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Abstract 

Background: Transcriptional regulation of the SHOX gene is highly complex. Much of our understanding has come 
from the study of copy number changes of conserved non‑coding sequences both upstream and downstream of 
the gene. Downstream deletions have been frequently reported in patients with Leri–Weill dyschondrosteosis or 
idiopathic short stature. In contrast, there are only four cases in the literature of upstream deletions that remove 
regulatory elements. Although duplications flanking the SHOX gene have also been reported, their pathogenicity is 
more difficult to establish. To further evaluate the role of flanking copy number variants in SHOX‑related disorders, we 
describe nine additional patients from a large SHOX diagnostic cohort.

Results: The nine cases presented here include five with duplications (two upstream of SHOX and three down‑
stream), one with a downstream triplication and three with upstream deletions. Two of the deletions remove a single 
conserved non‑coding element (CNE‑3) while the third does not remove any known regulatory element but is just 
4 kb upstream of SHOX, and the deleted region may be important in limb bud development. We also describe six fam‑
ilies with novel sequence gains flanking SHOX. Three families had increased dosage of a proposed regulatory element 
approximately 380 kb downstream of SHOX (X:970,000), including one family with the first ever reported triplication 
of this region. One family had two in cis downstream duplications co‑segregating with LWD, and the two others had a 
duplication of just the upstream SHOX regulatory element CNE‑5.

Conclusions: This study further extends our knowledge of the range of variants that may potentially cause SHOX‑
related phenotypes and may aid in determining the clinical significance of similar variants.
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Background
Leri–Weill dyschondrosteosis (LWD; MIM ID # 127300) 
[1], characterised by mesomelic disproportionate 
short stature and Madelung deformity of the wrist, is a 
pseudoautosomal dominantly inherited skeletal dys-
plasia. Heterozygous deletions or sequence variants 
resulting in haploinsufficiency for the short-stature 

homeobox-containing gene (SHOX;MIM ID # 312865) 
are the only known genetic cause of LWD [2, 3] and have 
also been reported in 1.5–15% of cases of idiopathic short 
stature (ISS; MIM ID # 300582), defined as a height below 
the 3rd centile or two standard deviations below the 
mean (− 2 SD) in the absence of known specific causative 
disorders [4–8]. Homozygosity or compound heterozy-
gosity for SHOX variants results in Langer mesomelic 
dysplasia (LMD; MIM ID # 249700), the most severe end 
of the spectrum of SHOX-related disorders with signifi-
cant short stature, limb aplasia, a small ulna and fibula, 
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a small mandible plus thickening and curvature of the 
radius and tibia [2, 3, 9–11].

The characterisation of deletions downstream of SHOX 
identified putative DNA elements that act as long-range 
enhancers [12, 13]. Parallel comparative genomic studies 
identified multiple conserved non-coding DNA elements 
(CNEs) downstream of SHOX, four of which have been 
demonstrated to have transcriptional activity, namely 
CNE4 (X:714,085–714,740 (hg19)), CNE5 (X:750,825–
751,850), CNE7 (ECR1; X:780,700–781,220) and CNE9 
(ECS4; X:834,746–835,567) [14–17]. However, regions 
with regulatory activity are not always highly conserved 
[18, 19]; therefore, characterising novel copy number 
variants (CNVs) in individuals with a SHOX-related phe-
notype is important to try and identify further potential 
regulatory elements. This approach identified a potential 
additional regulatory element at approximately X:970,000 
[20, 21]. The most recent cis-regulatory element to be 
identified was ZED (Zeugopodal Enhancer Downstream 
of SHOX) located at X:827,128–827,691 [19] which 
was shown to be the critical region within the common 
downstream 47.5 kb X:780,550–828,092 deletion [17, 22].

There are three known CNEs upstream of SHOX 
which have transcriptional activity: CNE-5 (X:398,357–
398,906), CNE-3 (X:460,279–460,664) and CNE-2 
(516,610–517,229) [23]. Deletions upstream of SHOX 
are infrequently reported compared to downstream dele-
tions with only four previously reported probands with 
upstream CNEs deletions, all in individuals with ISS 
[24–26]. Upstream SHOX duplications are also compara-
tively rare with only four reported to date, all in patients 
with ISS. One of these duplications involved all three 
upstream CNEs [27] while two other reported cases 
involved two of the upstream elements (CNE-5/CNE-3 
and CNE-3/CNE-2) [28]. The only patient reported to 
date with a duplication of a single upstream CNE had a 
duplication of CNE-2 [29].

It is accepted that SHOX downstream deletions that 
remove regulatory elements can result in SHOX haplo-
insufficiency, but other, rarer flanking dosage abnormal-
ities are more difficult to interpret, in part due to their 
rarity in the literature. In this paper, we describe five 
individuals with a SHOX upstream dosage abnormality 
from a large SHOX cohort, including two deletions and 
two duplications of a single upstream CNE, plus an addi-
tional upstream deletion that contains no known CNE 
but removes part of a region that may be involved in limb 
bud development. We also present four probands with 
SHOX downstream dosage abnormalities: three short 
stature probands with unique CNV gains containing the 
proposed X:970,000 regulatory element, including the 
first reported case of a triplication of this region, and an 
LWD family with two in cis downstream duplications.

Methods
Study cohort
Patients 1–8 were identified from a SHOX cohort of 
1963 referrals to the Wessex Regional Genetics Labora-
tory (WRGL). All patients referred specifically for SHOX 
analysis were included in the cohort, regardless of the 
referral reason. The deletions, duplications or triplica-
tion identified below were not detected in 22,017 array 
comparative genome hybridisation (aCGH) referrals to 
the WRGL (predominantly referred with developmen-
tal delay) or two cohorts of anonymised healthy controls 
totalling over 800 individuals [22, 27]. Patient 9 was iden-
tified after referral to the Switzerland Health Service. The 
probands presented here were consented for SHOX anal-
ysis as part of their routine clinical care within the UK 
National Health Service (Patients 1–8) and the Switzer-
land Health Service (Patient 9).

Purified genomic DNA obtained from blood samples 
was extracted according to standard protocols. Analysis 
of SHOX and its flanking regions was carried out using 
the following techniques:

SHOX multiplex ligation‑dependent probe amplification 
(MLPA) analysis
MLPA [30] was performed using the current SHOX kit 
at the time of testing according to the manufacturer’s 
protocol (P018-G1; MRC-Holland, Amsterdam, The 
Netherlands). Abnormal MLPA data were repeated on a 
separate run in order to confirm the results.

Sequencing of the SHOX coding region
Direct sequencing of all the coding exons (isoform A, 
NM_000451.3, exons 2 to 6a) was carried out to exclude 
the presence of single-nucleotide variants and small 
deletions/insertions in the SHOX coding sequences and 
intron/exon boundaries (primer sequences available 
upon request).

aCGH analysis
The sizes of the SHOX flanking region duplications in the 
probands 1–4 and 6 were further defined in the Salisbury 
laboratory using aCGH analysis. The aCGH was per-
formed using Oxford Gene Technologies (OGT, Oxford, 
UK) 60-mer oligo-array printed in 8 × 60 K International 
Standard Cytogenomic Array (ISCA) Consortium config-
uration, according to manufacturer’s instructions, using 
Kreatech’s pooled control DNA as a reference (Kreatech 
Diagnostics, Amsterdam, Holland). Slides were scanned 
using a G2539A Agilent microarray scanner (Agilent 
Technologies, Wokingham, UK) and analysed using 
OGT’s CytoSure Interpret (v3.6) microarray software. 
The duplications in Patient 5 and 9 were confirmed and 
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sized using single-nucleotide polymorphism array (SNP 
array) testing in external laboratories.

Long‑range PCR
As Patient 3 had a deletion below the detection limits of 
aCGH, long-range PCR of the deletion region was carried 
out in order to define the breakpoints. Essentially, PCR 
forward primers were designed at approximately 1-kb 
intervals across the potentially deleted region, and these 
were used in conjunction with a reverse primer situated 
immediately downstream of the maximum extent of the 
deletion as defined by aCGH. One primer pair produced 
a PCR product that was not present in normal controls, 
and this was subsequently Sanger sequenced to deter-
mine the breakpoints. Long-range PCR was also required 
for patient 2, but that involved a single pre-determined 
primer pair.

All chromosomal location data are based on the 
Ensembl hg19 assembly. As the SHOX gene lies within 
the pseudo-autosomal region, the dosage abnormalities 
may be on the X or the Y chromosome in males, but the 
locations given here refer to the X chromosome for all 
individuals to aid comparison.

Results
All patients underwent SHOX diagnostic testing, com-
prising sequencing of the SHOX coding exons and 
MLPA. All variants were initially detected by MLPA and 
then further defined using aCGH, SNP array testing and 
Sanger sequencing where applicable. The minimum and 
maximum breakpoints of the CNVs are shown in Fig. 1 
and Table 1. We cannot rule out that the additional mate-
rial is located elsewhere in the genome, and the exact 
location and orientation of the triplicated and duplicated 
segments could not be determined.

Sanger sequencing excluded the presence of a SHOX 
pathogenic coding sequence variant in all individuals. 
Although some individuals had additional molecular 

or biochemical testing, none underwent whole exome 
sequencing so other potential causes of short stature 
have not been excluded. The Z-score (standard devia-
tion) given for all patient heights is based on the relevant 
World Health Organisation length-for-age charts.

The clinical information, inheritance patterns and 
molecular results are summarised in Table 1, and the rel-
evant pedigrees of the four families where samples from 
additional family members were available are shown in 
Fig. 2.

Discussion
Deletions flanking the SHOX gene are an established 
cause of SHOX-related phenotypes. However, CNVs near 
the SHOX gene should be interpreted with caution as the 
PAR1 region is highly repetitive and prone to structural 
rearrangements. The difficulty in distinguishing between 
a benign CNV and a clinically relevant CNV with vari-
able phenotypic expression is demonstrated by the com-
mon 47.5 kb SHOX downstream deletion where six of the 
14 probands with the X:780,550–828,092 deletion (43%) 
in one cohort had inherited the variant from a pheno-
typically normal parent [22]. Nevertheless, the study of 
such cases is important to increase our understanding of 
SHOX regulation and to try to identify the aetiology of 
these rearrangements.

We present nine novel CNVs flanking the SHOX gene 
in probands referred specifically for diagnostic SHOX 
testing; the frequency was 8/1963 for patients tested 
in the WRGL SHOX cohort. None of these CNVs were 
identified in 22,017 patients referred to the WRGL for 
diagnostic aCGH testing (although only eight of the nine 
variants are detectable by aCGH), and no comparable 
deletion or duplication has been reported in the Database 
of Genomic Variants (http:// proje cts. tcag. ca/ varia tion/) 
or in over 800 anonymised healthy controls analysed by 
MLPA [22, 27]. While it is not possible to unequivocally 
demonstrate causality, the identification of rare novel 

Fig. 1 Region of the X chromosome showing the location of the dosage variants detected in this study, the SHOX gene, the upstream and 
downstream CNEs, the ZED element and the putative X:970,000 regulatory element. The horizontal bars represent the minimum size (grey for 
duplications and triplications, black for deletions), and the horizontal white bars extend the variants to their maximum size where known

http://projects.tcag.ca/variation/
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CNVs provides evidence for the importance of this class 
of abnormality and may help to define critical regulatory 
regions.

In this study, we describe three patients with small 
deletions upstream of SHOX, all in individuals with 
ISS. All of the four previously reported upstream dele-
tions were also seen in patients with ISS [24–26]; there-
fore, upstream deletions may be associated with a more 
subtle phenotype than downstream deletions which 
can often result in LWD. The deletions in Patients 1 

and 2 remove part or all of CNE-3. All four previously 
reported upstream deletions involved the loss of CNE-
3, plus CNE-2 and/or CNE-5 [24–26]. Therefore, CNE-3 
appears to be the critical upstream element with the loss 
of CNE-3 sufficient to cause ISS.

In contrast, the deletion in Patient 3 does not contain 
any known regulatory elements. However, the deleted 
interval contains a segment strongly conserved down to 
zebrafish, and a predicted layered H3K27Ac mark, often 
found near active regulatory elements or chromatin 
loops [31], is located close to the deletion. Figure 3 shows 
the UCSC genome browser output (http:// genome- euro. 
ucsc. edu) from CNE-5 to X:970,000 including sequence 
conservation and predicted layered H3K27Ac marks. The 
layered H3K27Ac mark approximately 10  kb upstream 
of the deletion in Patient 3 does not correspond to any 
known regulatory element. Enriched H3K27 acety-
lated regions in developing human limbs [31] are shown 
in greater detail in the lower half of Fig.  3. The deleted 
region removes part of region that is acetylated at three 
of the four developmental stages for which data are avail-
able (E33, E41, E44 and E47 datasets) [31]. Therefore, 
the deleted interval may be essential for normal SHOX 
expression.

The two duplications in Patient 8 segregate with LWD 
in the proband and two other affected family members. 
In contrast, assignation of causality for the duplica-
tions in Patients 4–7 and 9 is more difficult; they were 

Fig. 2 Pedigrees and inheritance patterns of the four families where 
samples from additional family members were available

Fig. 3 UCSC output showing the conservation and H3K27Ac mark predictions for the SHOX flanking regions (above), with a more detailed view 
(below) of the deleted region in Patient 3 (X:579,123–580,912), showing the conserved region at approximately X: 579,783–579,973 and the E33, 
E41, E44 and E47 datasets [31] which show the H3K27 acetylation enrichment in four different limb developmental stages

http://genome-euro.ucsc.edu
http://genome-euro.ucsc.edu
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ascertained through their short stature which is a com-
mon phenotype with multiple causes. Since flanking 
CNVs are generally associated with mild SHOX-related 
phenotypes, they could result in reduced expression 
rather than complete haploinsufficiency. Within SHOX 
cohorts, duplications of upstream CNEs have previ-
ously been reported exclusively in individuals with ISS 
[25, 28], although a duplication of all three upstream 
CNEs has been reported in one control individual from 
a study of the SHOX region [29] and one individual from 
a study of genome-wide CNVs [32]. Similarly, duplication 
of the proposed X:970,000 regulatory element [20] has 
also been reported as a copy number variant in another 
large study [33]. However, as the common 47.5 kb down-
stream deletion [17, 22] is associated with a highly vari-
able phenotypic effect ranging from normal to Leri–Weill 
dyschondrosteosis (with 43% of carrier parents being 
phenotypically normal [22]), the presence of a SHOX 
flanking variant in a phenotypically normal individual 
does not preclude that variant from being causative 
but with a variable phenotype. SHOX phenotypic vari-
ability may also be influenced by modifier genes such as 
CYP26C1 [34].

In contrast with deletions, the causative mechanism(s) 
for duplications is less clear as there is no loss of sequence 
material. However, there is evidence to suggest that the 
duplication of only the downstream CNE9 regulatory 
element is sufficient to cause ISS [18, 28, 29]. There are a 
number of potential explanations that can be considered. 
Firstly, gene regulation depends not only on the presence 
of regulatory elements and associated complexes but 
also on the nuclear positioning, chromatin conformation 
and integrity of the flanking chromosomal segments [35, 
36]. Insertion of duplicated material between SHOX and 
a given CNE would alter the normal chromatin struc-
ture and potentially affect gene expression. Similarly, the 
CNVs in patients 3, 4, 7 and 9 contain, or are close to, a 
predicted active H3K27Ac mark and could disrupt nor-
mal chromatin loop formation that links enhancers and 
promotors [37, 38].

Secondly, the presence of additional copies of a regu-
latory element may act to reduce the availability of 
transcription factors that bind to these elements. For 
example, as three copies of the X:970,000 region exist on 
one chromosome in Patient 4, transcription factors that 
bind to this region will only bind in the “optimal place” 
one third of the time. A similar mechanism could be pos-
tulated for Patients 5, 7 and 9.

Thirdly, although approximately 95% of large duplica-
tions genome-wide are reported to be tandem [39], there 
could be undetected complexity, particularly in Patient 8 
who has two in cis downstream duplications. An inverted 
tandem duplication may allow single-stranded DNA 

to form a quasipalindromic loop which could block any 
enhancers contained within the region.

Fourthly, downstream duplications could disrupt the 
adjacent topologically associated chromatin domain 
(TAD) boundary. TADs are discrete compartments 
of approximately 1  Mb in size, which restrict regula-
tory chromosomal interactions [38, 40]. TAD boundary 
regions contain insulators that block interactions across 
adjacent TADs [41] and variants that disrupt TAD struc-
tures can cause malformation syndromes through de 
novo enhancer–promoter interactions and mis-expres-
sion [40]. The SHOX 3’ TAD boundary has been mapped 
immediately upstream of the CRLF2 gene (i.e. close to 
X:1,314,890) [38], although other publications describe 
the SHOX TAD as covering an approximate region of 
either X:284,600–1,355,600 [25] or X:350,001–1,035,000 
[37]. The duplication in Patient 9, and possibly the tripli-
cation in Patient 4, spans the SHOX TAD and would cre-
ate an extra copy of the TAD boundary. In addition, the 
duplications seen in Patients 7 and 8 are contained within 
the SHOX TAD, so they would move the TAD bound-
ary further from SHOX which may alter essential 3-D 
genomic architecture.

Conclusions
Although the dosage abnormalities presented here were 
all formally classified and reported as variants of uncer-
tain clinical significance, they are rare or absent in control 
populations. The results from Patient 3 suggest an addi-
tional SHOX critical region near X:581,000, and the dele-
tions in Patients 1 and 2 provide further evidence that the 
loss of CNE-3 can cause ISS. Also, the triplication seen 
in Patient 4 and the two novel duplications in Patients 7 
and 9 involving the X:970,000 region provide further evi-
dence that copy number gains containing X:970,000 may 
be a cause of short stature. Therefore, this study further 
extends our knowledge of the range of variants that may 
potentially cause SHOX-related phenotypes.
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