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Abstract

Background: The computational biology approach has advanced exponentially in protein secondary structure
prediction (PSSP), which is vital for the pharmaceutical industry. Extracting protein structure from the laboratory has
insufficient information for PSSP that is used in bioinformatics studies. In this paper, the support vector machine
(SVM) model and decision tree are presented on the RS126 dataset to address the problem of PSSP. A decision tree
is applied for the SVM outcome to obtain the relevant guidelines possible for PSSP. Furthermore, the number of
produced rules was fairly small, and they show a greater degree of comprehensibility compared to other rules.
Several of the proposed principles have compelling and relevant biological clarification.

Results: The results confirmed that the existence of a particular amino acid in a protein sequence increases the
stability for the forecast of protein secondary structure. The suggested algorithm achieved 85% accuracy for the
E|~E classifier.

Conclusions: The proposed rules can be very important in managing wet laboratory experiments intended at
determining protein secondary structure. Lastly, future work will focus mainly on large protein datasets without
overfitting and expand the amount of extracted regulations for PSSP.
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Background
Proteins are diverse in shape and molecular weight and
are relevant to their function and chemical bonds [1].
Therefore, there are various types of proteins according to
their benefits and applications [2]. There are some factors
that lead to mutations in the protein shape and lack of
protein function, including temperature variations, pH,
and chemical reactions [3]. According to the polypeptide
structure, proteins are categorized into four classes: pri-
mary, secondary, tertiary, and quaternary. Analysis of
protein behavior can be difficult due to next-generation
sequencing (NGS) technology, time-consuming, and low
accuracy, especially for non-homologous protein se-
quences. Therefore, deep learning algorithms are applied
to handling huge datasets for computational protein

design by predicting the probability of 20 amino acids in a
protein [4]. Because the experimental biologist suffered
from the limited availability of 3D protein structure, pro-
tein structure prediction is effectively used to define 3D
protein structure that supports more genetic information
[5]. The prognosis of protein 3D structure from the amino
acid sequence has several applications in biological pro-
cesses such as drug design, discovery of protein function,
and interpretation of mutations in structural genomics [6].
Protein folding is a thermodynamic process to create a

3D structure via minimum energy conformation based
on entropy [7]. The traditional methods for studying
protein folding are minutely discussed [8]. On the other
hand, the computational procedures of protein folding
are focused on the prediction of protein stability, kinet-
ics, and structure by using Levinthal’s paradox or energy
landscape or molecular dynamics [9]. The common algo-
rithm is the dictionary secondary structure protein
(DSSP) [10], which is based on hydrogen bond
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estimation. The DSSP algorithm assigns protein second-
ary structure to eight various groups: H (α-helix), E (β-
strand), G (310-helix), I (π-helix), B (isolated β-bridge),
T (turn), S (bend), and (rest). This algorithm holds more
information for a range of applications, but it is more
complex for computational analysis.
Previously, Pauling et al. [11] presented a PSSP model

for recognizing the polypeptide backbone by separating
two regular states, α-helix (H) and β-strand (E). The
poor PSSP relied on training large datasets that lead to
overfitting and classifier inability to estimate unknown
datasets [12].
Yuming et al. [13] applied a PSSP model by using the

data partition and semi-random subspace method (PSRS
M) with a range of accuracy of 85%. Generally, machine
learning algorithms are implemented for PSP, but the
evaluated accuracy is still limited [14]. To improve the
PSSP model, several algorithms used neural networks
(NNs) [15], K-nearest neighbors (KNNs) [16], and SVMs
[17]. Additionally, deep learning algorithms such as deep
conditional neural fields (CNF) [18], MUFOLD-SS [19],
and SPINE-X [20] have achieved success with an accur-
acy of 82–84%.
Also, the output of SVM is employed as input features

for a decision tree to extract the rules governing PSSP
[21] with high accuracy. It was found that the accuracy
rate of protein prediction is based on the gap between
current rules from algorithms and rules from biological
meaning.
In this work, we developed a former technique [21] by

using an SVM model to guess the protein secondary
structure and using a decision tree for SVM production
to derive regulations surrounding PSSP.

Methods
Data description
The proposed model implemented 126 protein se-
quences (RS126 set) [22] to predict the PSSP. The data-
set contains 23,349 amino acids that formed from 32%
α-helices, 23% β-strands, and 45% coils. The proposed
model is designed under MATLAB R2010a version
7.10.0 using a Windows platform with an Intel Core i7-
6700T@ 2.8.

Proposed model for PSSP
Figure 1 displays the proposed model for PSSP. The fol-
lowing steps explained the four steps of the proposed
model.

� The first step includes converting the amino acid
residue into a binary number by orthogonal
encoding.

� In the second step, the dataset is divided into seven
sets using seven-fold cross-validation by the SVM
classifier.

� In the third step, compute the accuracy of
prediction and select such results with high
accuracy and pass it as a training set into the
decision tree

� In the fourth step, those rules that are produced by
the decision tree are extracted and recorded.

Orthogonal encoding
Orthogonal encoding was used to convert the amino
acid residues to numerical values and to read the inputs
of the sliding window. In this paper, a window of size 12
is adopted; in the sliding window method, only the cen-
tral amino acid is predicted, and binary encoding was
utilized to allocate numeric data to the amino acid
characteristics. Therefore, there are 20 locations for the
characteristics of amino acids. For example, for every
window of size 12, the window comprises 12 input
amino acids, each amino acid will be denoted by the
value 1 depending on its location in the window, and
each other location will be assigned 0’s. In this case, the
input pattern will be 20 × 12 inputs, 12 of which will be
assigned the value 1 and all others to 0’s. A good ex-
ample of the sliding window problem is shown in Fig. 2;
suppose our input pattern consists of the following pro-
tein sequences and secondary structure pattern. If the
window size is 7 and the pattern NTDEPGA in Fig. 2 is
assumed to be the training pattern, it is applied to esti-
mate the residue ‘E’ and the next residue ‘P’ in the win-
dow slide ‘TDEPGACP.’ The window will slide to the
next residue until the end of the pattern. The orthogonal

Fig. 1 Architecture of the PSSP model
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encoding of the pattern KLNTDEPGACPQACYA is
shown in Table 1.
In this work, a DSSP [10] model for secondary struc-

ture assignment is used because it is a frequently utilized
and consistent technique for the PSSP approach. To
lessen the complexity of assignments and training, the
eight classes of DSSP were reduced to three classes [23].
The reduction problem of eight classes to three classes
is shown in Table 2.

SVM classifier
The SVM classifier [17] constructs a hyperplane that
separates the protein dataset after orthogonal encoding
into various classes. Six categories, namely, (H/~H), (H/
~E), (E/~E), (E/~C), (C/~C), and (H/~C), are used. For
SVM, the selection of kernel function, kernel parameter,
and cost parameter (C) are investigated to evaluate the
classification accuracy. In this paper, the RBF kernel is
used, and the kernel parameter γ is constant throughout
the experiment, but the C varies over the following
values: 0.2, 0.4, 0.7, 0.9, 1, and 4 as used in a previous
study [24].

Fig. 2 The sliding window problem

Table 1 Orthogonal encoding of 12 amino acids

K L N T D E P G A C P Q A C Y A

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 Conversion of eight secondary structures to three
classes

Reduction DSSP Description

H H Alpha-helix

H G 3-helix

C I 5-helix

E B Isolated bête-bridge

E E Extended - strand

C T Turn

C S Bend

C None Coil
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Decision tree
A decision tree is composed of several nodes and leaves
[25]. Each leaf represents one class corresponding to the
target value, and the leaf node may take the probability
of the target label. A decision tree inducer is an object
that takes a training set and creates a model that gener-
ates a link between the input instance and the target
variable.
Let DT denote a reference of the decision tree and

DT(T) denote the classification tree. These symbols are
created by applying DT to the training set T. The predic-
tion of the target variable indicates DT(T)(x).
We can use a classifier created by a decision tree in-

ducer to classify an unknown data set in one of the two
ways: by allocating it to a specific class or by supplying
the probability of given input data belonging to each
class variable. We can estimate the conditional probabil-

ity in the decision tree by P
_
DTðTÞðyjaÞ (probability of

class variable given an input instance). In a decision tree,
the probability is evaluated for each leaf node distinctly
by computing the occurrence of the class through the
training samples according to the leaf node.

When a particular class never appears in a specific leaf

node, we may end with a zero probability. However, we

can avoid such a case by using Laplace rectification.
Laplace’s law states the likelihood of the event j = xi

where j is a random parameter and xi is a potential out-
put of j that has been noticed ni times out of n notices.
It is given by: niþwp

nþw where p is the prior probability of
the event and w is the pattern size that refers to the
weight of the prior estimation according to the noticed
data. Additionally, w is described as equivalent pattern
size because it denotes the increase of the n tangible no-
tices by other w practical patterns estimated relative to
p. Due to assumptions, we can rewrite the prior and pos-
terior probability in the following equations:

ni þ w � p
nþ w

ni
n
� n
nþ w

þ p � w
nþ w

pp �
ni

nþ w
þ p � w

nþ w

Table 3 Accuracy comparison of various algorithms for protein secondary structure prediction

Classifier Accuracy (%)

Proposed model PSSP_SVM [26] PSSP_SVMCE [23] PSSP_SVMCP [27]

H/~H 76.85 80.36 73.90 87.24

E/~E 85.97 81.25 78.75 85.65

C/~C 62.83 73.20 70.80 82.54

H/~E 75.78 - 68.45 91.50

H/~C 74.34 - 60.15 82.03

E/~C 73.43 - 69.90 -

Fig. 3 Screenshot of the decision tree
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pp � n1 þ p � n2

In this case, we used the following expression:

Plaplace aijyð Þ ¼ j T j þw:p
j T j þw

By utilizing this expression, the values of p and w are
chosen.

Rules’ confidence
To define the trust of the rules, we must create the
probability allocation that controls the accuracy

calculation. The classification task is modeled as a bino-
mial test.
Suppose the test set consists of N records, X is the quantity

of sample portions accurately prophesied by the system and
p is the correct accuracy of the system. The forming the
overall function as a binomial ranking by mean p and vari-
ance p(1− p)/N based on the normal ranking, the empirical
accuracy for rules’ confidence can be derived from.

P −Zα=2≤
ecc−p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þ=Np ≤Z1−α=2

 !

¼ 1−α

Table 4 Rules produced by the decision tree for the H/~H classifier
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where −Zα/2 and Z1 − α/2 are the high and low bounds pro-
vided from a normal ranking at a trust interval of (1 − α).

Results
Evaluation criteria for secondary structure prediction
To find optimal rules governing PSSP by the decision
tree, a Q3 accuracy measure is used to estimate the value
of exactly predicted secondary structural elements of the
protein sequence.

Q3 ¼
P

i∈ H;E;Cð Þnumber of correctly predicted residue
P

i∈ H;E;Cð Þnumber of secondary structure elements observe

Performance of SVM
The results of the experiment are summarized in Table 3.
A comparison of the accuracy obtained by PSSP based on
NMR chemical shift with SVM (PSSP_SVM) [26], based
on the codon encoding (CE) scheme with SVM (PSSP_
SVMCE) [23], and based on the compound pyramid (CP)
model with SVM (PSSP_SVMCP) [27].
From Table 3, the accuracy among the classifiers var-

ies significantly. In the proposed model, the prediction
accuracy is in the range of 85–63%. The best prediction
accuracy is recoded for the E/~E classifier, and the least

accuracy of the prediction is recorded for the C/~C clas-
sifier. For the PSSP_SVMCP method [27], the best pre-
diction accuracy is recoded for the H/~H, C/~C, H/~E,
and H/~C classifiers compared to the proposed model.
The proposed model achieved the best prediction ac-

curacy compared to other previous models such as
PSSP_SVM [26], and PSSP_SVMCE [23]. In contrast,
the PSSP_SVMCP [27] model achieved the best predic-
tion accuracy compared to the proposed model.
During the experiment, the general observation is

made and observes that the accuracy of the classifier in-
creases with an increase of the C. The better C is ob-
tained at 4 and the least C is also obtained at 0.1.

Performance of decision tree
Figure 3 displays the decision tree of the training dataset
extracted from the SVM algorithm. Tables 4, 5, and 6
show some of those rules produced by the decision tree
using three different categories (H/~H, E/~E, and C/
~C). The x variable specifies the column number, the
compared values denote the column’s data, and the
nodes specify the nodes of the tree. Figures 4, 5, and 6
show the percentage of prediction accuracy related to
the proposed rules with a bold symbol referring to the

Table 5 Rules produced by the decision tree for the E/~E classifier
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Table 6 Rules produced by the decision tree for the C/~C classifier

Fig. 4 Rules extracted for the PSSP model using the location of the α-helix
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amino acid pattern that created a special protein second-
ary structural type.

Discussions
Initially, it was noted that the relationship between
hydrophobic side chains could lead to α-helix occur-
rence [28]. In Fig. 4, the forecast of the α-helix is based
on four rules according to four patterns, namely, IKLW,
IKLC, YACD, and YVM. In rule 1, the IKLW pattern
achieved 100% accuracy for α-helix prediction due to
isoleucine I, lysine K, leucine L, and tryptophan W dis-
plays at the first, second, third, and fourth locations, re-
spectively. Both amino acids I and W are hydrophobic,
and their presence at location i, i + 3 referred to a helix
manifestation [29]. In rule 2, the IKLC pattern con-
firmed that I and C are hydrophobic and indicated helix

stabilization [29]. In rule 3, the YACD pattern achieved
100% accuracy for α-helix prediction. In rule 4, both
amino acids Y and M are hydrophobic, and their occur-
rence at two locations during the sequence leads to α-
helix construction. Valine V has a low rate of helix oc-
currence [28].
In Fig. 5, the forecast of the β-strand is based on seven

rules according to seven patterns, namely, HIKLW,
RTWYC, CGNPPR, DHQWHE, CGCSA, HCTW, and
VWCD. In rule 1, the HIKLW pattern achieved 100%
accuracy for β-strand prediction due to histidine H, iso-
leucine I, lysine K, leucine L, and tryptophan W displays
at the first, second, third, fourth, and fifth locations, re-
spectively. In rule 2, the RTWYC pattern achieved 79%
accuracy due to arginine R, threonine T, tryptophan W,
tyrosine Y, and cysteine C displays at the first, second,

Fig. 5 Rules extracted for the PSSP model using the location of the β-helix

Fig. 6 Rules extracted for the PSSP model using the location of the coil structure
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third, fourth, and fifth locations, respectively. The amino
acids T, R, and D are employed as N-terminal β-
breakers, while S and G are employed as C-terminal β-
breakers [30]. Additionally, these patterns, namely,
CGNPPR, CGCSA, and HCTW, achieved 100% accuracy
for β-strand prediction.
The strengthening of protein structure and protein

regulation is related to the appearance of specific
amino acids in the loop structure. Proline P and gly-
cine G are considered the most important amino
acids in the loop structure. The high load proclivities
are achieved when there are nearest to Proline P
[30]. On the other hand, low load proclivities are
achieved when cysteine C, isoleucine I, leucine L,
tryptophan W, and valine V are present [31].
In Fig. 6, the forecast of the coil structure is based on

seven rules according to seven patterns, namely, EFG,
PEH, RYGSVY, TMPA, DTMPV, PTE, and LRKL. In
rules 2 and 3, the occurrence of coil structure referred
to high load proclivities due to the presence of amino
acids P and G. In rule 1, the EFG pattern achieved 90%
accuracy for coil prediction. This confirmed that E is
considered hydrophilic, while F and G are hydrophobic
amino acids. In rule 2, the PEH pattern achieved 100%
accuracy. In rule 4, it was confirmed that T is hydro-
philic, while M, P, and A are hydrophobic amino acids.
In rule 6, the PTE pattern achieved 67% accuracy due to
proline P occurrence with threonine T and glutamic E
during the series. In rule 7, the LRKL pattern achieved
100% accuracy due to the arginine R display at a location
with lysine K and leucine L at the first, third, and fourth
locations, respectively, through the series.
For comparative analysis, the recent algorithm [32]

based on convolutional, residual, and recurrent neural
network (CRRNN) showed 71.4% accuracy for DSSP. This
indicated that our algorithm is more accurate than that in
[30]. On the other hand, the quality of protein structure
prediction can affect poor alignments, protein misfolding,
few similarity rates between known sequences, evolution
theory, and machine learning performance [33].
For results analysis, instead of taking the three bin-

ary classifiers: (H/~H), (E/~E), (C/~C) into PSSP ac-
count [21], we compared the proposed algorithm with
previous studies based on six classifiers: (H/~H), (H/
~E), (E/~E), (E/~C), (C/~C), (H/~C) for PSSP as in
Table 3 and predict the residue identity of each pos-
ition one by one. It also found that the PSSP_SVMCP
model has shown superior accuracy rather than the
proposed model in terms of H/~H, C/~C, H/~E, and
H/~C classifiers.

Conclusions
The goal of this paper is to predict the RS126 dataset of
126 protein sequences as a secondary structure via the

SVM classifier and decision tree. The proposed model
has presented a framework of PSSP for the appearance
of α-helix, β-strand, and coil structures. The experiential
results coincided with the work of Kallenbach that the
presence of isoleucine I and tryptophan W at positions i
and i+3 along the sequence proved to be a helix stabiliz-
ing. In a β-strand, the presence of arginine R and lysine
K is proven to be β-strand. In a coil structure, it is
known that proline P and glycine G are the most signifi-
cant amino acids in the coil structure, which concurs
with our findings. This proposed model obtained bene-
fits in the protein analysis domain with a correct prog-
nosis for anonymous sequences. In future work, we
expand the proposed algorithm to apply it to the other
protein datasets for producing an effective competitive
analysis in the PSSP schema.
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