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Role of engulfment and cell motility 1
(ELMO1) gene polymorphism in
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Abstract

Background: Diabetic kidney disease (DKD) is a progressive kidney disease that affects diabetic patients irrespective
of glycemic state or hypertension. Therefore, early detection of DKD is of critical importance. Many genome-wide
association studies have identified the engulfment and cell motility 1 (ELMO1) gene as a genetic marker linked to
DKD. This study aimed to investigate the association between ELMO1 rs741301 gene polymorphism and the
development of DKD among Egyptian patients with type 2 diabetes mellitus (T2DM). Allele and genotype
frequencies were investigated in 304 subjects by real-time PCR allelic discrimination assay: 100 DKD patients, 102
diabetic patients without DKD, and 102 healthy controls.

Results: GG genotype of ELMO1 (rs741301) SNP and its allele frequencies were significantly high in all diabetic
patients. GG genotype had an odds ratio (OR) of 6.095 and 95% confidence interval (CI) of 2.456–15.125, p < 0.001,
while the frequent allele G had an OR of 2.366 and 95% CI of 1.450–3.859, p = 0.001. No significant difference was
observed between T2DM without DKD and DKD.

Conclusion: Our results could not establish an association between the ELMO1 rs741301 variant and the
progression of DKD.

Keywords: Type 2 diabetes mellitus, Diabetic kidney disease, Single-nucleotide polymorphism, ELMO1, Real-time
PCR

Background
Type 2 diabetes mellitus (T2DM) is a public health
problem threatening the economies of all nations, espe-
cially developing countries. The International Diabetes
Federation (IDF) listed Egypt among the world’s top 10
countries with the highest number of patients with dia-
betes. The prevalence of diabetes in adults is 15.2%, with
the total number of diabetes cases in adults amounting
to 8,850,400 [1].
Diabetic kidney disease (DKD) is one of the most com-

mon microvascular complications of diabetic mellitus
(DM) and is the primary cause of end-stage renal disease

(ESRD), which results in high morbidity and mortality
[2]. DKD is manifested by a progressive deterioration in
the glomerular filtration rate, increased urinary albumin
excretion, increased thickness of the basement mem-
brane, and mesangial expansion with the accumulation
of extracellular matrix (ECM) proteins [3].
Several pathological processes are involved in the

pathogenesis of DKD in patients with T2DM. The in-
creases in the mitochondrial generation of reactive oxy-
gen species (ROS) and in the cellular expression of
transforming growth factor beta (TGF-β) generate apop-
tosis within renal glomerular cells, which are important
effects of hyperglycemia [4]. ROS activate signaling mol-
ecules and transcription factors, leading to enhanced ex-
pression of cytokines, growth factors, and ECM proteins,
macrophage infiltration, and overproduction of leucocyte
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adhesion molecules in the kidneys, which contribute to
cellular hypertrophy and increased collagen synthesis
[5].
Therefore, it is urgent to create new, efficient, and safe

therapeutic approaches against DKD based on under-
standing the molecular mechanisms of the disease [6].
Various genetic variants and environmental factors are

involved in the etiology of DKD. However, the exact
mechanism regarding the pathophysiology of DKD re-
mains unclear [7]. Clinical and epidemiological studies
have shown that there is a family history of DKD in vari-
ous ethnic groups, suggesting that genetic factors play a
key role in developing the disease [8, 9].
The engulfment and cell motility 1 (ELMO1) gene is a

protein made up of 720 amino acids, located on
chromosome 7p14.2-14.1, and encodes a member of the
engulfment and cell motility protein family. ELMO1 in-
teracts with the dedicator of cytokinesis proteins
(Dock180) and functions as a guanine nucleotide ex-
change factor for the small GTPase Rac1, thus regulating
cell migration and promoting phagocytosis [10]. ELMO1
has been proven to protect endothelial cells from apop-
tosis by stimulating the Rac1/PAK/AKT signaling cas-
cade in vitro and in vivo [11].
Genome-wide association studies (GWAS) suggest

that polymorphism within human ELMO1 has a signifi-
cant pathophysiological role in the development of albu-
minuria and the fibrotic tissue changes characteristic of
DKD. Mutation in the ELMO1 gene is associated with
increases in renal expression of genes encoding trans-
forming growth factor beta 1 (TGF-β1), endothelin 1,
and NAD(P)H oxidase, which is implicated in fibrogen-
esis and epithelial-mesenchymal transition [12].
Several genetics studies were conducted on different eth-

nic populations to demonstrate the association between
ELMO1 gene variant and DKD. Japanese [13], American,
Indian [14], European American [15], and Chinese [16]
studies found that variants in the ELMO1 gene are related
to kidney diseases in T2DM, whereas other studies failed to
find any correlation between ELMO1 and development of
DKD among other ethnic populations [17, 18].
In Egypt, the incidence of T2DM and its renal compli-

cations have increased, with no conclusive data on the
role of ELMO1 in DKD pathogenesis among T2DM pa-
tients. Thus, this study aims to demonstrate the associ-
ation between genetic polymorphism of the rs741301
ELMO1 gene variant and the development of DKD in
Egyptian patients with T2DM.

Methods
A case-control study was carried outin clinical pathology
departement faculty of medicine , menoufia university
during the period from March 2019 to May 2020. The

patients were selected from the Outpatient Endocrin-
ology Clinic, Internal Medicine Department.
The patients were classified according to the diag-

nostic criteria of the American Diabetes Association
(ADA) for DM and DKD [19] as follows: Group 1 in-
cluded 100 DKD patients with early morning spot al-
bumin to creatinine ratio (ACR) of >30 mg/g
creatinine, Group 2 included 102 diabetic patients
without DKD and ACR of <30 mg/g creatinine, and
Group 3 included 102 healthy individuals as age- and
gender-matched controls to detect wild genotypes in
Egyptian population. All volunteers had no kidney
disease or any acute or chronic illness. Exclusion cri-
teria were as follows: patients with type 1 DM, recent
urinary tract infection, albuminuria with unknown
cause, uncontrolled hypertension, congestive heart
failure, and other endocrine disease and pregnant pa-
tients. All groups were subjected to the following ex-
aminations and testing.

Complete clinical examination
Weight, height, waist circumference, hip circumferen-
ceand blood pressure were measured, body mass index
(BMI) was calculated as the weight in kilograms divided
by the square of the height in meters (kg/m2), and waist-
to-hip ratio (WHR) was calculated.

Sampling
Four milliliters of the venous blood was collected after
12-hour fasting and divided as follows: in Tube A, 2 ml
of blood was left to clot and serum was separated by
centrifugation at 1000×g for 10 min for immediate assay
of lipid profile, fasting blood sugar (FBS), and serum cre-
atinine; in Tube B, 2 ml of whole blood was collected on
ethylenediaminetetraacetic acid (EDTA) tube and then
divided into two aliquots, both kept at −20°C, one used
for the determination of ELMO1 (rs741301) genotypes
and the other for the determination of glycated
hemoglobin (HbA1c). After 2 hour of eating, a blood
sample was obtained to measure 2-hour postprandial
blood glucose (2-hPPG).

Urine specimen collection
Random urine samples were collected in sterile con-
tainers to estimate urine creatinine and albumin and cal-
culate ACR [20].

Laboratory tests
FBS, 2-hPPG, serum, urine creatinine, and lipid pro-
file [total cholesterol (TC), triglycerides (TG), low-
density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C)] were mea-
sured by autoanalyzer AU680 (Beckman Coulter,
USA). LDL-C concentration was calculated according
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to the Friedewald formula. Quantitative colorimetric
measurement of glycated hemoglobin (HbA1c) was
calculated as a percentage of total hemoglobin using
kits supplied by BIOTEC (London W1G9QR, UK).
Morning clear midstream urine samples (10–20 ml)
were collected to obtain the albumin/creatinine ratio.
Samples were centrifuged at 3000 rpm for 10 min.
Creatinine was measured by AU680. Albumin levels
were measured using an immunoturbidimetric method
by the HEALES microalbumin test kit (Shenzhen
Huisong Technology Development, China). Urinary
ACR (milligram/gram (mg/g)) was calculated. eGFR
was estimated according to the Chronic Kidney Dis-
ease Epidemiology Collaboration (CKD-EPI) equation
[21]. The atherogenic index of plasma (AIP) was cal-
culated as a logarithmic transformation of the ratio of
TG to HDL-C [22].

Determination of ELMO1 (rs741301) genotypes by real-
time PCR
Genomic DNA extraction [23]
Using a Thermo Scientific DNA isolation kit
(Thermo Scientific GeneJET Whole Blood Gen-
omic DNA Purification), we extracted genomic
DNA. The DNA quantities were examined with a
spectrophotometer (Implen NanoPhotometer™ N60
UV/VIS spectrophotometer, Germany). The ex-
tracted DNA was stored in aliquots at −80°C until
performing the PCR.

Taqman SNP genotyping assay [24]
The ELMO1 single-nucleotide polymorphism (SNP)
(rs741301) was genotyped using a real-time PCR sys-
tem (Rotor-Gene, Applied Biosystems, Foster City,
USA): the sense primer, 5′-GCAGTTCCCATGGTGG
TTATCATTA-3′; the antisense primer, 5′-TGAACT
CTTCAAGCTCAATAGCAATAGATT-3′, using
fluorescent-labeled probes [VIC/VAM] AGCAATAG
ATTTTATGAGGTGGTGG[A/G] TTCCAGAGGT
TATGTTATCACTAAT and TaqMan Master Mix
(Applied Biosystems, Foster City, CA). The total
volume reaction of 20 μl was reached by mixing
1.25 μl of the probe, 10 μl of Master Mix, and 0.75 μl
of DNAase-free water. For every sample, 8 μl of DNA
template and 8 μl of nuclease-free water for the nega-
tive control were added. The PCR conditions were as
follows: initial denaturation was done at 95°C for 15
min, followed by 50 cycles of denaturation at 94°C
for 1 min, primer annealing at 60°C for 1 min, then
primer extension at 74°C for 2 min, and the final ex-
tension step at 72°C for 1 min. The allele distribution
and amplification plots of rs741301 were demon-
strated in Fig. 1a and b.

Statistical analysis
All statistical calculations were conducted using SPSS
version 23 (SPSS Inc., Released 2015. IBM SPSS Statis-
tics for Windows, Version 23.0, Armonk, NY: IBM
Corp.). Data were expressed as mean (x), standard devi-
ation (SD), number (No.), and percentage (%). ANOVA

Fig. 1 a Allelic discrimination plot of ELMO1 rs741301. b Amplification plot of ELMO1 rs741301
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test was used for normally distributed data with Tukey’s
post hoc test, whereas the Kruskal–Wallis test was used
to compare quantitative variables that were not normally
distributed with Tamhane’s post hoc test. Chi-square
test (χ2) was used to study the association between quali-
tative variables with the Z test to compare column pro-
portions. If any of the expected cells were less than five,
Fisher’s exact test was used. A two-sided p value of <
0.05 was considered statistically significant. Univariate
and multivariate logistic regressions models were used
to identify whether BMI, WHR, waist circumference,
FBS, HbA1c, cholesterol, TG, LDL, HDL, alleles, and
genotypes of ELMO1 (rs741301) gene were potential
independent predictors of DKD between cases and
controls or between cases with DKD and cases with-
out DKD.

Results
Clinical data of the studied groups (Table 1) showed that
BMI, waist circumference, WHR, SBP, and DBP were
statistically significantly high in patients (p < 0.001). Pa-
tients with DKD had a longer disease duration than
T2DM patients without DKD (p < 0.001). Laboratory re-
sults (Table 2) showed that FBG, 2-hPPG, and HbA1c
were significantly high in patients (p < 0.001), with no
difference between groups 1 and 2 regarding FBG and 2-
hPPG (p = 0.062 and 0.249, resp.). Serum creatinine,
ACR, eGFR, and lipid profile, except HDL-C, were sig-
nificantly high in patients. AIP was significantly high in
diabetic patients, with a significant difference between
group 1 and group 2 (p = 0.008).
The ELMO1 rs741301 polymorphism analysis was

shown in three models (Tables 3 and 4). The three

Table 1 Demographic and clinical data of the studied groups

Variables Group 1
(n=100)

Group 2
(n=102)

Group 3
(n=102)

p value Post hoc test

Age (years) -----------

Mean ±SD 48.78 ± 5.00 47.88 ± 4.56 47.14± 6.38 0.097

Median (IQR) 48 (46–51) 46.5 (46–51) 46.5 (43–54)

Gender ------------

Male 64 (64.0%) 76 (74.5%) 66 (64.7%) 0.201

Female 36 (36.0%) 26 (25.5%) 36 (35.3%)

Current smoking --------------

No 84 (84.0%) 88 (86.3%) 102 (100.0%) 0.015

Yes 16 (16.0%) 7 (13.7%) 0 (0.0%)

Duration (years) ---------------

Mean ±SD 7.98 ± 1.65 4.84 ± 1.24 <0.001

Median (IQR) 8 (7–9) 5.0 (4–6) -----

BMI (kg/m2) P1 0.204

Mean ±SD 35.32 ± 2.8 34.64 ± 2.54 23.75 ± 0.90 <0.001 P2 <0.001

Median (IQR) 35.07(33.3–36.96) 35.12 (33.03–36.41) 23.8 (23.18–24.51) P3 <0.001

Waist circumference (cm) P1 0.058

Mean ±SD 105.62 ± 5.70 103.94 ± 4.33 75.78 ± 2.77 <0.001 P2 <0.001

Median (IQR) 107(104–109) 104 (101–106) 76 (74–78) P3 <0.001

Waist/hip ratio P1 0.873

Mean ±SD 0.87 ± 0.04 0.88 ± 0.04 0.78 ± 0.01 <0.001 P2 <0.001

Median (IQR) 0.88 (0.86–0.90) 0.89 (0.84–0.90) 0.78 (0.77–0.79) P3 <0.001

SBP (mmHg) P1 <0.001

Mean ±SD 129.96 ± 7.16 121.72 ± 6.16 111.96 ± 8.62 <0.001 P2 <0.001

Median (IQR) 130 (130–135) 120 (120–125) 110 (100–120) P3 <0.001

DBP (mmHg) P1 <0.001

Mean ±SD 85.74 ± 5.97 80.00 ± 4.89 74.50 ± 5.31 <0.001 P2 <0.001

Median (IQR) 85 (80–90) 80 (80.0–82) 70 (70–80) P3 <0.001

Group 1 DKD patients, Group 2 diabetic patients without DKD, Group 3 healthy controls, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood
pressure, P1 group 1 vs group 2, P2 group 1 vs group 3, P3 group 2 vs group 3. Statistically significant at p ≤ 0.05
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models showed statistically significant differences among
the three studied groups (p = 0.001, p = 0.001, and p <
0.001, resp.). The control group had significantly higher
proportions of the AA genotypes than those in groups 1
and 2 in both the dominant and codominant models and
had significantly higher AA+AG genotypes in the reces-
sive model than the other two groups; meanwhile, no
significant difference was observed between groups 1
and 2 in any of the gene models.

Regarding A and G allele frequencies, group 3 had a
significantly higher proportion of A allele and a signifi-
cantly lower proportion of G allele than the other two
groups. However, no significant difference was observed
between group 1 and group 2 regarding the A and G al-
leles (Table 3).
Comparing patient groups to controls, GG genotype of

ELMO1 rs741301 was significantly higher (p <0.001) in
DKD patients and diabetic patients without DKD than in

Table 2 Laboratory results of the studied groups

Variables Group1
(n=100)

Group2
(n=102)

Group 3
(n=102)

P value of Kruskal-Wallis test Post hoc test

FBS (mg/dl) P1 0.062

Mean ±SD 169.72 ± 34.19 158.62 ± 33.76 85.45 ± 7.38 <0.001 P2 <0.001

Median (IQR) 177(138–188) 156.5 (128–180) 87 (80–90) P3 <0.001

2-hPPG (mg/dl) P1 0.249

Mean ±SD 273.38 ± 52.26 262.16 ± 40.43 125.49 ± 12.32 <0.001 P2 <0.001

Median (IQR) 266 (228–311) 258 (245–288) 123(120–129) P3 <0.001

HbA1c % P1 <0.001

Mean ±SD 8.30 ± 0.83 7.44 ± 0.85 4.83 ± 0.25 <0.001 P2 <0.001

Median (IQR) 8.2 (7.6–8.8) 7.3 (6.9–7.9) 4.8 (4.6–5.0) P3 <0.001

Creatinine (mg/dl) P1 <0.001

Mean ±SD 1.41 ± 0.23 1.00 ± 0.11 0.86 ± 0.11 <0.001 P2 <0.001

Median (IQR) 1.4(1.3–1.5) 1.0(0.9–1.1) 0.90 (0.80–1.0) P3 <0.001

eGFR (mL/min/1.73 m2) P1 <0.001

Mean ±SD 54.81 ± 12.80 84.37 ± 10.80 99.52 ± 10.41 <0.001† P2 <0.001

Median (IQR) 54.65(46.55–62.84) 81.78 (76.68–89.86) 97.76 (93.16–106.46) P3 <0.001

Total cholesterol (mg/dl) P1 0.552

Mean ±SD
Median (IQR)

247.40 ± 23.78
250(225–269)

243.72 ± 19.80
239(231–262)

162.13 ± 14.89
161(154–176)

<0.001 P2 <0.001
P3 <0.001

Triglyceride (mg/dl) P1 0.994

Mean ±SD 181.08 ± 20.86 181.86 ± 28.22 127.84 ± 11.20 <0.001 P2 <0.001

Median (IQR) 183 (168–196) 185 (174–198) 128(122–135) P3 <0.001

HDL-C (mg/dl) P1 0.145

Mean ±SD 35.22 ± 4.77 36.37 ± 3.42 49.41 ± 5.45 P2 <0.001

Median (IQR) 35(32–39) 38 (34–39) 49(45–54) <0.001 P3 <0.001

LDL-C (mg/dl) P1 0.044

Mean ±SD 177.94 ± 22.12 170.25 ± 18.47 86.49 ± 10.60 <0.001 P2 <0.001

Median (IQR) 182(155–195.8) 168 (155–168) 87 (79–98) P3 <0.001

AIP P1 0.008

Mean ±SD 0.37 ± 0.09 0.34 ± 0.05 0.05 ± 0.06 <0.001 P2 <0.001

Median (IQR) 0.36 (0.32–0.42) 0.34 (0.31–0.38) 0.05 (0.0–0.10) P3 <0.001

ACR (mg/g creatinine) P1 <0.001

Mean ±SD 132.14 ± 82.21 18.09 ± 5.72 15.21 ± 5.65 <0.001 P2 <0.001

Median (IQR) 98 (85–150) 18 (14–22) 15 (11–19) P3 0.001

Group 1 DKD patients, Group 2 diabetic patients without DKD, Group 3 healthy controls, FBS fasting blood sugar, 2-hPPG 2-hour post prandial blood sugar, HbA1c
hemoglobin A1C, eGFR estimated glomerular filtration rate, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, AIP atherogenic
index of plasma, ACR albumin/creatinine ratio, P1 group 1 vs group 2, P2 group 1 vs group 3, P3 group 2 vs group 3, †for ANOVA test, IQ interquartile range.
Statistically significant at p ≤ 0.05
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controls in both the codominant and recessive models.
Moreover, the dominant model AG+GG was significantly
higher in patients (p = 0.001) than in controls.
Regarding A and G allele frequencies, a significant dif-

ference was detected between patient groups and con-
trols (p < 0.001). Patients had a significantly higher
proportion of G allele and a significantly lower propor-
tion of A allele than the controls (Table 4).
In the univariate logistic regression between patients

and controls, the GG genotype (OR = 6.095, 95% CI
2.456–15.125, p < 0.001) was found to be an independent
risk factor for diabetic nephropathy. In the multivariate
regression model, triglyceride was the only independent

risk factor significantly associated with diabetic nephrop-
athy (Table 5).
In the univariate logistic regression between DKD and

non-DKD, HbA1c (OR = 3.252, 95% CI 2.18–4.837, p <
0.001) and HDL-C (OR = 0.850, 95% CI 0.788–0.916,
p < 0.001) were considered independent factors in both
groups (Table 6).

Discussion
DKD is a severe common complication of DM. Almost
20–40% of patients with T2DM will develop DKD, and
many will progress further to ESRD [25]. The pathogen-
esis of DKD is not fully understood until now. During
the last few years, the genetic basis of DKD has been
proven by GWAS and other replication studies [26]. Up-
regulation of ELMO1 gene expression is associated with
a high blood glucose level. A mechanism that may en-
hance the production of ECM genes and downregulation
of metalloproteinase gene and cell adhesion, which may
lead to the progression of T2DM to DKD, was found.
ELMO1 was suggested to initiate RAC1 integration with
Dock180, leading to the upregulation of the ECM genes
[27].
In this research, we investigated the rs741301 poly-

morphism in intron 18 of ELMO1 as a candidate gene
for susceptibility to DKD in Egyptian T2DM patients.
The anthropometric measures were statistically signifi-

cantly high in diabetic patients. Chandra et al. [28] also,
observed no significant difference in BMI and WHR be-
tween DKD and non-DKD. Disease duration was signifi-
cantly longer in group 1 than group 2, in agreement
with the findings of Wu et al. and Bayoumy et al. [16,
29], who found a significant relationship between disease
duration and DKD. Long duration of diabetes had a

Table 3 ELMO1 rs741301 allele and genotype distribution in studied groups

Genotypes Group 1 (n=100)
No. (%)

Group 2 (n=102)
No. (%)

Group 3 (n=102)
No. (%)

P value

Co-dominance model 0.001

AA 38 (38.0) 46 (45.1) 64 (62.7) *

AG 36 (36.0) 34 (33.3) 32 (31.4)

GG 26 (26.0) 22 (21.6) 6 (5.9)

Dominant model 0.001

AA 38 (38.0) 46 (45.1) 64 (62.7) *

AG/GG 62 (62.0) 56 (54.9) 38 (37.3)

Recessive model <0.001

AA/AG 74 (74.0) 80 (78.4) 96 (94.1) *

GG 26 (26.0) 22 (21.6) 6 (5.9)

A allele 112 (56.0) 126 (61.7) 160 (78.4) * <0.001

G Allele 88 (44.0) 78 (38.2) 44 (21.6) *

Group 1 DKD patients, Group 2 diabetic patients without DKD, Group 3 healthy controls. *Significantly different than its corresponding category in the other
groups. Statistically significant at p ≤ 0.05

Table 4 ELMO1 rs741301 allele and genotypes distribution in
patients and controls

Genotypes Groups 1 and 2 (n=202)
No. (%)

Group3 (n=102)
No. (%)

P value

Co-dominance model <0.001

AA 84 (41.6) 64 (62.7) *

AG 70 (34.7) 32 (31.4)

GG 48 (23.8) * 6 (5.9)

Dominant model 0.001

AA 84 (41.6) 64 (62.7)

AG/GG 118 (58.4) 38 (37.3)

Recessive model <0.001

AA/AG 154 (76.2) 96 (94.1)

GG 48 (23.8) 6 (5.9)

A allele 238 (58.9) 160 (78.4) <0.001

G Allele 166 (41.1) 44 (21.6)

Groups 1 and 2 DKD patients and diabetic patients without DKD, Group 3
healthy controls. *Significantly different than its corresponding category in the
other groups Statistically significant at p ≤ 0.05
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significant effect on kidney functions and electrolytes
levels and is considered a risk factor for DKD. The rela-
tionship between DKD and duration of diabetes is ex-
plained by the fact that prolonged exposure to
hyperglycemia causes damage to the glomerulus, tubule-

interstitium, and vasculature either directly or through
hemodynamic changes [30].
Compared to the control group, the patient groups

had higher blood pressure, serum creatinine, and ACR
and lower eGFR. This result is in line with that of
Bayoumy et al. [29], who found a significant difference
in these variables between patients and controls. Patient
groups have high FBG and 2-hPPG (p < 0.001), while
HbA1c was significantly elevated in group 1 (p < 0.001).
These findings agreed with those of Mehrabzadeh et al.
and Hou et al. [30, 31], who observed that DKD had
higher levels of HbA1c than T2DM without DKD.
HbA1c is a good indicator of glycemic state. Impaired
glycemic control in DM plays a crucial role in rapid pro-
gression to DKD that is caused by variable
hemodynamic, metabolic, or endothelial dysfunctions.
Dyslipidemia was considered a risk factor in the pro-

gression of DKD. Impaired lipoprotein lipase (LPL) ac-
tivity triggers diabetic dyslipidemia; thus, during
diabetes, dyslipidemia increases macrophage infiltration
and excessive ECM formation in glomeruli, leading to
the development of DKD [32]. Lipid profile was signifi-
cantly higher in diabetic groups with no significant dif-
ference between group 1 and group 2; these results were
confirmed by Wu et al. and Wang et al. [16, 33]. How-
ever, AIP was significantly high in DKD patients. Li et al.
[34] observed an association between AIP and micro-
vascular complications in T2DM patients and suggested
that patients with elevated AIP are at higher risk for
microalbuminuria; thus, AIP may be an early predictor
of DKD.

Table 5 Univariate and multivariate logistic regression among patients and controls

Variables Univariate Multivariate

OR P
value

OR 95% CI OR P
value

OR 95% CI

Lower Upper Lower Upper

BMI (kg/m2) 8.836 0.990 --- ---- --- ----- ----- ----- ----- -----

Waist/hip ratio 1573.291 0.982 --- ---- --- ----- ----- ----- -----

Waist circumference (cm) 2.449 0.992 --- ---- --- ----- ----- ----- ----- -----

FBS (mg/dl) 2.909 0.979 --- ---- --- ----- ----- ----- ----- -----

HbA1c % 42.688 0.986 --- ---- --- ----- ----- ----- ----- -----

Cholesterol (mg/dl) 1.373 0.989 --- ---- --- ----- ----- ----- ----- -----

Triglyceride(mg/dl) 0.122 <0.001 1.130 1.087 1.175 0.118 <0.001 1.126 1.095 1.157

LDL-C (mg/dl) 0.859 0.992 --- ---- --- ----- ----- ----- ----- -----

HDL-C (mg/dl) −16.401 0.980 --- ---- --- ----- ----- ----- ----- -----

Genotype* <0.001 0.065

AG 0.511 0.059 1.667 0.981 2.831 0.159 0.758 1.172 0.427 3.21

GG 1.808 <0.001 6.095 2.456 15.125 1.855 0.021 6.394 1.326 30.83

A allele −1.607 <0.001 0.201 0.083 4.86 ----- ----- ----- ----- -----

G allele 0.861 0.001 2.366 1.450 3.859 ----- ----- ----- ----- -----

BMI body mass index, FBS fasting blood sugar, HbA1c hemoglobin A1C, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, OR
odds ratio, CI confidence interval. *AA genotype was the reference. The univariate analysis was performed after that the genotype was adjusted for the TG

Table 6 Univariate logistic regression among DKD and diabetes
without DKD

Variables Univariate

OR P
value

OR 95% CI

Lower Upper

BMI (kg/m2) 0.095 0.074 1.100 0.991 1.222

Waist/hip ratio 7.163 0.085 -- --- ---

Waist circumference (cm) 0.174 0.001 1.190 1.105 1.282

FBS (mg/dl) 0.010 0.024 1.010 1.001 1.019

HbA1c% 1.179 <0.001 3.252 2.186 4.837

Cholesterol (mg/dl) 0.008 0.233 1.008 0.995 1.021

Triglyceride (mg/dl) −0.001 0.822 0.999 0.988 1.010

LDL-C (mg/dl) 0.458 0.010 1.018 1.004 1.032

HDL-C (mg/dl) −0.163 <0.001 0.850 0.788 0.916

Genotype 0.568

AG 0.248 0.444 1.282 0.679 2.421

GG 0.358 0.324 1.431 0.702 2.916

A allele 0.245 0.460 1.278 0.667 2.447

G allele 0.293 0.307 1.340 0.764 2.350

BMI body mass index, FBS fasting blood sugar, HbA1c hemoglobin A1C, LDL-C
low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol,
OR odds ratio, CI confidence interval
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Different mechanisms could explain the initiation and
progression of DKD by the ELMO1 gene as follows.
ELMO1 increases ROS, leading to the destruction of
renal tissues [35]. Another mechanism is that the genes
responsible for fibrosis, such as TGF-β1, are stimulated
by ELMO1, while antifibrotic genes, such as matrix me-
talloproteinase genes, are inhibited. This mechanism re-
sults in deteriorating glomerulosclerosis due to an
increase in the thickness of the glomerular basement
membrane [35, 36]. Moreover, cyclooxygenase 2 inter-
acts with the ELMO1 gene to initiate and sustain glom-
erular damage, leading to glomerulosclerosis [13].
Despite all these pathways that demonstrate the role of
the ELMO1 gene in the progress of DKD, the main
pathophysiology remains poorly understood.
In this study, ELMO1 rs741301 A>G for susceptibility to

DKD in Egyptian individuals was screened. GG genotype
and G allele were significantly elevated in diabetic patients.
In contrast, AA genotype and A allele were significantly
higher in controls with no statistically significant differ-
ences between group 1 and group 2 regarding either geno-
type (GG and AG) or allele (A and G) frequency. These
outcomes agreed with the results obtained by Kim et al.
and Yahya et al. [17, 18], who indicated that ELMO1
rs741301 A>G was not the leading cause in the develop-
ment of DKD in patients with T2DM. Furthermore, Yadav
et al. [37] revealed that the incidence of the GG genotype
and G allele was higher in diabetics patients than in
healthy controls. Furthermore, the difference in the GG
genotype and G allele occurrence was not significant in
the patient groups. Bodhini et al. [38] found that the fre-
quency of the G allele of ELMO1 rs741301 variant was
relatively higher in the DM patients than in DKD patients,
indicating that the A allele is the nonrisk allele and the G
allele is the risk allele. These findings were not in line with
those of Bayoumy et al. [29], who observed that ELMO1
rs741301 A>G was a candidate variant in genetic predis-
position to DKD. GG genotype was substantially corre-
lated with DKD (OR = 2.7, 95% CI 1.4–5.3, p = 0.016). The
high-risk allele G had the following values: OR = 1.9, 95%
CI 1.5–2.9, p < 0.001, suggesting that ELMO1 could be a
valuable target for new drugs to aid in the prevention and
treatment of DKD. Hou et al. and Mohammed et al. [31,
39] confirmed that homozygous mutant GG genotype and
G allele of rs741301 were significant risk predictors of pre-
disposition to DKD in T2DM patients.
Mehrabzadeh et al. [30] clarified that the G allele of

the ELMO1 variant rs741301 was strongly associated
with DKD in patients compared to healthy controls (G
allele: OR = 1.7, 95% CI 1.17–2.63, p = 0.005; GG geno-
types: OR = 2.5, 95% CI 1.2–5.4, p = 0.01).
However, Wu et al. [16] indicated that genetic associa-

tions at ELMO1 were observed in some independent
and ethnically different groups of patients with DKD as

they discovered that the A allele, not the G allele, was
associated with a strong predisposing risk factor for
DKD in the Chinese population (OR = 3.27, 95% CI
1.10–9.72, p = 0.03).
In this study, multivariate logistic regression for

progression of DKD revealed that the long duration
of hyperglycemia, elevated serum creatinine, total
blood cholesterol, and HbA1c carry the risk for DKD
and its multifactorial etiology. This result was in
agreement with that of Yadav et al. [37], who re-
ported that serum creatinine, cholesterol, glycated
hemoglobin, blood pressure, and period of diabetes
were related to DKD.

Conclusion
Increase expression of the ELMO1 gene facilitates
phagocytosis, with an overproduction of extracellular
protein, and decreases cell adhesion, contributing to the
enhancement and progression of T2DM glomerulo-
sclerosis. However, our results could not establish an as-
sociation between ELMO1 rs741301 polymorphism and
the development of DKD in Egyptian patients with
T2DM.
The conflicts between the results could be due to the

complexity of DKD pathogenesis, genetic factors, envir-
onmental factors, and small sample size. Further re-
search, including larger sample size and more ELMO1
gene SNPs, is warranted to achieve more conclusive re-
sults about the distribution of the ELMO1 gene in Egyp-
tian patients with T2DM.
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