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REVIEW

MicroRNAs as the critical regulators 
of protein kinases in prostate and bladder 
cancers
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Abstract 

Background:  Bladder cancer (BCa) and prostate cancer (PCa) are frequent urothelial and genital malignancies with 
a high ratio of morbidity and mortality which are more common among males. Since BCa and PCa cases are mainly 
diagnosed in advanced stages with clinical complications, it is required to introduce the efficient early detection 
markers. Protein kinases are critical factors involved in various cellular processes such as cell growth, motility, differen-
tiation, and metabolism. Deregulation of protein kinases can be frequently observed through the neoplastic transfor-
mation and tumor progression. Therefore, kinases are required to be regulated via different genetic and epigenetic 
processes. MicroRNAs (miRNAs) are among the critical factors involved in epigenetic regulation of protein kinases. 
Since miRNAs are noninvasive and more stable factors in serum and tissues compared with mRNAs, they can be used 
as efficient diagnostic markers for the early detection of PCa and BCa.

Main body:  In present review, we have summarized all of the reported miRNAs that have been associated with regu-
lation of protein kinases in bladder and prostate cancers.

Conclusions:  For the first time, this review highlights the miRNAs as critical factors in regulation of protein kinases 
during prostate and bladder cancers which paves the way of introducing a noninvasive kinase-specific panel of 
miRNAs for the early detection of these malignancies. It was observed that the class VIII receptors of tyrosine kinases 
and non-receptor tyrosine kinases were the most frequent targets for the miRNAs in bladder and prostate cancers, 
respectively.
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Background
High frequencies of double primary bladder and pros-
tate cancers have been reported in several studies in 
which there were up to 70% of prostate cancers in blad-
der cancer patients [1]. Bladder cancer (BCa) is the 12th 
most frequently diagnosed malignancy globally [2], 
with a global age-standardized rate of 10.1 and 2.5 per 
100,000 for males and females, respectively [3]. A total 
of 81,190 newly diagnosed BCa cases and 17,240 deaths 

were recorded in 2018 in the USA [4]. BCa is the fourth 
most frequent malignancy and the second most preva-
lent tumor of the urinary tract after prostate cancer 
(PCa) in the USA [4]. Considering tumor invasion, BCa 
is classified into muscle-invasive bladder cancer (MIBC) 
and non-muscle-invasive bladder cancer (NMIBC) [5]. 
Almost 25–30% of newly diagnosed BCa patients are 
MIBC and 15% of them show local or remote metasta-
sis [6, 7]. Based on the histopathological features, BCa 
is classified into squamous cell carcinoma, adenocarci-
noma, and transitional cell carcinoma (TCC). TCC or 
urothelial carcinoma accounts for 90% of all BCa cases 
[8, 9]. Intravesical chemotherapy or immunotherapy 
after transurethral resection is regarded as the standard 
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treatment options for BCa; however, the tumor recur-
rence within 5 years and treatment failure (which is seen 
in 30% of the patients) have challenged these approaches 
[10]. The cigarette smoking, gender, chemicals exposure, 
and water pollutants are some of the BCa risk factors. 
However, BCa is observed in a small fraction of indi-
viduals with the well-known risk factors that may refer 
to the contribution of various genetic and epigenetic 
alterations in BCa susceptibility [11, 12]. PCa is the most 
frequently diagnosed malignancy and the second major 
cause of cancer mortality among males in western coun-
tries [4, 13]. It is a highly heterogeneous malignancy in 
which some patients have an indolent manifestation (90% 
5-year survival rate), while other patients experience an 
aggressive manifestation with local and distant metasta-
ses (5-year survival rate of 29%) [14]. Age, race, familial 
history, environmental factors, and occupational expo-
sures are considered as the main risk factors associated 
with PCa progression [15, 16]. Protein kinases are a large 
family of proteins responsible for the phosphorylation of 
key proteins involved in cell proliferation, metabolism, 
differentiation, and apoptosis [17, 18]. Regarding the piv-
otal regulatory roles of protein kinases in fundamental 
cellular processes, these factors should be strictly regu-
lated to maintain the normal status inside the cells [19]. 
Protein kinases are categorized based on their amino 
acid targets to the tyrosine and serine/threonine kinases 
which can be located in membranes or cytoplasm. Dereg-
ulation of tyrosine kinases (TKs) is frequently observed 
during tumor progression and metastasis [20–22]. 
Therefore, TKs targeting and inhibition can improve the 
prognosis and clinical outcomes in cancer patients [23]. 
MiRNAs are small single-stranded non-coding RNAs 
(21–24 nucleotides in length), which negatively regulate 
the expression of their target mRNAs through transla-
tional inhibition or mRNAs degradation [24]. They are 
involved in regulation of important pathophysiologi-
cal mechanisms including cell proliferation, differentia-
tion, tumorigenesis, and angiogenesis [24, 25]. MiRNAs 
deregulations disrupt the normal modulatory functions 
of several signaling pathways that leads in tumor progres-
sion and metastasis [26]. There is a correlation between 
the tumor cell response to radiotherapy and miRNAs 
functions [27]. EGFR-tyrosine kinase inhibitors (TKIs) 
have a pivotal role in treatment and prognosis of cancer 
patients with epidermal growth factor receptor (EGFR) 
mutations. However, drug resistance limits the efficacy 
of EGFR-TKI in these patients. The ability of miRNAs to 
regulate many oncogenic pathways provides them as the 
novel prognostic biomarkers. Putative roles of miRNAs 
have been shown in regulation of EGFR-TKI resistance 
in EGFR-mutated tumors [28]. Exosomes can be used to 
deliver the miRNAs to EGFR expressing tumor cells [29]. 

MiRNAs are involved in regulation of cytochrome P450 
as the main EGFR-TKI metabolizing enzyme to enhance 
drug-mediated toxicity and reduce pharmacological side 
effects [30, 31]. Aberrant expression of miRNAs is asso-
ciated with progression of various malignancies includ-
ing PCa and BCa [32, 33]. Since miRNAs are more stable 
than mRNAs in paraffin-embedded tissues and serum, 
they can be used as efficient noninvasive diagnostic 
markers in early detection of cancer. Although kinase 
inhibitors have been widely used as efficient options in 
urothelial tumor therapy, many tumors acquire resist-
ance toward the protein kinase inhibitors. Therefore, it 
is required to clarify the molecular mechanisms which 
are involved in regulation of protein kinases. MicroRNAs 
have been introduced as important regulators of protein 
kinases during tumor progression and chemoresistance 
[34, 35]. Therefore, in present review we have summa-
rized all of the miRNAs which have been reported as the 
regulators of protein kinases during bladder and prostate 
cancer progressions (Table 1) (Fig. 1).

Main text
Class I receptors of tyrosine kinases
EGFR is a trans-membrane protein which belongs to 
the erbB family of receptors. Interaction of EGFR with 
its cognate EGF ligand induces intrinsic tyrosine kinase 
activity that subsequently activates intracellular signal-
ing cascades [36]. EGFR is implicated in regulation of cell 
proliferation, angiogenesis, and tumor invasiveness [20]. 
It activates multiple signaling pathways including PI3K/
AKT and MAPK/ERK [37]. AKT has an oncogenic func-
tion by the induction of cell proliferation and apoptosis 
suppression [38]. It has been reported that the miR-133a 
and miR-133b reduced tumor growth, cell proliferation, 
and migration through EGFR, p-ERK, p-AKT, and MMP-
2 targeting in BCa cells [39]. There was also a significant 
miR-135a downregulation in metastatic PCa tumors 
which was associated with advanced-stage tumor, higher 
Gleason score, and poorer prognosis. MiR-135a sup-
pressed PCa cell proliferation and migration via target-
ing EGFR [40]. E-box binding homeobox  1 (ZEB1) is a 
zinc-finger transcription factor involved in DNA damage 
response [41, 42]. ZEB1 is phosphorylated and stabilized 
by ATM following radiotherapeutic-related DNA dam-
age. It induces USP7 to deubiquitinate and stabilize the 
CHK1. Therefore, ZEB1 increases radioresistance by pro-
motion of homologous recombination-mediated DNA 
repair [43]. A significant miR-875-5p downregulation 
was observed in prostate tumors compared with normal 
margins. There was also a direct correlation between 
miR-875-5p and E-cadherin expressions in clinical sam-
ples. MiR-875-5p promoted radiosensitivity of PCa cells 
by EGFR targeting [44]. E-cadherin downregulation is 
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Table 1  All of the miRNAs which have been reported to regulate the protein kinases in bladder and prostate cancers

Gene Target Cancer Sample Results Country Year Study

Class I receptors of tyrosine kinases

miR-133a/b EGFR Bladder 2 cell lines The miR133a and miR-133b reduced tumor growth, cell 
proliferation, and migration

China 2012 Zhou [39]

miR-135a EGFR Prostate 141 patients
2 cell lines

MiR-135a suppressed cell proliferation and migration China 2016 Xu [40]

miR-875-5p EGFR Prostate 2 cell lines The miR-875-5p promoted radiosensitivity Italy 2017 Bezawy [44]

miR-200a EGFR Bladder 3 cell lines MiR-200a downregulation promoted of EGFR translation 
and enhancement of anchorage-independent tumor 
growth

USA 2017 Huang [64]

miR-133a/b EGFR Prostate 2 cell lines MiR-133 functions as a potent tumor suppressor agent, 
especially in androgen-independent PCa

China 2012 Tao [65]

miR-4319 Her-2 Prostate 40 patients
2 cell lines

Suppressed growth and chemoresistance USA 2018 Lin [69]

miR-331-3p Her-2 Prostate 1 cell line MiR-331-3p was associated with PCa progression Australia 2011 Epis [73]

miR-148a-3p ERBB3 Bladder 59 patients
5 cell lines

Suppressed EMT China 2016 Wang [75]

Class V, VII, and VIII receptors of tyrosine kinases

miR-99a FGFR3 Prostate 2 cell lines Inhibited PCa cell growth, invasion, and migration China 2014 Wu [79]

miR-100 FGFR3 Bladder 4 cell lines Hypoxia increased viability of tumor cells under stressful 
conditions through miR-100 suppression

UK 2013 Blick [84]

miR-1-3p TrkB Bladder 38 patients
5 cell lines

Inhibited the progression and invasion of BCa China 2018 Gao [86]

miR-34C MET Prostate 47 patients
6 cell lines

There was an inverse correlation between MET and miR-
34c expression levels

Sweden 2013 Hagman [95]

miR-323a c-Met Bladder 20 patients
5 cell lines

Induced apoptosis China 2019 Qiu [99]

miR-409-3p c-Met Bladder 10 patients
5 cell lines

Inhibited BCa migration and invasion China 2013 Xu [100]

miR-23b/27b EGFR, c-MET Bladder 58 patients
2 cell lines

Suppressed proliferation and migration of BCa cells Japan 2014 Chiyomaru [101]

miR-101 c-Met Bladder 10 patients
2 cell lines

Repressed BCa invasion China 2013 Hu [106]

miR-323a-3p MET Bladder 9 patients
4 cell lines

Inhibited invasion and migration of BCa cell lines China 2017 Li [107]

miR-1 c-Met Prostate 3 cell lines Repressed the proliferation China 2019 Gao [108]

Class II and X receptors of tyrosine kinases

miR‐139 IGF1R, AXL Prostate 585 patients
3 cell lines

Inhibited PCa cell migration, proliferation, and cell cycle Canada 2019 Nam [113]

miR-145 IGFIR Bladder 3 cell lines Tumor suppressor China 2014 Zhu [114]

Let-7a1 IGF1R Prostate 1 cell line Suppressed prostate tumor cell proliferation, and triggers 
cell cycle arrest and apoptosis

China 2013 Wang [118]

Non-receptor tyrosine kinases

miR-4723 ABL Prostate 57 patients
2 cell lines

Inhibited tumor cell proliferation and invasion and 
induced apoptosis

USA 2013 Arora [121]

miR‐20a ABL2 Prostate 30 patients
5 cell lines

Inhibited migration and invasion of PCa cells China 2014 Qiang [126]

miR-3607 SRC Prostate 100 patients
5 cell lines

Suppressed the tumorigenicity USA 2014 Saini [130]

miR-1 SRC Prostate 139 patients
2 cell lines

There was an inverse association between miR-1 and SRC 
expression levels

Taiwan/USA 2015 Liu [137]

miR-124 SRC Prostate 4 cell lines Inhibited PCa cell proliferation, increased sensitivity to 
enzalutamide, and triggered apoptosis

USA 2015 Shi [140]

miR-1178-3p SRC Bladder 82 patients
3 cell lines

The circFNDC3B upregulation suppressed BCa growth 
and metastasis via miR-1178-3p sponging

China 2018 Liu [143]

miR-199a YES1 Prostate 74 patients
1 cell line

Increased chemosensitivity and apoptotic cell death China 2017 Chen [146]
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Table 1  (continued)

Gene Target Cancer Sample Results Country Year Study

miR-631 ZAP70 Prostate 43 patients
6 cell lines

Suppressed invasion and migration of prostate tumor 
cells

China 2016 Fu [150]

miR-214 PTK6 Prostate 5 cell lines Reduced cell proliferation and viability in PCa USA 2019 Cagle [154]

Serine threonine kinases

miR-27a MAP2K4 Prostate 17 patients
5 cell lines

Tumor suppressor China 2016 Wan [157]

miR-136 MAP2K4 Prostate 27 patients
5 cell lines

Suppressed proliferation and invasion of PCa cells China 2018 Zhu [158]

miR-1826 MEK1 Bladder 19 patients
4 cell lines

Inhibited cancer cell viability and invasion, and induced 
apoptosis

USA 2012 Hirata [162]

miR-30e MAPK Prostate 57 patients
2 cell lines

Inhibited PCa cell invasion and migration China 2018 Zheng [170]

Fig. 1  All of the miRNAs–protein kinases interactions that are involved in prostate and bladder tumor progressions



Page 5 of 12Zangoue et al. Egypt J Med Hum Genet           (2021) 22:72 	

crucial for increased tumor cell motility and loss of tis-
sue integrity during EMT process in which non-motile 
epithelial cells acquire mesenchymal feature. Many 
transcriptional repressors such as TWIST1, SNAIL1, 
and ZEB2/SIP1 regulate E-cadherin expression through 
binding to the E-box promoter sequences [45, 46]. There 
were significant associations between miR-200, E-cad-
herin, and anti-EGFR sensitivity. MiR-200 upregulated 
the E-cadherin and increased sensitivity to EGFR inhibi-
tors, whereas downregulated the ZEB-1 and ZEB-2 and 
suppressed cell motility [47]. EGFR activation has been 
reported as one of the pivotal reasons of chemoresistance 
[48, 49]. Targeting the EGFR signaling pathway using 
monoclonal antibodies to inhibit the receptor dimeriza-
tion or small molecule tyrosine kinase inhibitors (TKIs) 
is common therapeutic strategies in EGFR-mutated 
cancers [50, 51]. Ras signaling pathway upregulates the 
EGFR ligands which constitutes an autocrine EGFR acti-
vation loop to promote cancer progression [52, 53]. The 
polycomb repressive complexes PRC1 and PRC2 are well-
established regulators of gene expression that function 
in chromatin remodeling and epigenetic gene silencing 
in the early developmental stages [54]. The expression 
of Snail/Suz12 is regulated by EGFR pathways in Ras-
mutated PCa cells. MiR-203 had also a key role in SUZ12 
regulation in PCa cells. Moreover, Snail/Suz12 axis regu-
lated the expression of miR-203a via a mutually inhibitory 
feed-forward loop in an EGF-dependent manner. EGFR 
signaling pathway upregulated Snail/PRCs, while sup-
pressed the miR-203a [55]. EGFR serves as an upstream 
regulator of TWIST1 that is a transcription factor 
involved in high-grade PCa [56]. There was an associa-
tion between EGFR and STAT3 to facilitate EMT process 
in breast cancer cells through TWIST1 upregulation 
[56]. It has been reported that the EGFR promoted PCa 
growth and bone metastasis through TWIST1 induction 
and miR-1 suppression. There was also an inverse corre-
lation between TWIST1 and miR-1 expression in clini-
cal samples [57]. X-linked inhibitor of apoptosis protein 
(XIAP) belongs to the inhibitors of apoptosis (IAP) family 
of proteins which directly suppresses apoptotic pathways. 
XIAP upregulation is involved in radio-chemoresistance 
[58, 59]. However, XIAP downregulation renders the 
tumor cells vulnerable toward chemotherapeutic-related 
apoptosis [60, 61]. XIAP enhances the colorectal can-
cer growth via induction of E2F1 transcriptional activity 
[62]. EGFR-overexpressing tumors are more responsive 
to the anti-IAPs antagonists indicating a possible associa-
tion between XIAP and EGFR in tumor cells [63]. XIAP 
suppressed the expression of Rac1 by PP2A activation. 
The activated PP2A inhibited MAPKK/MAPK axis and 
c-Jun which resulted in miR-200a downregulation. Since 
miR-200a suppresses EGFR expression, XIAP-related 

miR-200a downregulation leads to the promotion of 
EGFR translation and increased anchorage-independent 
growth in bladder tumor cells [64]. MiR-133a/b signifi-
cantly suppressed the proliferation, migration, and inva-
sion of PCa cell lines through EGFR inhibition. MiR-133 
functions as a potent tumor suppressor, especially in 
androgen-independent PCa. MMP-2 as an effector of 
EGFR pathway which is regulated through GSK3β/
snail/E-cadherin axis was also downregulated follow-
ing the miR-133a/b transfection [65]. ETS variant gene 6 
(ETV6) is a member of the E26 transformation-specific 
family. Deletion of ETV6 has been frequently reported in 
PCa [66, 67]. ETV6 is a tumor suppressor that represses 
cell proliferation and migration in PCa. It was also 
observed that the EGFR induced miR-96 while inhibited 
ETV6 during PCa progression [68]. ERBB2 is also a class 
I receptor tyrosine kinase. MiR-4319 suppressed growth 
and chemoresistance in PCa cells through ERBB2 target-
ing. There were significant reduced levels of miR-4319 in 
PCa specimens compared with normal margins which 
was associated with poor prognosis and survival. MiR-
4319 also upregulated the BCL-2 and CASP9 [69]. HuR 
belongs to the RNA-binding proteins (RBPs) involved in 
various physiological processes such as cell proliferation 
and stress responses [70]. Upregulation of HuR and/or its 
cytoplasmic aggregation has been reported in PCa [71, 
72]. The 3′-UTR of ERBB2 is a specific site for the HuR 
binding in PCa cells that enhances ERBB2 levels through 
counteracting the repression of ERBB2 through miR-
331-3p. The concomitant upregulated HuR and downreg-
ulated miR-331-3p were associated with PCa progression 
through increased ERBB2 levels [73]. ERBB3 as a trans-
membrane receptor belongs to the EGFR family that pro-
motes cellular proliferation, survival, and migration [21]. 
Interaction of ERBB3 and p85 triggers the PI3K recruit-
ment and activation [74]. ERBB3 downregulation sup-
pressed EMT in UM-UC-3 and T24 bladder cancer cell 
lines through regulation of AKT2/Snail pathway. There 
were significant ERBB3 upregulation and miR-148a-3p 
downregulation in BCa tissues compared with normal 
margins. MiR-148a-3p directly targeted the ERBB3, 
DNMT1, and AKT2 [75].

Class V, VII, and VIII receptors of tyrosine kinases
Fibroblast growth factor receptor 3 (FGFR3) is a mem-
ber of the trans-membrane tyrosine kinase family of 
receptors that functions as a key regulator of multiple 
cellular and biological processes such as cell growth, dif-
ferentiation, apoptosis, migration, and tumor progression 
[76, 77]. Increased levels of circ0068871 were observed 
in BCa tissues compared with normal margins which 
were correlated with N-stage and T-stage. Circ0068871 
enhanced BCa progression via FGFR3 upregulation and 
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STAT3 activation following the miR-181a-5p sponging 
[78]. MiR-99a also inhibited PCa cell growth, tumorigen-
esis, invasion, and migration through FGFR3 downregu-
lation [79]. Non-muscle-invasive BCa is characterized 
by upregulation and gain-of-function mutations of vari-
ous oncogenes including FGFR3, H-RAS, and PI3K [80, 
81]. FGFR activation triggers downstream pathways 
such as ERK/MAPK and PI3K [82]. Hypoxia-induci-
ble factor (HIF) is a heterodimer transcription factor 
(HIF-1a or HIF-2a) that mediates the biological effect 
of hypoxia through binding to the hypoxia-responsive 
elements (HREs) in promoter sequence of target genes 
such as VEGF and LOX [83]. It has been reported that 
the hypoxia increased FGFR3 expression in NMIBCa cell 
lines. FGFR3 knockdown reduced the phosphorylation 
and activation of protein kinase B and MAPK signaling. 
Hypoxia increased viability of tumor cells under stress-
ful conditions through miR-100 suppression that resulted 
in FGFR3 upregulation in BCa [84]. Brain-derived neuro-
trophic factor (BDNF) belongs to the neurotrophin fam-
ily of growth factors that bind with tropomyosin-related 
kinase B (TrkB) to regulate the survival, differentiation, 
and maturation of neurons and synapses [85]. MiR-1-3p 
downregulation was observed in UM-UC-3 BCa cell line. 
It also inhibited the progression and invasion of BCa via 
modulation of BDNF/TrkB axis [86].

Met proto-oncogene (MET) belongs to the receptor 
tyrosine kinase family involved in tumor cells invasion 
and migration [87, 88]. Activation of c-MET initiates 
various signaling cascades including PI3K-AKT, STAT, 
RAS, and WNT [89–92]. It is upregulated in metastatic 
tumors as well as castration-resistant PCa [93, 94]. An 
inverse correlation was reported between the MET and 
miR-34c expression levels in PCa cells [95]. c-MET over 
expression in BCa is associated with malignant trans-
formation of normal cells, increased cell proliferation, 
angiogenesis, and poor prognosis [96, 97]. Activated 
c-Met promotes growth and invasion of tumor cells and 
endothelial cells, while inhibits apoptosis [98]. There 
were significant miR-323a downregulations in BCa tis-
sues and cell lines. MiR-323a induced apoptosis of BCa 
cells through c-MET inhibition [99]. MiR-409-3p down-
regulation was also observed in BCa tissues and cell 
lines. MiR-409-3p inhibited BCa migration and inva-
sion through suppressing c-MET [100]. MiR-23b and 
miR-27b also suppressed proliferation and migration 
of BCa cells through EGFR and c-MET targeting [101]. 
MiR-101 as an inhibitor of cell migration and invasion 
is significantly downregulated in multiple malignancies 
such as lung, colon, and prostate cancers [102–104]. 
Aberrant expression and activation of the HGF/c-MET 
axis were associated with EMT process and BCa pro-
gression and aggressiveness [105]. Significant miR-101 

downregulation was reported in BCa tissues and cell 
lines compared with controls. MiR-101 suppressed 
the T24 cells invasion, whereas c-MET upregulation 
increased T24 cells invasion. Therefore, it was con-
cluded that the miR-101 repressed BCa invasion 
through c-Met targeting [106]. It has been observed 
that the miR-433 suppressed EMT through regulating 
AKT/GSK-3β/Snail signaling pathway in BCa cells in 
which CREB1 and c-Met were downregulated by miR-
433. There was significant miR-433 downregulation 
in tumor cells compared with normal margins. MiR-
433-induced c-Met suppression inhibited the AKT and 
induced GSK-3β, which were contributed to the Snail 
nuclear accumulation and elevated E-cadherin expres-
sion. CREB1 downregulation inhibited AKT/GSK-3β/
Snail signaling pathway in BCa cells [96]. MiR-323a-3p 
significantly inhibited the EMT progression of BCa 
cells through regulating MET/SMAD3/SNAIL signal-
ing. MiR-323a-3p also inhibited invasion and migration 
of BCa cell lines through inhibiting MET to regulate 
AKT/GSK-3β/SNAIL axis [107]. MiR-1 was downreg-
ulated in PCa cells compared with normal margins. It 
functioned as a tumor suppressor that repressed the 
proliferation of prostate tumor cells through targeting 
the c-MET/AKT/mTOR axis [108].

Class II and X receptors of tyrosine kinases
IGF1R is a tyrosine kinase receptor involved in important 
biological and physiological processes such as cellular 
differentiation, proliferation, migration, and tissue home-
ostasis [109, 110]. IGF1R activation has been identified to 
be correlated with poorer prognosis of PCa [110]. AXL 
is a trans-membrane receptor tyrosine kinase which 
constitutes the TAM family of receptor tyrosine kinases 
along with TYRO3 and MER [111]. AXL regulates PCa 
invasion and proliferation [112]. It has been reported 
that the miR-139 suppressed the AXL and IGF1R in PCa 
cells. The patients without tumor recurrence had higher 
expression levels of miR-139 compared with metastatic 
cases. There were significant associations between miR-
139 downregulation and poor prognostic indicators such 
as high tumor stage/grade, lymph node involvement, and 
recurrence. MiR-139 inhibited PCa cell migration, pro-
liferation, and cell cycle via targeting AXL and IGF1R 
which leads to downstream effects on the PI3K/AKT axis 
and cyclin D1 downregulation [113]. MiR-145 was intro-
duced as a tumor suppressor via IGF-IR suppression in 
bladder tumor cells [114]. IGF1R is upregulated in meta-
static and hormone-resistant PCa [115–117]. Let-7a1 
suppressed prostate tumor cell proliferation, while trig-
gered cell cycle arrest and apoptosis via IGF1R, c-FOS, 
and ELK1 inhibition [118].
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Non‑receptor tyrosine kinases
The Abelson (ABL) family of non-receptor protein 
tyrosine kinases is implicated in cell differentiation, 
proliferation, adhesion, and motility [119]. Integrin 
alpha3 (ITGA3) is a cell adhesion molecule involved 
in tumor cell proliferation and migration [120]. It has 
been reported that there was a significant decreased 
levels of miR-4723 expressions in PCa tissues which 
was associated with poorer prognosis. MiR-4723 inhib-
ited tumor cell proliferation and invasion and induced 
apoptosis through ABL kinases and ITGA3 targeting 
[121]. ABL1 and ABL2 are distinct members of ABL 
family which are ubiquitously expressed and function 
as key regulators of multiple oncogenic signaling cas-
cades promoting cell proliferation, survival, adhesion, 
and migration through the actin remodeling [122]. ABL 
kinases are involved in the actin cytoskeleton reorgani-
zation mediated by adaptor proteins such as CRKL and 
CRK [123]. ABL2 inhibits RhoA by depolymerization 
of F-actin which results in cytoskeleton collapse and 
cell migration suppression [124, 125]. MiR-20a upreg-
ulation was observed in PCa tissues compared with 
normal margin which was correlated with poorer prog-
noses. The inhibitory function of miR-20a on migration 
and invasion of PCa cell lines was achieved through 
ABL2 targeting [126]. SRC kinase family is a family of 
non-receptor tyrosine kinases that are implicated in key 
signaling pathways responsible for cell growth, differ-
entiation, migration, and apoptosis [127, 128]. Overex-
pression of SRC kinase is associated with higher risk of 
tumor metastasis and poor prognosis in PCa [127, 129]. 
It has been revealed that there were significant corre-
lations between miR-3607 downregulation, increased 
tumor growth, PSA levels, and lower survival in PCa. 
MiR-3607 also significantly suppressed the tumori-
genicity of cancer cells through SRC kinases targeting 
[130]. Hormone ablation therapy is used to temporarily 
manage metastatic PCa symptoms and tumor growth; 
however, tumor cells will finally become resistant to 
hormone therapy. Reconstitution of androgen receptor 
(AR)-mediated signaling is a core process that leads to 
castration-resistant prostate cancer (CRPC) [131, 132]. 
SRC interacts with multiple receptor families and is 
especially activated in downstream of receptor tyrosine 
kinases [133]. SRC is considered as an upstream signal-
ing molecule involved in the survival of PCa cells in AR 
deprivation conditions [133–136]. MiR-1 was involved 
in inhibition of the in vivo bone metastasis. AR upregu-
lated the miR-1 through binding to the miR-1-2 regula-
tory region. There was an inverse association between 
miR-1 and SRC expression levels. Low canonical AR 
signature also downregulated and upregulated the 

miR-1 and SRC, respectively, in PCa [137]. Enhancer 
of zeste homolog 2 (EZH2) is a histone-lysine N-meth-
yltransferase that suppresses tumor-suppressor genes 
[138] and induces AR during PCa progression [139]. 
MiR-124 inhibited PCa cell proliferation, increased sen-
sitivity to enzalutamide, and triggered apoptotic death 
through AR, EZH2, and SRC tyrosine kinase targeting 
[140]. G3BP2 belongs to the Ras-GTPase-activating 
protein (RasGAP) SH3 domain-binding protein (G3BP) 
family. G3BP2 upregulation is associated with tumor 
invasiveness [141]. Focal adhesion kinase (FAK) has key 
functions in cancer progression and invasion through 
interaction with steroid receptor coactivator (SRC) 
[142]. A significant circFNDC3B downregulation was 
observed in BCa tissues and cell lines which were cor-
related with high tumor stage and grade, lymph node 
involvement, and poor prognosis. CircFNDC3B sup-
pressed BCa growth and metastasis via miR-1178-3p 
sponging that downregulated the G3BP2 and inhib-
ited the SRC/FAK phosphorylation [143]. Yamaguchi 
sarcoma viral homolog 1 (YES1) is a proto-oncogene 
tyrosine–protein kinase which belongs to the SRC fam-
ily involved in tumor cell proliferation and chemore-
sistance [144, 145]. There was a significant lower level 
of miR-199a in PCa tissues compared with normal mar-
gins. MiR-199a downregulation was also characteris-
tic of paclitaxel-resistant and aggressive PCa through 
YES1 targeting. Increased chemosensitivity and apop-
totic cell death and YES1 inhibition were observed in 
PCa cells with miR-199a upregulation [146]. Zeta-
associated protein 70 (ZAP70) is a member of the SYK 
tyrosine kinases which has a pivotal role for T cell 
migration and T cell hybridoma invasion [147, 148]. 
ZAP-70 expression is also correlated with increased 
response to the survival and migration signals in B cell 
chronic lymphocytic leukemia [149]. An inverse asso-
ciation was reported between ZAP70 and miR-631 in 
PCa tissues and cell lines. MiR-631 suppressed invasion 
and migration of prostate tumor cells via ZAP70 inhibi-
tion [150]. Protein tyrosine kinase 6 (PTK6) is a non-
receptor tyrosine kinase involved in modulation of cell 
growth and differentiation [151–153]. PTK6 induces 
EMT through AKT41 activation. MiR-214 suppressed 
growth and migration of PCa cell lines through PTK6 
targeting. Ibrutinib (IBT) is a chemotherapeutic medi-
cation that permanently binds and irreversibly inhibits 
Bruton tyrosine kinase (BTK). It is conventionally used 
for the treatment of liquid malignancies such as mantle 
cell lymphoma and chronic lymphocytic leukemia. The 
results demonstrated that inhibiting PTK6 using miR-
214 alone or in concomitant administration of miR-214 
and IBT reduced cell proliferation and viability in PCa 
[154].
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MAP2K4 belongs to the MAPK signaling pathway 
involved in regulation of cell proliferation, cell cycle, 
apoptosis, tumor progression, and distant metastasis 
[155, 156]. MAPK family members serve as an integra-
tion point for the various biochemical signals. MiR-27a 
exerted its tumor-suppressive function through MAP2K4 
targeting and inhibiting in prostate tumors. There were 
reduced levels of miR-27a expressions in PCa cells. 
Moreover, PI3K signaling pathway suppressed the miR-
27a expression in castration-resistant PCa [157]. MiR-
136 downregulation was observed in PCa tissues and 
cell lines. It also suppressed proliferation and invasion 
of PCa cells through directly targeting MAP2K4 [158]. 
Ras/Raf/MAPK pathway is regarded as the most char-
acterized signaling pathway among all MAPK signal 
transduction pathways. Following the activation of Ras, 
the protein kinase activity of Raf is triggered, and MEK 
(MEK1 and MEK2) is activated [159]. Activation of the 
Ras pathway was closely associated with WNT to drive 
bladder tumor progression [160]. Different growth fac-
tors such as VEGFC have been reported to be associated 
with the elevated activity of Ras/Raf/MEK/ERK pathway. 
CTNNB1 is a core component of the WNT pathway in 
BCa [161]. There were inverse correlations between miR-
1826, MEK1, VEGFC, and CTNNB1 expressions which 
are the direct targets of miR-1826. MiR-1826 also sup-
pressed the survivin expression in transfected cells. BCa 
cells had significant downregulated miR-1826 levels com-
pared with normal cells. MiR-1826 inhibited cancer cell 
viability and invasion and induced apoptosis through 
MEK1, VEGFC, and CTNNB1 suppressing [162]. A vari-
ety of antioxidants including curcumin, resveratrol, and 
isoflavone have promising efficacy in suppressing the 
progression and metastasis of different tumors [163]. 
Resveratrol is a polyphenol found in red grapes, peanuts, 
and berries [164, 165]. Resveratrol exerts its anticancer 
activity through upregulating estrogen receptor-b and 
suppressing the phosphorylation of IGF-1 and ERK1/2 
[166]. It has been shown that the resveratrol inhibited 
PCa cells viability and migration through AKT-medi-
ated miR-21 downregulation. Therefore, AKT/miR-21 
pathway is an important target of resveratrol that medi-
ates its anticancer activity in highly aggressive PCa cells. 
Phosphorylation of AKT and upregulation of miR-21 
targeted the PDCD4 which inhibited the eukaryotic ini-
tiation factor 4A (eIF4A). PDCD4 also suppressed AP-
1-dependent transcriptional activity via c-Jun inhibition 
that prevented its growth-stimulating function [167]. 
MiR-30e drives NF-κB-mediated PCa proliferation and 
growth through inhibition of IκBα [168]. Blockade of M3 
muscarinic acetylcholine receptor (CHRM3) inhibits the 
castration-resistant growth of PCa cells and increases 

their sensitivity to androgen deprivation through CaM/
CaMKK-mediated phosphorylation of AKT [169]. 
There were reduced and increased levels of miR-30e and 
CHRM3, respectively, in PCa tissues compared with nor-
mal margins. MiR-30e inhibited PCa cell invasion and 
migration via CHRM3 downregulation and inhibition of 
MAPK signaling pathway [170].

Conclusions
For the first time, this review highlights the miRNAs 
as the pivotal regulators of protein kinases in bladder 
and prostate cancers. It was observed that the class VIII 
receptors of tyrosine kinases and non-receptor tyrosine 
kinases were the most frequent targets for the miRNAs 
in bladder and prostate cancers, respectively. As the 
miRNAs are more stable and noninvasive markers com-
pared with mRNAs, they can be efficiently introduced 
as kinase-specific noninvasive markers for the early 
detection of bladder and prostate cancers.
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