules. A total of 10 ligand mole-
cules were selected based on MM-GBSA docking scores
(Table 2). Afterwards, the 10 best-selected ligands were
subjected to IFD which is a powerful and accurate dock-
ing method for generating poses and assigning binding
scores [70]. Finally, 3 best-performed ligands were

selected from IFD study which were then analyzed fur-
ther in the subsequent phases of different experiments.

Binding mode of amentoflavone, bilobetin, and ellagic acid
with β-secretase
Amentoflavone, bilobetin, and ellagic acid showed super-
ior IFD score and XP Gscore among the 10 selected lig-
and molecules (Table 2). Both the hydrogen bonds and
hydrophobic interactions play vital roles in drug–recep-
tor interaction by strengthening and specifying the inter-
action between ligand and target molecules [71]. All of
the ligand molecules formed a significant number of
hydrogen and hydrophobic interactions with respective
amino acids inside the binding pocket of the target
(Table 3 and Fig. 3).
It has been observed that amentoflavone docked with

β-secretase with an IFD score of − 823.501 kcal/mol and
XP Gscore of − 7.842 kcal/mol interacted with 5 amino
acids within the binding pocket and formed a total of 8
interactions (Table 5). It formed 4 conventional hydro-
gen bonds with Asp228, Phe108, Lys107, and Gly34
amino acid residues at 3.04-, 1.88-, 1.97-, and 2.34-Å
distance apart respectively within the binding site of β-
secretase. Moreover, amentoflavone also formed add-
itional hydrophobic interactions, i.e., Pi–Pi stacked and
Pi–Pi T shaped with Phe108 and Tyr71 amino acid resi-
dues (Fig. 3).
The bilobetin docked with β-secretase with an IFD

score of − 821.327 kcal/mol and XP Gscore of − 7.417
kcal/mol and interacted with 6 amino acids within the
binding pocket and formed a total of 9 interactions
within the binding pocket (Table 5). It formed 3 conven-
tional hydrogen bonds with Phe108, Lys107, and Tyr198
amino acid residues at 1.86-, 1.94-, and 2.03-Å distance
apart, respectively. Moreover, amentoflavone also
formed 2 non-conventional hydrogen bonds with
Asp228, and Gly34 amino acid residues at 2.81- and
2.69-Å distance apart respectively, within the binding

Table 2 Result of SP and XP docking and free binding energy calculation of selected ligands

Sl. no. Compound name SP docking score XP docking score MW IC50
(μM)

MM-GBSA
(Kcal/mol)

01. Amentoflavone − 8.56 − 8.01 538.46 1.54 − 67.23

02. Bilobetin − 7.89 − 7.23 552.49 2.02 − 63.02

03. Ellagic acid − 6.91 − 7.28 338.36 3.90 − 62.86

04. Boeravinone D − 7.19 − 6.93 342.30 4.24 − 60.28

05. 2,3-Dihydroamentoflavone − 6.28 − 7.03 540.48 0.75 − 60.07

06. Quercetin − 6.84 − 6.27 270.28 5.40 − 57.63

07. 2-Hydroxy-6-(12-phenyldodecyl) benzoic acid − 7.87 − 6.51 580.54 7.93 − 56.64

08. Catechin gallate − 5.49 − 6.91 442.38 6.00 − 56.18

09. Heveaflavone − 5.83 − 5.65 566.50 10.00 − 55.48

10. Aloenin A − 5.03 − 4.84 410.38 12.80 − 53.23
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cleft. It also formed few hydrophobic interactions (i.e.,
Pi–Pi stacked and Pi–Pi T-shaped interactions) with
Tyr71 and Phe108 amino acid residues (Fig. 3).
Ellagic acid docked with β-secretase with an IFD score

of − 819.500 kcal/mol and XP Gscore of − 6.923 kcal/
mol, interacted with 3 amino acids within the binding
pocket and formed a total of 7 interactions within the
binding pocket (Table 5). It formed 2 conventional
hydrogen bonds with Thr72 amino acid residue at 1.99-
and 2.01-Å distance apart respectively. Moreover, amen-
toflavone also formed another conventional hydrogen
bond with Asp32 amino acid residue at 1.97-Å distance
apart respectively within the binding cleft. It was also re-
ported to form other hydrophobic interactions (i.e., Pi–
Pi stacked and Pi–Pi T-shaped interactions with only
Tyr71 amino acid residue (Fig. 3).

ADME/toxicity profiling
The three best-ligand molecules (Table 4) were subjected
to analyze their absorption, distribution, metabolism, ex-
cretion, and toxicity profiles. The result of ADME/toxicity

analysis is represented in Table 5. All of the ligand mole-
cules were reported to be highly absorbed in the intestine
and have low Caco-2 permeability. Only ellagic acid exhib-
ited high oral bioavailability.
None of them reported having the ability to cross the

blood–brain barrier, and no ligand showed the sign to
be P-glycoprotein substrate. Only bilobetin was reported
to be a P-glycoprotein inhibitor among the three se-
lected ligand molecules. Ellagic acid was shown to be
neither a substrate nor an inhibitor of any of the selected
enzymes of the cytochrome P450 family. Both amento-
flavone and bilobetin were reported to be the substrate
of only CYP3A4. None of the selected ligands was pre-
dicted to be OCT2 (organic cation transporter 2) sub-
strate. All of the selected ligands were predicted to
induce hepatotoxicity, and only bilobetin was reported
to inhibit the hERG (human Ether-a-go-go-related gene)
channel. Moreover, ellagic acid was reported to cause
eye irritation. Bilobetin showed type III acute oral tox-
icity, whereas the other two ligand molecules were re-
ported to have type II oral toxicity.

Table 3 Result of best-performed ligand molecules in the IFD experiment, type of interactions, interacting amino acids, and bond
distances

Compound name XP Gscore
(Kcal/mol)

IFD score
(Kcal/mol)

Interacting residues Bond distance
(Å)

Type of interaction Interaction category

Amentoflavone − 7.842 − 823.501 Asp228 3.04 Hydrogen bond Conventional

Phe108 1.88 Hydrogen bond Conventional

Lys107 1.97 Hydrogen bond Conventional

Phe108 5.58 Pi–Pi stacked Hydrophobic

Tyr71 5.15 Pi–Pi T-shaped Hydrophobic

Gly34 2.34 Hydrogen bond Conventional

Tyr71 5.51 Pi–Pi stacked Hydrophobic

Tyr71 4.61 Pi–Pi T-shaped Hydrophobic

Bilobetin − 7.417 − 821.327 Lys107 1.94 Hydrogen bond Conventional

Phe108 1.86 Hydrogen bond Conventional

Tyr71 4.84 Pi–Pi stacked Hydrophobic

Phe108 5.68 Pi–Pi T-shaped Hydrophobic

Tyr71 4.67 Pi–Pi stacked Hydrophobic

Asp228 2.81 Carbon hydrogen bond Non-conventional

Tyr71 5.14 Pi–Pi stacked Hydrophobic

Gly34 2.69 Carbon hydrogen bond Non-conventional

Tyr198 2.03 Hydrogen bond Conventional

Ellagic acid − 6.923 − 819.500 Tyr71 4.97 Pi–Pi stacked Hydrophobic

Asp32 1.79 Hydrogen bond Conventional

Tyr71 4.40 Pi–Pi stacked Hydrophobic

Thr72 1.99 Hydrogen bond Conventional

Tyr71 3.82 Pi–Pi stacked Hydrophobic

Thr72 2.01 Hydrogen bond Conventional

Tyr71 3.93 Pi–Pi stacked Hydrophobic
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Pharmacological and biological activity prediction
The pharmacological connection of the ligand molecules
with other neurological diseases, proteins, and enzymes
involved in AD was analyzed using PASS online (Table 6).
PASS predicts the result in the context of probability of
activity (Pa) and inactivity (Pi) of a compound. This result
varies between 0.000 and 1.000. The activity is considered
possible for a compound only when Pa > Pi [72]. When Pa
> 0.7, the compound is very likely to exhibit the activity,
but its possibility of being an analogue to a known
pharmaceutical is also high. When 0.5 < Pa < 0.7, the
compound is likely to exhibit the activity, but the prob-
ability along with the chance of being a known pharma-
ceutical agent is also lower. When Pa < 0.5, the compound
is less likely to exhibit the activity [73]. Ellagic acid was

reported to have better pharmacological activity with the
highest probability scores. Amentoflavone and bilobetin
were predicted to have similar pharmacological activity.
The three best ligands were analyzed to predict their

involvement in biological activities with GPCR ligand,
ion channels, enzyme, etc. The result of this experiment
is summarized in Table 7. GPCRs (G protein-coupled re-
ceptors), ion channels, enzymes, nuclear receptors, etc.,
are the most potent drug targets in the human body.
Among them, only GPCRs are the targets of almost 50%
of currently available drugs [74, 75]. Amentoflavone
showed better biological activities followed by bilobetin
and ellagic acid. Ellagic acid had the highest positive
score. Amentoflavone and bilobetin also reported show-
ing positive scores as enzyme inhibitors. The findings of

Fig. 3 a Three-dimensional representation of best possible poses of ligand molecules (green, stick) inside the binding pocket of β-secretase
(black, ribbon). b Two-dimensional representation of ligand–receptor interaction. Interacting amino acids are represented in a three-letter code
and their respective number in specific chain inside disc. Dotted lines represent type of interactions; green: conventional hydrogen bond; light
green: carbon hydrogen bond. Pink: Pi–Pi stacked and Pi–Pi T-shaped
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biological activity prediction indicate the important
therapeutic significance of these molecules, but as use-
less may raise the concern of adverse effects.

Analysis of frontier orbitals
Density functional theory calculation aids to understand
the energetics, structure, and properties of molecules at
a lower cost. Analysis of the frontier orbitals of mole-
cules allows us to understand the pharmacological prop-
erties of the molecule under investigation [76, 77]. The
detailed HOMO (highest occupied molecular orbital) en-
ergy, LUMO (lowest unoccupied molecular orbital) en-
ergy, energy gap (HOMO–LUMO gap), hardness, and
softness of the selected four compounds are summarized
in Table 8. The occupation of HOMO and LUMO is il-
lustrated in Fig. 4 for each compound. HOMO and
LUMO orbitals help to understand the kinetic stability
and chemical reactivity of a compound. HOMO usually
occupies a small region in a molecule with a higher abil-
ity to donate one or more electrons during bond forma-
tion. LUMO represents the region capable of accepting

electron(s) from another macromolecule (Fig. 4) [78].
The compound with higher HOMO–LUMO gap is con-
sidered energetically unfavorable to undergo a chemical
reaction [79]. The highest gap was observed for Amento-
flavone, whereas Ellagic acid was reported to have the
lowest energy gap. According to the energy gap, the
order of the compounds is amentoflavone > bilobetin >
ellagic acid. The dipole moment of each compound was
also calculated along with HOMO and LUMO energy,
the scores of which are also reported in Table 8. Accord-
ing to the dipole moment score, the stability order of
compounds is ellagic acid > amentoflavone > bilobetin.

Discussion
Molecular docking is one of the most commonly used
computer-aided techniques in structure-based drug de-
signing. It defines the best possible orientation of a small
ligand molecule when bound to the binding site of a sec-
ond target macromolecular target [80, 81]. This tech-
nique utilizes a specific scoring algorithm and assigns
binding energy to the ligand molecules based on the

Table 4 Best-performed ligands in overall docking experiment
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Table 5 Results of ADME/T tests of best-selected ligands. OCT2 organic cation transporter 2, hERG human ether-a-go-go-related
gene, CYP cytochrome P450

Properties Amentoflavone Bilobetin Ellagic acid

Absorption

Human intestinal absorption High High High

Human oral bioavailability Low Low High

Caco-2 permeability Low Low Low

Distribution

P-glycoprotein substrate No No No

P-glycoprotein inhibitor No Yes No

Blood–brain barrier penetration No No No

Metabolism

CYP3A4 substrate Yes Yes No

CYP2C9 substrate No No No

CYP2D6 substrate No No No

CYP3A4 inhibition Yes Yes No

CYP2C9 inhibition Yes Yes No

CYP2D6 inhibition Yes Yes No

Excretion

Total clearance 0.484 0.571 0.537

OCT2 substrate No No No

Toxicity

AMES toxicity No No No

Hepatotoxicity Yes Yes Yes

hERG inhibition No Yes No

Eye irritation No No Yes

Acute oral toxicity Type II Type III Type II

Table 6 Result of pharmacological activity prediction of selected ligand molecules. Pa>0.7: Compound is very likely to have activity;
Pa>0.5: Compound is likely to have activity; Pa>0.3: Compound is less likely to have activity.

Activity Amentoflavone Bilobetin Ellagic acid

Pa Pi Pa Pi Pa Pi

Antiparkinson - - - - 0.163 0.096

Multiple sclerosis treatment - - - - - -

Nitric oxide antagonist 0.489 0.005 0.434 0.006 0.324 0.011

Phosphatase inhibitor 0.489 0.117 0.358 0.234 0.702 0.013

Protein-disulfide reductase (glutathione) inhibitor 0.417 0.113 0.290 0.241 0.572 0.045

Antineoplastic (brain cancer) 0.256 0.052 0.252 0.055 0.208 0.115

Dementia treatment 0.287 0.160 0.288 0.159 0.396 0.054

Nitrite reductase (NO-forming) inhibitor 0.332 0.062 0.212 0.144 0.532 0.016

NADPH peroxidase inhibitor 0.537 0.059 0.328 0.141 0.856 0.005

NADPH-cytochrome-c2 reductase inhibitor 0.543 0.050 0.379 0.125 0.784 0.008

Glutathione reductase stimulant - - - - 0.072 0.040
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poses that fit with the target. It reflects the binding affinity
of a ligand molecule for the target. The low binding en-
ergy of a ligand–receptor complex indicates high stability
of the ligand–receptor complex. It confers that the com-
plex remains more time in contact [82]. Besides being a
more rigorous scoring that guides the post-processing of
docking experiment, MM-GBSA scoring predicts the most
accurate free binding energy of ligand–receptor complex
[83–85]. In this experiment, the three ligands—amentofla-
vone, bilobetin, and ellagic acid—were found to be the
best inhibitors of β-secretase upon sequential molecular
docking experiment (Tables 2 and 3) (Fig. 3).
In silico ADME/toxicity analysis allows rigorous phar-

macokinetic property and toxicity testing. This analysis
is required to confirm whether a drug should sustain the
Phase I clinical trial or not and, in turn, assists in the
in vitro assays of the candidate drug [86, 87]. Blood–
brain barrier permeability is required to be confirmed
for the drugs that primarily target the cells of the central
nervous system (CNS). Since the oral delivery system is
the most frequently used route of drug delivery and the
delivered drug travels through the digestive tract into
the intestine, it is expected that the drug is highly
absorbed in the human intestinal tissue. P-glycoproteins
are the embedded glycoproteins on the cell membrane
that are responsible for facilitating the transport of many
drugs through the cell membrane. As a result, their in-
hibition may affect the normal drug transport inside the
human body. Caco-2 cell line is usually used for the as-
sessment of drug permeability of a new candidate which,
in turn, reflects the human intestinal tissue permeability
[88–92]. Cytochrome P450 family of enzymes is respon-
sible to control drug interaction, metabolism, and excre-
tion inside the body. Inhibition of these enzymes may

lead to acute drug toxicity, slow clearance, and eventu-
ally malfunction of the drug compound inside the hu-
man body [93–95]. The AMES toxicity examines the
toxicity of chemicals [96, 97]. hERG (Human ether-a-go-
go-related gene) channels are the voltage-gated potas-
sium ion channels that play key roles in potassium ion
transport along the cell membrane. Different structurally
and functionally unrelated drugs have been reported to
block the hERG potassium channel, raising the concern
of off-target drug interaction. Therefore, it is imperative
to screen compounds for activity on hERG channels
early in the lead optimization process of a drug discov-
ery approach to reduce the risk of a drug candidate fail-
ing in preclinical safety studies due to the blockade of
hERG channels [98]. Renal OCT2 (organic cation trans-
porter 2) is important for drug and xenobiotic excretion
through the kidney. The substrates of this transporter
protein are thought to be excreted easily with urine [99].
All of the selected ligand molecules were reported to
have similar ADME/T properties (Table 5).
The best-selected molecules were also analyzed for respective

pharmacological activity and biological activity. Ellagic acid and
amentoflavone reported having better pharmacological and bio-
logical activity, respectively (Tables 6 and 7). The analysis of
frontier orbitals revealed that the best-selected molecules were
also stable to undergo chemical reactions (Table 8) (Fig. 4).
Finally, medicinal plants are potential sources of nu-

merous phytocompounds of great therapeutic values,
with many being considered in alleviating Alzheimer’s
disease conditions [100]. In this experiment, a total of 40
plant-derived phytochemicals were analyzed in stepwise
computational molecular docking approaches to identify
potential inhibitors of β-secretase. Eventually, 3 ligands
(i.e., amentoflavone, bilobetin, and ellagic acid) were se-
lected as the best inhibitors. A significant correlation
among the IC50 values, SP docking scores, XP docking
scores, and free binding energies for the molecules hav-
ing a molecular weight in a specific range was observed
with minimal exception (Table 2).
Asp32 and Asp228 amino acid residues from the cata-

lytic dyad inside the active site of β-secretase. Portray
crucial contributions for the cleavage of the amyloid pre-
cursor protein. Again, Tyr71 residue within the active
site responds to inhibitor binding by changing its con-
formation [101, 102]. In this experiment, amentoflavone
formed 1 conventional hydrogen bond with Asp228 and

Table 7 Predicted biological activities of best three ligands

Bioactivity Score

Amentoflavone Bilobetin Ellagic acid

GPCR ligand 0.07 0.04 − 0.29

Ion channel modulator − 0.15 − 0.26 − 0.27

Kinase inhibitor 0.19 0.13 − 0.01

Nuclear receptor ligand 0.21 0.15 0.11

Protease inhibitor 0.06 0.01 − 0.18

Enzyme inhibitor 0.10 0.04 0.17

Table 8 Result of DFT calculation. The unit of HOMO, LUMO, gap, hardness, and softness are in Hartree and the unit of dipole
moment is in Debye

Compound name HOMO LUMO Gap Hardness Softness Dipole moment

Amentoflavone − 0.21882 − 0.05716 0.16166 0.08083 12.3716 4.3526

Bilobetin − 0.22136 − 0.06108 0.16028 0.08014 12.4782 4.7627

Ellagic acid − 0.22772 − 0.06910 0.15801 0.07801 12.8189 2.4619
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3 hydrophobic interactions with Tyr71 amino acid resi-
dues (Table 3 and Fig. 4). Again, bilobetin formed 1
non-conventional hydrogen bond with Asp228 and 3
hydrophobic interactions with Tyr71 amino acid resi-
dues. Moreover, ellagic acid also formed 1 conventional
hydrogen bond with Asp32 and 4 hydrophobic interac-
tions with Tyr71 amino acid residues. Hence, these com-
pounds are expected to interfere with the normal
function of β-secretase. Later, they were predicted to
perform almost similar when analyzed in different post-
screening studies. Impermeability of the selected com-
pounds to the blood–brain barrier might require further
modification since this characteristic is a major concern
for AD drug development (Table 5) [103].
Finally, the de novo drug discovery process involves

prolonged time, multiple steps and elevated cost.
Computer-aided drug designing nowadays offers great fi-
delity of prediction and has become increasingly popular
in the last few decades. It is used in conjunction with
in vitro drug discovery and greatly helps in reducing
time and cost of any de novo drug discovery initiatives.
In this study, we screened 40 known inhibitors (phyto-
compounds) of β-secretase and eventually found amen-
toflavone, bilobetin, and ellagic acid as the best
inhibitors. The compounds were found to interact with
the key amino acids in the active site of β-secretase.
Moreover, the best molecules proved to be adequately
harmless when they were analyzed in the different steps
of drug-likeness property analysis experiment. Therefore,
these molecules can be investigated further to develop
potent anti-AD drugs. The other molecules of this study
could also be investigated since they also performed very

similarly in docking experiments. However, computa-
tional exploration is largely based on the modeling of
the molecules and sometimes may generate faulty out-
comes [104, 105]. Therefore, further in vivo and in vitro
studies might be required to strengthen the findings of
this study.

Conclusion
The underlying mechanism of AD development still re-
mains unclear. On top of that, the presence of the
blood–brain barrier makes it difficult to design a drug to
treat AD. As a result, not a single drug has yet been
proven to treat this progressive neurological disease to
the extent of any satisfactory margin. In this study, we
analyzed 40 phytocompounds that showed a β-secretase
inhibitory effect in laboratory studies via different com-
putational experiments. Upon continuous exploration,
we found amentoflavone, bilobetin, and ellagic acid as
the most potent inhibitors of β-secretase, which could
be the best possible drugs for β-secretase dependent AD
treatment. These compounds also performed well in dif-
ferent post-screening studies unveiling the potential
druggable properties. Nonetheless, amentoflavone, bilo-
betin, and ellagic acid could be investigated further for
potential AD drug discovery. Additionally, the other se-
lected compounds could also be analyzed further since
they also performed well in different experiments of this
study. This study should contribute to the development
of an effective drug for AD treatment in the very near
future. However, further supportive laboratory experi-
ments and interventions might be required to support
the findings of the study.

Fig. 4 The HOMO and LUMO occupation for the selected compounds. Blue and red are positive and negative in its wave function

Ullah et al. Egyptian Journal of Medical Human Genetics           (2021) 22:26 Page 12 of 15



Abbreviations
AD: Alzheimer’s disease; ADME/T: Absorption, distribution, metabolism,
excretion and toxicity; AICD: APP intracellular domain; APP: Amyloid
precursor protein; BACE 1: Beta-site amyloid precursor protein cleavage
enzyme 1; BL3YP: Becke’s three-parameter exchange potential and Lee-Yang-
Parr correlation; CTF83: Carboxyterminal fragment; DFT: Density functional
theory; ER: Endoplasmic reticulum; HOMO: Highest occupied molecular
orbital; IFD: Induced fit docking; LUMO: Lowest unoccupied molecular
orbital; MM-GBSA: Molecular mechanics–generalized born and surface area;
NMDA: N-methyl-D-aspartate receptor; OPLS: Optimized potentials for liquid
simulations; PASS: Prediction of activity spectra for substances; PDB: Protein
Data Bank; RMSD: Root-mean-square deviation; SAR: Structure–activity
relationship; SP : Standard precision; TGN: Trans-Golgi network; XP: Extra
precision

Acknowledgements
The authors are thankful to the members of Swift Integrity Computational
Lab, Dhaka, Bangladesh for their kind support to carry out the experiments.

Authors’ contributions
MU, FJ, BS, and YA wrote the draft manuscript. MU, BS, and NA carried out
the experiment. MU conceived and designed the study. YA, NA, AN, and TA
edited the paper. MU, YA, BS, NA, and AN revised the paper. The authors
approved the final version for publication.

Funding
Authors received no funding from any external sources.

Availability of data and materials
Authors made all the data generated during experiment available in this
manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare no conflict of interest

Author details
1Department of Biotechnology and Genetic Engineering, Faculty of Biological
Sciences, Jahangirnagar University, Dhaka, Bangladesh. 2Department of
Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal
University of Science and Technology, Sylhet, Bangladesh. 3Biotechnology
Program, Department of Mathematics and Natural Science, School of Data
and Sciences, BRAC University, Dhaka, Bangladesh. 4Department of Genetic
Engineering and Biotechnology, Faculty of Biological Sciences, University of
Chittagong, Chattogram, Bangladesh.

Received: 18 December 2020 Accepted: 17 February 2021

References
1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011)

Alzheimer’s disease. Lancet 377(9770):1019–1031
2. Alzheimer’s Association (2018) 2018 Alzheimer’s disease facts and figures.

Alzheimers Dement 14(3):367–429
3. Mendez MF (2012) Early-onset Alzheimer’s disease: nonamnestic subtypes

and type 2 AD. Arch Med Res 43(8):677–685
4. Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA (2012) The

natural history of cognitive decline in Alzheimer’s disease. Psychol Aging
27(4):1008–1017

5. Burns A, Jacoby R, Levy R (1990) Psychiatric phenomena in Alzheimer’s
disease. I: disorders of thought content. Br J Psychiatry 157(1):72–76

6. Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related
therapies. Transl Neurodegeneration 7(1):1–7

7. Humpel C (2011) Chronic mild cerebrovascular dysfunction as a cause for
Alzheimer’s disease? Exp Gerontol 46(4):225–232

8. De Gage SB, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M, Pariente
A, Bégaud B (2014) Benzodiazepine use and risk of Alzheimer’s disease:
case-control study. BMJ 349:g5205

9. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic
processing of APP. Cold Spring Harbor Perspect Med 2(5):a006270

10. Vassar R et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor
protein by the transmembrane aspartic protease BACE. Science 286(5440):
735–741

11. Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C (2017) Molecular
pathogenesis of Alzheimer’s disease: an update. Ann Neurosci 24(1):46–54

12. Nixon RA (2017) Amyloid precursor protein and endosomal–lysosomal
dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial
disease. FASEB J 31(7):2729–2743

13. Alzheimer’s Association (2017) 2017 Alzheimer’s disease facts and figures.
Alzheimers Dement 13(4):325–373

14. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of
APP processing enzymes and products. NeuroMolecular Med 12(1):1–12

15. Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family
members as amyloid precursor protein α-secretases. J Neurosci Res 74(3):
342–352

16. Games D, Adams D, Alessandrini R, Barbour R, Borthelette P, Blackwell C,
Carr T, Clemens J, Donaldson T, Gillespie F, Guido T (1995) Alzheimer-type
neuropathology in transgenic mice overexpressing V717F β-amyloid
precursor protein. Nature 373(6514):523

17. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the
aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

18. Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug
development pipeline: 2018. Alzheimers Dement 4:195–214

19. Kısa D, Korkmaz N, Taslimi P, Tuzun B, Tekin Ş, Karadag A, Şen F (2020)
Bioactivity and molecular docking studies of some nickel complexes: new
analogues for the treatment of Alzheimer, glaucoma and epileptic diseases.
Bioorg Chem 101:104066

20. Raschetti R, Albanese E, Vanacore N, Maggini M (2007) Cholinesterase
inhibitors in mild cognitive impairment: a systematic review of randomised
trials. PLoS Med 4(11):e338

21. Sasaki H, Miki K, Kinoshita K, Koyama K, Juliawaty LD, Achmad SA, Hakim EH,
Kaneda M, Takahashi K (2010) β-Secretase (BACE-1) inhibitory effect of
biflavonoids. Bioorg Med Chem Lett 20(15):4558–4560

22. Razzaghi-Asl N, Sepehri S, Ebadi A, Miri R, Shahabipour S (2015) Molecular
docking and quantum mechanical studies on biflavonoid structures as
BACE-1 inhibitors. Struct Chem 26(2):607–621

23. Zhang YM, Zhan R, Chen YG, Huang ZX (2014) Two new flavones from the
twigs and leaves of Cephalotaxus lanceolata. Phytochem Lett 9:82–85

24. Ghosh AK, Brindisi M, Tang J (2012) Developing β-secretase inhibitors for
treatment of Alzheimer’s disease. J Neurochem 120:71–83

25. Das B, Mahender G, Rao YK, Prabhakar A, Jagadeesh B (2005) Biflavonoids
from Cycas beddomei. Chem Pharm Bull 53(1):135–136

26. Matsumura S, Murata K, Yoshioka Y, Matsuda H (2016) Search for β-secretase
inhibitors from natural spices. Nat Prod Commun 11(4):
1934578X1601100423

27. Jung HA, Ali MY, Jung HJ, Jeong HO, Chung HY, Choi JS (2016) Inhibitory
activities of major anthraquinones and other constituents from Cassia
obtusifolia against β-secretase and cholinesterases. J Ethnopharmacol 191:
152–160

28. Gao B, Yao CS, Zhou JY, Chen RY, Fang WS (2006) Active constituents from
Aloe arborescens as BACE inhibitors. Yao Xue Xue Bao 41(10):1000–1003

29. Thapa A, Chi EY (2015) Biflavonoids as potential small molecule therapeutics
for Alzheimer’s disease. In: Natural compounds as therapeutic agents for
amyloidogenic diseases. Springer, Cham, pp 55–77

30. Jung HJ, Sung WS, Yeo SH, Kim HS, Lee IS, Woo ER, Lee DG (2006)
Antifungal effect of amentoflavone derived from Selaginella tamariscina.
Arch Pharm Res 29(9):746

31. Choi YH, Yon GH, Hong KS, Yoo DS, Choi CW, Park WK, Kong JY, Kim YS,
Ryu SY (2008) In vitro BACE-1 inhibitory phenolic components from the
seeds of Psoralea corylifolia. Planta Med 74(11):1405–1408

32. Park JH, Jun M (2016) Neuroprotective effect of biochanin A via the
inhibition of β-secretase (BACE1). :
484–484

33. Saviranta NM, Anttonen MJ, von Wright A, Karjalainen RO (2008) Red clover
(Trifolium pratense L.) isoflavones: determination of concentrations by plant
stage, flower colour, plant part and cultivar. J Sci Food Agric 88(1):125–132

Ullah et al. Egyptian Journal of Medical Human Genetics           (2021) 22:26 Page 13 of 15



34. Wang X, Kim JR, Lee SB, Kim YJ, Jung MY, Kwon HW, Ahn YJ (2014) Effects
of curcuminoids identified in rhizomes of Curcuma longa on BACE-1
inhibitory and behavioral activity and lifespan of Alzheimer’s disease
Drosophila models. BMC Complement Altern Med 14(1):88

35. Park SH, Yang EJ, Kim SI, Song KS (2014) β-Secretase (BACE1)-inhibiting C-
methylrotenoids from Abronia nana suspension cultures. Bioorg Med Chem
Lett 24(13):2945–2948

36. Marumoto S, Miyazawa M (2012) Structure–activity relationships for naturally
occurring coumarins as β-secretase inhibitor. Bioorg Med Chem 20(2):784–
788

37. Jeon SY, Bae K, Seong YH, Song KS (2003) Green tea catechins as a BACE1
(β-secretase) inhibitor. Bioorg Med Chem Lett 13(22):3905–3908

38. Jeon SY, Kwon SH, Seong YH, Bae K, Hur JM, Lee YY, Suh DY, Song KS
(2007) β-Secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma.
Phytomedicine 14(6):403–408

39. Kwak HM, Jeon SY, Sohng BH, Kim JG, Lee JM, Lee KB, Jeong HH, Hur JM,
Kang YH, Song KS (2005) β-Secretase (BACE1) inhibitors from pomegranate
(Punica granatum) husk. Arch Pharm Res 28(12):1328–1332

40. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS (2009) Anti-Alzheimer
and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull
32(8):1433–1438

41. Dhananjayan K, Arunachalam S, Raj BA (2014) Targeting BACE1 (Beta
secretase) through polyphenolic compounds-a computational insilico
approach with emphasis on binding site analysis. J Comput Methods Mol
Des 4(1):14–24

42. Ban JY, Jeon SY, Bae K, Song KS, Seong YH (2006) Catechin and epicatechin
from Smilacis chinae rhizome protect cultured rat cortical neurons against
amyloid β protein (25–35)-induced neurotoxicity through inhibition of
cytosolic calcium elevation. Life Sci 79(24):2251–2259

43. Kwak WJ, Han CK, Son KH, Chang HW, Kang SS, Park BK, Kim HP (2002)
Effects of Ginkgetin from Ginkgo biloba leaves on cyclooxygenases and
in vivo skin inflammation. Planta Med 68(04):316–321

44. Wang YH, Du GH (2009) Ginsenoside Rg1 inhibits β-secretase activity
in vitro and protects against A β-induced cytotoxicity in PC12 cells. J Asian
Nat Prod Res 11(7):604–612

45. Karpagam V, Sathishkumar N, Sathiyamoorthy S, Rasappan P, Shila S, Kim YJ,
Yang DC (2013) Identification of BACE1 inhibitors from Panax ginseng
saponins—an in silico approach. Comput Biol Med 43(8):1037–1044

46. Park IH, Jeon SY, Lee HJ, Kim SI, Song KS (2004) A β-secretase (BACE1)
inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med
70(02):143–146

47. Tian XY, Zhao Y, Yu SS, Fang WS (2010) BACE1 (beta-secretase) inhibitory
phenolic acids and a novel sesquiterpenoid from Homalomena occulta.
Chem Biodivers 7(4):984–992

48. Omar SH, Scott CJ, Hamlin AS, Obied HK (2018) Biophenols: Enzymes (β-
secretase, cholinesterases, histone deacetylase and tyrosinase) inhibitors
from olive (Olea europaea L.). Fitoterapia 128:118–129

49. Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Flavonols and
flavones as BACE-1 inhibitors: structure–activity relationship in cell-free, cell-
based and in silico studies reveal novel pharmacophore features. Biochim
Biophys Acta 1780(5):819–825

50. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res
28:235–242

51. Schrödinger release 2018-4: Protein preparation wizard; Epik, Schrödinger,
LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016;
Prime, Schrödinger, LLC, New York, NY, 2018

52. Schrödinger release 2018-4: LigPrep, Schrödinger, LLC, New York, NY, 2018
53. Schrödinger release 2018-4: Glide, Schrödinger, LLC, New York, NY, 2018
54. Ramírez D, Caballero J (2016) Is it reliable to use common molecular

docking methods for comparing the binding affinities of enantiomer pairs
for their protein target? Int J Mol Sci 17(4):525

55. Dassault Systèmes BIOVIA (2019) Discovery studio visualizer, 19.1. Dassault
Systèmes, San Diego

56. Schrödinger release 2018-4: Prime, Schrödinger, LLC, New York, NY, 2018
57. Zhong H, Tran LM, Stang JL (2009) Induced-fit docking studies of the active

and inactive states of protein tyrosine kinases. J Mol Graph Model 28(4):
336–346

58. Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico
drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev
86:2–10

59. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule
pharmacokinetic and toxicity properties using graph-based signatures. J
Med Chem 58(9):4066–4072

60. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012)
admetSAR: a comprehensive source and free tool for assessment of
chemical ADMET properties

61. Cheminformatics M (2014) Bratislava, Slovak Republic
62. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS,

Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra
of organic compounds using the PASS online web resource. Chem
Heterocycl Compd 50(3):444–457

63. Parasuraman S (2011) Prediction of activity spectra for substances. J
Pharmacol Pharmacother 2(1):52

64. Schrödinger Release 2018-4: Jaguar, Schrödinger, LLC, New York, NY, 2018
65. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional

theories. J Chem Phys 98(2):1372–1377
66. Gill PM, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the

Becke—Lee—Yang—Parr (B—LYP) density functional theory with various
basis sets. Chem Phys Lett 197(4-5):499–505

67. Stephens PJ, Devlin FJ, Chabalowski CFN, Frisch MJ (1994) Ab initio
calculation of vibrational absorption and circular dichroism spectra using
density functional force fields. J Phys Chem 98(45):11623–11627

68. Pearson RG (1986) Absolute electronegativity and hardness correlated with
molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441

69. Parr RG (1980) Density functional theory of atoms and molecules. In:
Horizons of quantum chemistry. Springer, Dordrecht, pp 5–15

70. Tripathi A, Bankaitis VA (2017) Molecular docking: from lock and key to
combination lock. J Mol Med Clin Appl 2(1)

71. Davis AM, Teague SJ (1999) Hydrogen bonding, hydrophobic interactions,
and failure of the rigid receptor hypothesis. Angew Chem Int Ed 38(6):736–
749

72. Stepanchikova AV, Lagunin AA, Filimonov DA, Poroikov VV (2003) Prediction
of biological activity spectra for substances: evaluation on the diverse sets
of drug-like structures. Curr Med Chem 10(3):225–233

73. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS:
prediction of activity spectra for biologically active substances.
Bioinformatics 16(8):747–748

74. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are
there? Nat Rev Drug Discov 5(12):993

75. Lundstrom K (2009) An overview on GPCRs and drug discovery: structure-
based drug design and structural biology on GPCRs. In: G protein-coupled
receptors in drug discovery. Humana Press, Totowa, pp 51–66

76. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density
functional theory. Chem Rev 103(5):1793–1874

77. Matysiak J (2007) Evaluation of electronic, lipophilic and membrane affinity
effects on antiproliferative activity of 5-substituted-2-(2, 4-dihydroxyphenyl)-
1, 3, 4-thiadiazoles against various human cancer cells. Eur J Med Chem
42(7):940–947

78. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity,
electronegativity, hardness, and electron excitation energy: molecular properties
from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195

79. Becke AD (1988) Density-functional exchange-energy approximation with
correct asymptotic behavior. Phys Rev A 38(6):3098

80. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to
predict protein-ligand interactions. J Mol Biol 295(2):337–356

81. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug
discovery. J Mol Recognit 9(2):175–186

82. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using
molecular docking. Curr Opin Chem Biol 6(4):439–446

83. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/
PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA
methodologies evaluated by various simulation protocols using PDBbind
data set. Phys Chem Chem Phys 16(31):16719–16729

84. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T (2016) Assessing the
performance of the MM/PBSA and MM/GBSA methods. 6. Capability to
predict protein–protein binding free energies and re-rank binding poses
generated by protein–protein docking. Phys Chem Chem Phys 18(32):
22129–22139

85. Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM (2012) MM/GBSA
binding energy prediction on the PDBbind data set: successes, failures, and
directions for further improvement. J Chem Inf Model 53(1):201–209

Ullah et al. Egyptian Journal of Medical Human Genetics           (2021) 22:26 Page 14 of 15



86. Yu H, Adedoyin A (2003) ADME–Tox in drug discovery: integration of
experimental and computational technologies. Drug Discov Today 8(18):
852–861

87. Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K,
Zheng M (2015) In silico ADME/T modelling for rational drug design. Q Rev
Biophys 48(4):488–515

88. Paul Gleeson M, Hersey A, Hannongbua S (2011) In-silico ADME models: a
general assessment of their utility in drug discovery applications. Curr Top
Med Chem 11(4):358–381

89. Li AP (2001) Screening for human ADME/Tox drug properties in drug
discovery. Drug Discov Today 6(7):357–366

90. Geerts T, Vander Heyden Y (2011) In silico predictions of ADME-Tox
properties: drug absorption. Comb Chem High Throughput Screen 14(5):
339–361

91. Ullah A, Prottoy NI, Araf Y, Hossain S, Sarkar B, Saha A (2019) Molecular
docking and pharmacological property analysis of phytochemicals from
Clitoria ternatea as potent inhibitors of cell cycle checkpoint proteins in the
cyclin/CDK pathway in cancer cells. Comput Mol Biosci 9(03):81

92. Sarkar B, Islam SS, Ullah MA, Hossain S, Prottoy MNI, Araf Y, Taniya MA
(2019) Computational assessment and pharmacological property
breakdown of eight patented and candidate drugs against four intended
targets in Alzheimer’s disease. Adv Biosci Biotechnol 10(11):405

93. Hossain S, Sarkar B, Prottoy MNI, Araf Y, Taniya MA, Ullah MA (2019)
Thrombolytic activity, drug likeness property and ADME/T analysis of
isolated phytochemicals from ginger (Zingiber officinale) using in silico
approaches. Mod Res Inflamm 8(3):29–43

94. Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and
metabolism of xenobiotics. Cell Mol Life Sci 58(5-6):737–747

95. Lamb DC, Waterman MR, Kelly SL, Guengerich FP (2007) Cytochromes P450
and drug discovery. Curr Opin Biotechnol 18(6):504–512

96. Ames BN, Gurney EG, Miller JA, Bartsch H (1972) Carcinogens as frameshift
mutagens: metabolites and derivatives of 2-acetylaminofluorene and other
aromatic amine carcinogens. Proc Natl Acad Sci 69(11):3128–3132

97. Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, Lee PW, Tang Y (2012) In silico
prediction of chemical Ames mutagenicity. J Chem Inf Model 52(11):2840–
2847

98. Priest B, Bell IM, Garcia M (2008) Role of hERG potassium channel assays in
drug development. Channels 2(2):87–93

99. Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O (2015) Substrate-
dependent inhibition of the human organic cation transporter OCT2: a
comparison of metformin with experimental substrates. PLoS One 10(9):
e0136451

100. Rao RV, Descamps O, John V, Bredesen DE (2012) Ayurvedic medicinal
plants for Alzheimer’s disease: a review. Alzheimers Res Ther 4(3):22

101. Barman A, Prabhakar R (2014) Computational insights into substrate and site
specificities, catalytic mechanism, and protonation states of the catalytic
Asp Dyad of β-secretase. Scientifica 2014:598728

102. Sabbah DA, Zhong HA (2016) Modeling the protonation states of β-
secretase binding pocket by molecular dynamics simulations and docking
studies. J Mol Graph Model 68:206–215

103. Pardridge WM (2009) Alzheimer’s disease drug development and the
problem of the blood-brain barrier. Alzheimers Dement 5(5):427–432

104. Sacan A, Ekins S, Kortagere S (2012) Applications and limitations of in silico
models in drug discovery. In: Bioinformatics and drug discovery. Humana
Press, Totowa, pp 87–124

105. Korkmaz N, Ceylan Y, Taslimi P, Karadağ A, Bülbül AS, Şen F (2020) Biogenic
nano silver: synthesis, characterization, antibacterial, antibiofilms, and
enzymatic activity. Adv Powder Technol 31(7):2942–2950

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ullah et al. Egyptian Journal of Medical Human Genetics           (2021) 22:26 Page 15 of 15


	Abstract
	Background
	Results
	Conclusion

	Background
	Amyloidogenic and non-amyloidogenic pathways and role of β-secretase in AD
	Treatment of Alzheimer’s disease

	Methods
	Selection of ligand molecules
	Molecular docking study
	Protein preparation
	Ligand preparation
	Receptor grid generation
	Glide standard precision (SP) and extra precision (XP) ligand docking
	Prime MM-GBSA rescoring
	Induced fit docking

	ADME/toxicity profiling
	Pharmacological and biological activity prediction
	Density functional theory (DFT) calculation

	Results
	Molecular docking study
	Binding mode of amentoflavone, bilobetin, and ellagic acid with β-secretase

	ADME/toxicity profiling
	Pharmacological and biological activity prediction
	Analysis of frontier orbitals

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

