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Abstract

Background: The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics
and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and
the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral
structure.

Results: In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core
and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the
SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a
value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model
protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for
α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets.

Conclusions: The protein data obtained from this study provides robust information for further in vitro and in vivo
experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous
evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-
like corona viruses.
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Background
World Health Organization (WHO) declared the novel
coronavirus 2019-nCoV previously referred to as Wuhan-
Hu-1, and now officially named SARS-CoV-2 the cause of
the COVID-19 outbreak a public health emergency of
international concern in January, 2020 [1, 2]. COVID-19
has become a major threat to health and economies
around the world. More so, a second wave of spikes has
been recorded across Europe, USA, and South America
recently. Since the isolation of SARS-CoV-2 in 2019, la-
boratories have been in the race for therapeutics and vac-
cines in many countries [3, 4]. This race has yielded many
drugs currently with Emergency Use Authorization (EUA)

status including remdesivir [5], dexamethasone, convales-
cent plasma, and monoclonal antibodies (MABs). Several
vaccine candidates are in the final stages of clinical
trials from pharmaceutical companies including
Johnson & Johnson, Novavax (NVAX), AstraZeneca’s
(AZN), Moderna (MRNA), and Pfizer (PFE). Two of
these pharmaceutical companies, Pfizer (PFE) and
Moderna (MRNA), recently announced their vaccines
to the over 90% and 94.5% safe and are currently be-
ing administered under EUA. So far, none of the
current therapeutics in use, or vaccine candidates, has
been certified to be an absolute cure. One of the
major reasons amongst many of the possible causes
for this setback may be based on very recent evidence
that the coronavirus undergoes quick mutation in its
genome [6], as strains genetically different from the
originally sequenced strain have been isolated. Tack-
ling this challenge will require targeting a highly
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conserved and stable region of the virus core struc-
ture as the bedrock for the design of new
therapeutics.
Viruses have a relatively small genome and usually

need a host to suitable execute their life cycle. The Coro-
naviridae have a genome spanning 26 to 32 kb positive-
sense RNA [7–9]. Coronaviruses (CoVs) like the severe
acute respiratory syndrome (SARS) and Middle-East re-
spiratory syndrome (MERS) viruses are primarily zoo-
notic [10]. Humans are a complex species in terms of
genome; however, the human system is highly suscep-
tible to this “respiratory-philic” pathogenic virus, which
if untreated is fatal. These class of viruses have a con-
served small integral membrane CoV envelope protein
necessary for budding, packaging, envelope formation, as
well as a contributing factor to its pathogenesis [9]. Un-
derstanding the biochemistry and molecular structure of
this highly conserved structure is a major factor needed
to kill the pathogen, as designing therapeutics is totally
dependent on understanding the structural composition.
Members of this group of coronaviruses have four struc-
tural proteins namely, membrane (M), spike (S), nucleo-
capsid (N), and envelope (E) [11]. They also have the X4
(ORF7a) accessory proteins, but their functions are still
not yet well understood. The coronavirus X4 protein is
vital to the survival and replication of the coronavirus as
recent studies show that X4 is involved during the repli-
cation cycle of the SARS-CoV [12]. Targeting this pro-
tein with suitable binding moieties that could interrupt
the function of this protein may support other existing
strategies to treat this infection. In this study, we did not
focus on targeting the X4 protein rather, we characterized
molecular the structure of the SARS-CoV-2 X4 protein,
alongside some predicted biochemical features as a bed-
rock for further studies; providing valuable information
for the design of therapeutics. We also further compared
it with other homologues in other species as supportive
evidence for its lineage amongst the Coronaviridae.

Methods
Sequence data and alignment
The genome sequence data of the isolated SARS-CoV-
2virus was sourced from the GenBank database
(MN908947.3, which has 100% homology with NC_
045512.2). We considered the nucleotide sequence be-
tween 26,683 and 29,903 as the region within which to
find the location of the X4 protein, since based on previ-
ous studies, the X4 sequence is located in this region
coding for several of the accessory proteins. EMBOSS
transeq and backtranseq were used for sequence transla-
tion and back translation, respectively [13]. Clustal
Omega software package was used for all alignments be-
tween SARS corona virus X4 protein and SARS-CoV-2
[14]. Within this sequence, we found a portion of the 83

amino acid residues with homology to the SARS corona
virus X4 protein, and it is the sequence of interest for
further studies.

Homology modeling
The homology modeling of the SARS-CoV-2 aligned
segment was done using the SWISS-MODEL (http://
swissmodel.expasy.org) for automated comparative mod-
eling of three-dimensional (3D) protein structures [15].
QMEAN (Qualitative Model Energy Analysis) was used
for the assessment of the model protein quality [16]. A
considerable number of alternative models were pro-
duced, from which subsequently the final model was se-
lected based on produced scores. We employed
MolProbity (version 4.4) to evaluate the model global and
local protein quality [17–19], and Ramachandran plot for
torsion angles between residues. In sequence order, φ is
the N(i − 1), C(i), Ca(i), N(i) torsion angle and ψ is the
C(i), Ca(i), N(i), C(i + 1) torsion angle. The φ values were
plotted on the x-axis while the ψ values on y-axis.

3D structure comparison
The 3D modeling of the SARS-CoV-2 genome translated
segment was followed by a structural comparison with the
X4 protein 3D structure (PDB: 1YO4) using the UCSF
Chimera [20]. High-quality images were generated and
presented using amino Pymol molecular visualizer [21].

Protein physiochemical parameters
Calculation of the physiochemical parameters of proteins
is a sub-function of the ExPASy server, basically for pro-
tein identification, and was used for determining the
physiochemical parameters such as theoretical isoelectric
point, molecular weight, amino acid composition, extinc-
tion coefficient, and instability index [22].

Phylogenetic analysis
We employed Tamura-Nei model for phylogenetic ana-
lysis and is based on the maximum likelihood using
MEGA5 program [23].

Results
The full genome of the SARS-CoV-2 consists of 29,
903 nucleotides but here, nucleotides between 26,683
and 29,903 were considered as the portion coding
for the group of proteins from which we intended to
find the particular protein of our interest, and direct
translation of this segment of nucleotides produced a
sequence of 1004 amino acids after the deletion of
existing stop codons (Fig. 1). The deletion of stop
codons was necessary as the 3D homology tool used
for the modeling of the reference protein of interest
does not recognize them. We used the highlighted
segment in Figs. 1 and 2 for the predicted 3D
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Fig. 1 Translated sequence of the SARS-CoV-2 corona virus nucleotide sequence with the highlighted segment forming the model protein coding
sequence of interest

Fig. 2 Sequence alignment between the amino acid sequence of the model protein and the SARS related corona virus X4 protein. As depicted,
few homology differences were noticed. Single asterisk (*) represents regions with complete conservation, while colon (:) represents conservation
between amino acid residues with similar properties. Period (.) represents conservation between amino acids with less similar properties. The
non-conserved regions are empty space
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structure modeling in comparison with the X4 pro-
tein 3D structure (Fig. 3).
The amino acid sequence of the model protein was

back-translated (Fig. 4) to generate the corresponding
nucleotide sequence which was then aligned with the

SARS-CoV-2 full genome (Fig. 5). This back-
translated sequence alignment shows that the hom-
ology between the model protein sequence and the
SARS-CoV-2 complete genome is located between 27,
439 and 27,684.

Fig. 3 3D structures of the model and template protein with the structural comparison. Model protein is presented in red while the template in
blue. The matching together of the two was depicted in the mixed picture beneath for comparison

Fig. 4 Back-translation of the model protein amino acid sequence to generate the corresponding nucleotide sequence
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The result of the QMEAN parameter scores of the
model protein based on the composite scoring function
(which evaluates several structural features of the model
protein) are presented in Figs. 6, 7, and 8 and Table 1.
The absolute quality estimate of the model is expressed
in terms of how well the model score agrees with the ex-
pected values from a representative set of high-
resolution experimental structures (Fig. 6). There are
two global score values, QMEAN4 (for linear combin-
ation of statistical potential) and QMEAN6 (assessing
prediction-based consistency of structural features). Both

global scores are originally in a range [0,1] with one being
good. By default they are transformed into Z scores to re-
late them with what we would expect from high resolution
X-ray structures. The local scores are a linear combina-
tions of the 4 statistical potential terms as well as the
agreement terms evaluated on a per residue basis. They
are as well in the range [0,1] with one being good (Fig. 7).
When compared to the set of non-redundant protein

structures, the QMEAN Z scores as shown in Fig. 8 were
close to 0. Good models have scores < 1 and are often
located in the dark zone.

Fig. 5 Sequence alignment between the model protein nucleotides and the 27,439 to 27,684 nucleotide region of the SARS-CoV-2 complete
genome. Single asterisk (*) represents regions with complete conservation, while colon (:) represents conservation between amino acid residues
with similar properties. Period (.) represents conservation between amino acids with less similar properties. The non-conserved regions are
empty space

Fig. 6 Residue quality chart which depicts the absolute quality of the model protein on the basis of individual amino acid residue
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The restriction of the Ramachandran angles in the
protein to certain values is visible in the Ramachandran
plot in (Fig. 9). The plot shows that each type of second-
ary structure elements occupies its characteristic range
of φ and ψ angles. The horizontal axis shows φ values,
while the vertical shows ψ values. Each dot on the plot
shows the angles for an amino acid. The counting starts
in the left hand corner from − 180 and extend to + 180

for both the vertical and horizontal axis. This is a con-
venient presentation and allows clear distinction of the
characteristic regions of α-helices and β-sheets. An ex-
ception from the principle of clustering around the α-
and β-regions can be seen on the right plot of Fig. 9. In
this case, the Ramachandran plot shows torsion angle
distribution for one single residue, glycine. Glycine does
not have a side chain, which allows high flexibility in the

Fig. 7 Local quality estimate graph showing the values of the predicted local similarity to target plotted against the model protein
residue number

Fig. 8 Graphical presentation of estimation of absolute quality of the model protein
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polypeptide chain, making forbidden rotation angles ac-
cessible. This explains why glycine is often found in loop
regions, where the polypeptide chain needs to make a
sharp turn. This is further depicted in the model protein
secondary structures (Fig. 10). Model and template pro-
tein comparative physiochemical parameters ProtParam
were obtained from the amino acid sequences of the in-
dividual proteins (Tables 3 and 4).
The phylogeny tree with the highest log likelihood (−

80762.5778) based on the model protein sequence is
shown in Fig. 11. The percentage of trees in which the
associated taxa clustered together is shown next to the
branches as conducted in MEGA5.

Discussion
Proteins that share a high sequence similarity are
likely to have very similar three-dimensional struc-
tures and by implication similar function [24, 25]. In

this study, the target protein was modeled using the
SARS-CoV protein X4 as template. This selection was
based on the high resolution and its identity with the
target protein which is as high as 91.57%. The SARS-
CoV-2 nucleotides between 26,683 and 29,903 were
considered as the portion coding for a group of pro-
tein, of which our target protein of interest is found,
and directly translated to produce a sequence of 1004
amino acids (Fig. 1). Structural differences were no-
ticed when alignment analysis was carried out on the
sequence (Figs. 2 and 3). The percentage amino acid
sequence identity between the model and the tem-
plate protein shows a high level of conservation, with
90% identity observed between both sequences, show-
ing that the conserved domains are predominant.
Also, the alignment between the back-translated
model protein nucleotides and the 27,439 to 27,684
nucleotide portion of the SARS-CoV-2 complete gen-
ome shows that the model protein coding sequence is
located between 27,439 and 27,684 nucleotides of the
viral genome (Figs. 4 and 5).
The absolute quality estimate of the model is

expressed in terms of how well the model score
agrees with the expected values from a representa-
tive set of high-resolution experimental structures
(Fig. 6). The QMEAN scores were transformed into
Z scores to decipher the model of a high resolution
X-ray structure, and the values are within range
(Fig. 7). Our study shows the Z score of the model

Table 1 Z score for the individual components of QMEAN for
the model protein

Components Scores

QMEAN score − 4.18

Interaction energy of C_β − 1.22

Pairwise energy of all atoms − 1.31

Solvation energy − 1.30

Torsion angle energy − 3.47

Fig. 9 Presented here are two Ramachandran plots. The plot on the left hand side is hand side shows the general torsion angles for all the
residues in the model protein while the plot on the right hand side is specific for the glycine residues of the protein
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protein has a value of around 0.5, which falls
within the acceptable range 0–1, as indicated in
Fig. 8 and such a score is an indication of a rela-
tively good model as it is close to zero which is the
average Z score for a good model [26]. Lower Mol-
Probity (MP scores) clash score values are expected
to be an indication of good models as proven by
the clash score value (Table 2) exhibited by the
experimental protein that was modeled for the pur-
pose of this study [17–19]. Rotamer outliers asymp-
tote to a value of < 1% at high resolution, a
general-case Ramachandran outliers to < 0.05%, and
Ramachandran favored to 98%. With a 3.07 clash
score, and a 76.54% Ramachandran favored region

value as compared to the Ramachandran outliers
and rotamer outliers individual values of 4.94% and
27.03%, respectively, we arrived at a MolProbity
score of 2.96. This value is low enough to indicate
the quality of a good model in the experimental
protein [17].
The repetitive nature of secondary structures is

due to the repetitive conformation of the residues
and, ultimately, repetitive values of φ and ψ. The
varied secondary conformations can be differentiated
by their φ and ψ values with the values of different
secondary conformations mapping to different areas
of the Ramachandran plot [27]. The Ramachandran
plot peptides have points clustered about the values

Fig 10 The model protein secondary structures with the inter model hydrogen bonds. Regions of beta sheets and loops are shown in purple
and grey colors, respectively. Labeled in red are the glycine residues of the loops

Fig. 11 Bootstrap consensus phylogenetic tree based on the model protein sequence
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of φ = − 57o and ψ = − 47o which are the average
values for α-helices while the plot for twisted beta
sheets have points clustered about the values of φ =
− 130o and ψ = + 140o which are the average values
for twisted sheets. The core regions (green in Fig. 9)
contain the most favorable combinations of φ and ψ
and contain the greatest number of points. The re-
sult also shows a small third core region in the
upper right quadrant. This is called the allowed re-
gion and can be situated around the core regions or
unassociated with a core region and it contains
fewer data points than the core regions [27]. The
remaining areas of the plot are considered disallowed.
Since glycine residues have only one hydrogen as side
chain and has φ and ψ values of + 55o and− 116o, respect-
ively which does not exhibit steric hindrance and for that
reason positioned in the disallowed region of the Rama-
chandran plot as shown in the right hand side plot (Fig.
9). The extinction coefficient reveals how much light
a protein absorbs at a certain wavelength. It is useful
to have an estimation of this coefficient for monitor-
ing a protein in a spectrophotometer when purifying
it, and estimating the molar extinction coefficient de-
termined from the amino acid composition [28]
which is shown in Table 3.
It has been shown that the identity of the N-

terminal residue of a protein plays an important role
in determining its stability in vivo [29–32]. A protein
with instability index smaller than 40 is predicted as
stable; and above 40 is considered unstable [33, 34].
The comparative instability index values for the tem-
plate and model proteins were 66.61 and 56.58, re-
spectively, showing both are unstable proteins. A
protein’s aliphatic index is the relative volume occu-
pied by aliphatic side chains (isoleucine, alanine,

leucine, and valine). It may be regarded as an indica-
tion for the increase in thermostability of globular
proteins. The aliphatic index of the experimental pro-
teins were calculated according to the following for-
mula [35].
Aliphatic index=X(Ala) + a×X(Val) + b× [X(Ile) +X(Leu)]
where X(Ala), X(Val), X(Ile), and X(Leu) are mole per-

cent (100 × mole fraction) of alanine, valine, isoleucine,
and leucine. The “a” and “b” coefficients are the relative
volume of valine side chain with a value of a = 2.9 and
of Leu/Ile side chains b = 3.9 to the side chain of ala-
nine. The aliphatic index calculated for the experimental
protein shows a higher thermostability for the model
protein than the template.
It has been shown that α-helices are more stable,

robust to mutations and designable than β-strands in
natural proteins [36]. The template and model pro-
teins respectively have a total of 87 and 83 amino
acid residues (Table 4) with the composition of indi-
vidual residues shown in Table 3. As shown in Fig.
10, the model protein which shares a structural
homology with the template is predominantly occu-
pied by residues forming beta sheets and coils, with
none forming helices. The instability observed for
these two proteins from their physiochemical charac-
teristics show that the unavailability of residues
forming alpha helix may be the accountable factor.
In this study, we also compared a genome of interest
to similar genomes in the GenBank database to pre-
dict the evolutionary relationships between homolo-
gous genes represented in the genomes of each
divergent species [8, 23, 24]. Organisms with com-
mon ancestors were positioned in the same mono-
phyletic group in the tree and the same clade where
the genome of interest (SARS-CoV-2) is positioned
with the SL-CoVZC45, BtRs-BetaCoV/YN2018B, and
the RS4231, all which are Bat SARS-like corona vi-
ruses [37]. This shows that the four viral strains
share a common source with shorter divergence
period. TW1 virus, a SARS corona virus is the most
distantly related based on its branch length and as
such can be regarded as an outlier in the tree.

Conclusions
We modeled the target protein using the hypothetical
protein X4 as template based on a high similarity index

Table 3 Amino acid composition table for both the template and model proteins

Amino acid residues in one letter codes

Proteins A R N D C Q E G H I L K M F P S T W Y V

Template 6 6 2 2 4 5 7 5 4 1 8 3 0 5 6 6 8 0 5 4

Model 5 4 2 2 4 5 7 4 3 1 8 4 0 6 5 7 5 0 5 6

Table 2 The individual parameters and scores as calculated by
MolProbity

Parameters Scores

MolProbity score 2.96

Clash score 3.07

Ramachandran favored 76.54%

Ramachandran outliers 4.94%

Rotamer outliers 27.03%
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of 91.57%, as revealed by sequence analysis where the
percentage amino acid sequence identity between the
model and the template protein shows a high level of
conservation. The QMEAN value show that the model
generated for study here is within the acceptable stand-
ard and amenable to structural analysis, including X-ray
resolution. All the predicted structural parameters for
this model protein studied such as the MolProbity (MP
scores) clash score, staggered χ angles, Ramachandran
values (φ and ψ), all demonstrate a protein that is suit-
able for further study and a potential target for thera-
peutics and vaccines. However, the comparative
instability index values for the template and model pro-
teins were 66.61 and 56.58, respectively, suggesting that
the protein may be too sensitive for in vitro studies. On
the other hand, the aliphatic index shows that the ther-
mostability of the model protein is higher than the tem-
plate and may withstand more harsh conditions during
experimental studies. Our results supporting previous
studies, show that the SARS-CoV-2is positioned with
other Bat SARS-like corona viruses including SL-
CoVZC45, BtRs-BetaCoV/YN2018B, and the RS4231.
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