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and functional consequences of non‑ 
synonymous SNPs in the human IL‑10 gene
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Abstract 

Background:  Interleukin-10 (IL-10) is an anti-inflammatory cytokine that affects different immune cells. It is also asso-
ciated with the stimulation of the T and B cells for the production of antibodies. Several genetic polymorphisms in the 
IL-10 gene have been reported to cause or aggravate certain diseases like inflammatory bowel disease, rheumatoid 
arthritis, systemic sclerosis, asthma, etc. However, the disease susceptibility and abnormal function of the mutated 
IL-10 variants remain obscure.

Results:  In this study, we used seven bioinformatics tools (SIFT, PROVEAN, PMut, PANTHER, PolyPhen-2, PHD-SNP, and 
SNPs&GO) to predict the disease susceptible non-synonymous SNPs (nsSNPs) of IL-10. Nine nsSNPs of IL-10 were pre-
dicted to be potentially deleterious: R42G, R45Q, F48L, E72G, M95T, A98D, R125S, Y155C, and I168T. Except two, all of 
the putative deleterious mutations are found in the highly conserved region of IL-10 protein structure, thus affecting 
the protein’s stability. The 3-D structure of mutant proteins was modeled by project HOPE, and the protein–protein 
interactions were assessed with STRING. The predicted nsSNPs: R42Q, R45Q, F48L, E72G, and I168T are situated in the 
binding site region of the IL-10R1 receptor. Disruption of binding affinity with its receptor leads to deregulation of the 
JAK-STAT pathway and results in enhanced inflammation that imbalance in cellular signaling. Finally, Kaplan–Meier 
Plotter analysis displayed that deregulation of IL-10 expression affects gastric and ovarian cancer patients’ survival rate. 
Thus, IL-10 could be useful as a potential prognostic marker gene for some cancers.

Conclusion:  This study has determined the deleterious nsSNPs of IL-10 that might contribute to the malfunction of 
IL-10 protein and ultimately lead to the IL-10 associated diseases.
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Background
The immune system is constituted of various immune 
cells, which are responsible for monitoring and getting 
rid of unfamiliar agents or invading microorganisms. The 
immune cells can act directly by themselves or by synthe-
sizing molecules capable of inducing B cells, NK cells, T 

cells, and other immune cells [1, 2]. Activation and dif-
ferentiation of the immune cells are largely dependent on 
different types of interleukins (ILs). Interleukins are the 
subsets of a large group of naturally occurring cytokines 
that are primarily released from specific immune cells 
in response to endotoxic threat, stress, heat, or inflam-
mation. They act as cellular messengers by binding to 
high-affinity receptors on the cell surface [3, 4]. ILs play 
essential roles in innate and adaptive immune systems 
and modulate cell behavior [4, 5]. Interleukin 10 (IL-10) 
is one of the most crucial anti-inflammatory cytokines 
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with the most diverse immune cells’ effects [6]. It is pro-
duced by activated immune cells, particularly monocytes 
/macrophages and T cell subsets, including Tr1, Treg, 
and Th1 cells. IL-10 can down-regulate the expression of 
pathogenic Th17 cytokines, MHC class II antigens, and 
co-stimulatory molecules on macrophages [4, 7]. In addi-
tion to the immune suppression role, the IL-10 can also 
play an immune stimulatory role for B and T cells [6]. 
This dimeric cytokine’s pleiotropic activities are mediated 
by its interaction with the tetrameric cell surface recep-
tor complex, consisting of two IL-10R1 and two IL-10R2 
[8, 9]. The receptor complex assembles sequentially: first, 
IL-10 binds with high-affinity IL-10R1 cell surface recep-
tor and form IL-10/IL-10R1 complex [10, 11]. This IL-10/
IL-10R1 intermediate complex is subsequently recog-
nized through the low-affinity IL-10R2 receptor, resulting 
in an active signaling complex that induces the intracel-
lular JAK-STAT pathway [12]. Recent studies showed that 
immune-related genes like IL-10 are highly polymorphic 
and associated with various types of diseases [13–15]. 
The most frequently occurred polymorphism is single 
nucleotide polymorphism (SNP) and can be identified 
once in every 100–300 base pairs of the human genome. 
It has been estimated that nearly 10 million SNPs are pre-
sent in the human genome where 0.5 million SNPs are 
located in the coding region of different genes [16–19]. 
A recent report on Trans Omics for Precision Medicine 
(TOPMed) program suggested an average of 3.78 million 
genetic variants are present in each genome. Among the 
all genetic variants, a total of 23,916 variants or SNPs are 
coding variation [20]. The SNPs that may alter amino acid 
residue in the protein sequence are known as Non-syn-
onymous SNPs (nsSNPs). They are particularly important 
as they may affect the protein function by destabilizing 
protein structure or altering its physicochemical prop-
erties [21]. Non-coding SNPs are also important as they 
may influence mRNA splicing, binding of the transcrip-
tion factor to cis-regulatory elements, differential expres-
sion of genes, degradation of mRNA, and alternation in 
the sequences of noncoding RNAs [22]. In the recent era, 
hundreds and thousands of SNPs were associated with 
hundreds of disease studies [23, 24]. In various studies, 
several polymorphisms are identified in the coding and 
noncoding regions of IL-10. Some of the SNPs of IL-10 
have already been characterized and found to signifi-
cantly influence the immune response toward pathogenic 
challenges and disease outcome [25]. These polymor-
phisms cause functional changes of the IL-10 protein 
that are associated with various inflammatory and auto-
immune diseases, such as inflammatory bowel disease: 
Crohn’s disease and ulcerative colitis, chronic hepatitis 
B and C, allergy and autoimmunity [25–27]. Blockage 
of IL-10 signaling may lead to enhanced inflammation 

and an increased number of Tregs (Regulatory T-cells) 
and MDSCs (Myeloid Derived Suppressor Cells), which 
inhibit tumor immunity, allowing tumors to grow [28]. 
Individuals with Chronic inflammatory bowel disease 
are predisposed to colon cancer, and individuals with 
chronic hepatitis are more prone to develop hepatocel-
lular carcinoma [29, 30]. Considering the importance of 
IL-10 in multiple diseases, our present study investigates 
the disease-causing nsSNPs in the IL-10 gene and deter-
mining their deleterious effects on the protein. High-risk 
deleterious SNPs were further analyzed computationally 
to predict their structural and functional impact on IL-10 
protein, which provides new insights for further genetic 
association studies.

Materials and methods
Retrieval of IL‑10 nsSNPs (dataset)
The entire reported SNPs of the IL-10 gene and its pro-
tein sequence (Uniprot ID P22301) were retrieved from 
NCBI dbSNP (http://​www.​ncbi.​nlm.​nih.​gov/​snp) and 
Uniprot Knowledgebase database (http://​www.​unipr​
ot.​org/), respectively. A total of 1800 SNPs of different 
functional classes (Fig.  1) were mapped in IL-10 gene 
sequence. Out of 1800 SNPs, 91 are non-synonymous 
SNPs (nsSNPs) found in the coding region that may lead 
to missense or nonsense mutations, subsequently affect-
ing the protein’s structure and function. Our investiga-
tion accounted for the nsSNPs in the coding region of 
IL-10 Protein.

Prediction of the deleterious nsSNPs
We employed seven different tools to predict the del-
eterious effects of nsSNPs: SIFT-Sorting Intolerant From 
Tolerant (SIFT; http://​sift.​bii.a-​star.​edu.​sg/) [31], Protein 
Variation Effect Analyzer (PROVEAN; http://​prove​an.​

Fig. 1  Clustered pyramid showing the number and distribution 
of SNPs in IL10 gene based on dbSNP database. (nsSNPs: 91, 
Synonymous SNPs: 48, Intronic SNPs: 1337, Other SNPs: 324)

http://www.ncbi.nlm.nih.gov/snp
http://www.uniprot.org/
http://www.uniprot.org/
http://sift.bii.a-star.edu.sg/
http://provean.jcvi.org/index.php
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jcvi.​org/​index.​php) [32] Predictor of human Deleteri-
ous Single Nucleotide Polymorphisms (PhD-SNP; http://​
snps.​biofo​ld.​org/​phd-​snp/​phd-​snp.​html) [33] PMut 
(http://​mmb.​irbba​rcelo​na.​org/​PMut), Polymorphism 
Phenotyping v2 (PolyPhen-2; http://​genet​ics.​bwh.​harva​
rd.​edu/​pph/) [34], Protein analysis through evolution-
ary relationship (PANTHER; http://​www.​panth​erdb.​org/​
tools/​csnpS​coreF​orm.​jsp) [35] and SNPs&GO (http://​
snps.​biofo​ld.​org/​snps-​and-​go/​snps-​and-​go.​html) [31–
36]. SIFT predicts an amino acid substitution’s effects on 
the function of a protein based on sequence homology 
and the substituted amino acids’ physical characteristics 
[37]. PolyPhen-2 tool predicts the effects of substituted 
amino acids on structure and function of a protein based 
on physical and comparative properties [34]. PROVEAN 
is a support vector machine-based (SVM) server, which 
predicts whether a substituted amino acid has an impact 
on the function of a given protein or not. The tools like 
PANTHER, SNPs&GO, PHD- SNP, and PMut were used 
for the prediction of whether a single nucleotide poly-
morphism is likely to be involved in the insurgence of 
diseases using functional annotation of protein [35, 38–
40]. The nsSNPs predicted deleterious by at least six of 
the above mentioned in silico tools were considered as 
high risk nsSNPs and selected for the further analysis.

Analyzing protein stability due to mutations
I-Mutant 3.0 (http://​gpcr2.​bioco​mp.​unibo.​it/​cgi/​predi​
ctors/I-​Mutan​t3.0/​I-​Mutan​t3.0.​cgi), Mupro (http://​
mupro.​prote​omics.​ics.​uci.​edu) and INPS-MD (http://​
inpsmd.​bioco​mp.​unibo.​it) tools were used to evaluate the 
stability changes of IL-10 protein upon point mutations. 
I-Mutant 3.0 is a support vector machine (SVM) based 
predictor that determines the degree of protein desta-
bilization and measures the ΔΔG value (kcal/mol). The 
ΔΔG (delta delta G) value is the difference between Gibbs 
free energy values of mutated protein from the Gibbs free 
energy value of wild type protein. A ΔΔG value less than 
‘0’ indicates that the variants cause the decreased stability 
of the protein whether ΔΔG value greater than ‘0’ means 
increased stability of that protein [41].

On the other hand, MUpro uses a large number of 
mutation datasets which actually based on both SVM 
and neural networks machine learning methods. The 
other third tools INPS-MD (Impact of Non-synonymous 
mutations on Protein Stability-Multi Dimension) based 
on sequence descriptor that uses Support Vector Regres-
sion (SVR) to calculate ΔΔG value. Both the MUpro and 
INPS-MD measure the ΔΔG for estimation of protein 
stability and the cut-off value of ΔΔG is also same to 
I-Mutant 3.0 [42, 43].

The IL-10 protein sequence along with wild type and 
substitute amino acids at their corresponding position 

was used as input in the aforementioned tools to predict 
the mutational effect on protein stability [41].

Identification of mutational impacts on structural 
and functional properties of proteins
For sorting out disease associated or neutral amino acid 
substitutions in protein sequence, the commonly pre-
dicted mutations were further examined by MutPred2 
web server (http://​mutpr​ed.​mutdb.​org). It is a machine 
learning based tool that integrates genetic and molecu-
lar data for prediction of the pathogenicity of substituted 
amino acid. It also predicts molecular cause of the dis-
ease [44].

Conservation profile of high‑risk nsSNPs
nsSNPs, which are positioned at highly conserved regions 
tend to be more deleterious than the nsSNPs those are 
situated at non-conserved sites. By using empirical 
Bayesian inference, ConSurf web server predicts putative 
structural and functional amino acid residues and esti-
mates evolutionary conservation based on the phyloge-
netic relations between homologous sequences [45]. To 
further investigate the potential effects of the high-risk 
nsSNPs, we calculated the degree of evolutionary conser-
vation at all amino acid sites in the IL-10 protein using 
the ConSurf web server.

Predicting the molecular effects of high risk nsSNPs 
on protein structure
Project HOPE is an automatic mutant analysis server that 
helps to analyze the structural and biochemical effects of 
a point mutation in a protein sequence [46]. We submit-
ted the nine SNPs (rs ID) with the primary structure of 
IL-10 protein from Protein Data Bank (http://​www.​rcsb.​
org/​pdb/) into HOPE. HOPE predicts the 3D structure of 
the mutated protein by collecting structural information 
from a series of sources and gives the explanation of such 
a change (in both structure and function of the protein).

Protein–protein interaction prediction
Protein–protein interactions are studied to unveil and 
annotate all functional interactions among cell proteins. 
The online database STRING (STRING; http://​string-​db.​
org/) was used to predict protein- protein interactions 
[47].

Kaplan–Meier plotter analysis
Kaplan–Meier plotter database (http://​kmplot.​com/​analy​
sis) uses Gene Expression Omnibus (GEO), European 
Genome Phenome Atlas (EGA), and the Cancer Genome 
Atlas (TCGA) datasets for the relapse free and overall 
survival (OS) information that offers meta-analysis-based 
discovery and biomarker assessment in cancer patients. 

http://provean.jcvi.org/index.php
http://snps.biofold.org/phd-snp/phd-snp.html
http://snps.biofold.org/phd-snp/phd-snp.html
http://mmb.irbbarcelona.org/PMut
http://genetics.bwh.harvard.edu/pph/
http://genetics.bwh.harvard.edu/pph/
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://mupro.proteomics.ics.uci.edu
http://mupro.proteomics.ics.uci.edu
http://inpsmd.biocomp.unibo.it
http://inpsmd.biocomp.unibo.it
http://mutpred.mutdb.org
http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
http://string-db.org/
http://string-db.org/
http://kmplot.com/analysis
http://kmplot.com/analysis
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The aim of this analysis is to estimate the time to death, 
an event will eventually occur in everyone that may 
have significant implications when using these estimates 
to inform clinical decisions, health care policies, and 
resource allocation [48]. In this algorithm, the potential 
effects of 54,675 genes (mRNA, miRNA, protein) can be 
examined on survival of 13,316 cancer patients (compris-
ing 6234 breast, 3452 lungs, 1,440 gastric, and 2190 ovar-
ian cancer) through microarray gene expression data of 
21 types of cancers [49]. By using 207,433 at Affymetrix 
ID of IL-10 gene, the overall survival analysis was per-
formed on total 13,316 cancers patients. The hazard ratio 
(HR) with 95% confidence intervals and log rank P-value 
were enumerated and displayed on the plot.

Results
nsSNPs retrieved from dbSNP database
In the dbSNP database showed the human IL-10 gene 
consists a total of 1800 SNPs, of which 91 were nsS-
NPs/missense leading to amino acid substitution (5%), 
1336 were intronic SNPs (74%), 48 were synonymous 
SNPs (3%), and the rests were of other types (Fig. 1). We 
selected only the nsSNPs for our investigation (Addi-
tional file 1: Table S1).

Prediction and analysis of deleterious nsSNPs
The functional impact of nsSNPs was assessed by evalu-
ating the importance of amino acids they alter. A dataset 

of a total of 91 polymorphic inputs was used for analy-
sis. Structural and functional effects of deleterious SNPs 
on the IL-10 protein were screened by various computa-
tional tools. A graphical representation of the deleterious 
nsSNPs predicted by seven different computational tools 
is illustrated in Fig. 2.

First, 91 nsSNPs of IL-10 were submitted to SIFT 
algorithm. According to SIFT result, out of 91 nsSNPs, 
39 nsSNPs were predicted intolerant whose TI scoring 
was ≤ 0.05. 11 SNPs showed a highly deleterious effect 
with a tolerant index (TI) score of 0.00; 13 SNPs showed 
0.01 TI score, and the remaining 15 SNPs TI score was 
0.02–0.04 (Additional file 1: Table S2).

Among the other tools, PROVEAN predicted 23 
nsSNPs (out of 91 nsSNPs) as “Deleterious”, similarly, 
PhD-SNP and PMut tools proposed 28 and 29 nsSNPs, 
respectively, as “Disease” (Additional file  1: Tables S3, 
S4, and S5). Additionally, PolyPhen-2 predicted 13 nsS-
NPs as “Possibly damaging” and 42 nsSNPs as “Probably 
damaging” (Additional file 1: Table S6). Moreover, PAN-
THER_PSEP foretold 41 SNPs as “Deleterious”. Among 
them, 28 SNPs were identified as possibly damaging, and 
the remaining 13 SNPs were identified as “Probably dam-
aging” (Additional file  1: Table  S7). In SNPs&GO tools, 
five nsSNPs were predicted to be associated with various 
types of diseases, and the rest of the 86 SNPs were not 
predicted to have any effects (Additional file 1: Table S8). 
Finally, mutations predicted deleterious/ damaging /

Fig. 2  The bar chart representing the distribution of deleterious (orange color) and neutral (blue color) nsSNPs predicted by the seven in silico 
tools—SIFT, PROVEAN, PhD-SNP, PMut, PolyPhen-2, PANTHER, and SNPs & GO
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disease-related effects by at least six of the analyzed in 
silico tools were considered for further investigation 
(Table 1).

Computational analysis by the seven mentioned 
tools exhibited nine highly damaging nsSNPs in 
the IL-10 gene. Out of nine nsSNPs, three of them 
(e.g., rs550164520 R45Q, rs1421978042 A98D, and 
rs1022828778 Y155C) were predicted deleterious unani-
mously by all the employed tools, and other six nsSNPs 
(rs1274280163 R42G, rs745923816 F48L, rs545228684 
E72G, rs1354773439 M95T, and rs1310781150 R125S) 
were predicted deleterious by the at least six computa-
tional tools. Except for the R42G, the remaining eight of 
them are novel SNPs.

Identification of functional and structural modifications 
of IL‑10 predicted by MutPred2
The shortlisted nine nsSNPs predicted as deleterious 
from the previous steps were submitted to the MutPred2 
web server. The resulting probability scores, g-value, and 
p-value are shown in Table 2. It helps to predict the rea-
son for molecular alternations potentially affecting the 
phenotype. The structural and functional alterations 
predicted include- loss of sulfation, acetylation, allos-
teric site; alerted transmembrane protein, coiled-coil, 
disordered interface, metal-binding; and gain of solvent 
accessibility, intrinsic disorder, loop, B-factor, catalytic 
site. The output of MutPred2 tool consists of a gen-
eral score (g) that represents the average score from all 
neural networks in MutPred2. The threshold value of ‘g’ 
score is 0.50. A ‘g-score’ value greater than 0.50 (g > 0.50) 
for a certain mutation suggest the pathogenicity. [44]. 
Scores with g-value > 0.5 and p-value < 0.05 are referred 
to as actionable hypotheses, whereas the scores with 
g-value > 0.75 and p-value < 0.05 are referred to as con-
fident hypotheses. In MutPred2 prediction, the F48L, 
M95T, A98D, R125S, Y155C, and I168T substitution 

showed g-values greater than 0.5 and p-values lower than 
0.05 (Table  2).These predicted data provide compelling 
evidence that the several nsSNPs could play a potential 
role in the structural and functional modifications of 
IL-10 protein.

The impact of predicted deleterious mutations on IL‑10 
protein stability
The nine predicted nsSNPs were further subjected to 
I-Mutant 3.0, INPS- MD and Mupro tools for protein 
stability analysis through comparing free energies. Seven 
of the nine nsSNPs (R42G, R45Q, F48L, E72G, M95T, 
A98D, and I68T) showed a decrease in structure stabil-
ity unanimously with all the three analyzed tools. The 
four variants R42G, R45Q, F48L, and I168T unanimously 
showed ΔΔG (delta delta G) values less than -1 kcal/mol. 
The others three variants E72G, M95T, and A98D unani-
mously showed the ΔΔG values less than zero, which 
would be predicted to alter the structure and function of 
the protein by decreasing its stability (Table 3).

Analysis of conservation
Evolutionary conserved amino acids of a protein across 
species are functionally and biologically very important. 
Mutation in the conserved region of a protein are often 
deleterious and may affect the function of the protein. 
Our ConSurf analysis showed that there are a total of 72 
conserved amino acid in the IL-10 protein with scores 
between 7 and 9. Out of the nine selected high-risk SNPs 
in IL-10 protein, seven nsSNPs (R45Q, F48L, M95T, 
A98D, R125S, Y155C, and I168T) were located in the 
highly conserved region with conservation value rang-
ing 7–9 (Fig. 3). The other two nsSNPs (R42G and E72G) 
were situated in the variable region. Taken together, our 
data strongly suggest that the selected nsSNPs are delete-
rious to IL-10 structure and/or function.

Table 1  High risk nsSNPs predicted by minimum six or more in silico programs

*Here, “D” indicates disease and “N” indicates neutral

SNP ID Amino acid 
change

SIFT PANTHER PROVEAN PhD-SNP PMut PolyPhen-2 SNPs&GO

rs1274280163 R42G D D D D D D N

rs550164520 R45Q D D D D D D D

rs745923816 F48L D D D D D D N

rs545228684 E72G D D D D D D N

rs1354773439 M95T D D D D D D N

rs1421978042 A98D D D D D D D D

rs771912629 R125S D D D D D D N

rs1022828778 Y155C D D D D D D D

rs1310781150 I168T D N D D D D D
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Protein structure analysis
The 3D model structures of the nine mutated IL-10 pro-
teins were generated by Project HOPE (http://​www.​cmbi.​
ru.​nl/​hope/) (Fig. 4). Project HOPE simulates the struc-
tural characteristics of amino acid residues substitutions 

on native protein. Besides, project HOPE showed the 
physicochemical properties such as size, charge, hydro-
phobicity values differed between wild and mutant type 
amino acids, as shown in Table 4. All the nine predicted 
nsSNPs caused changes in the size of amino acids. Apart 

Table 2  Functional and structural modifications of IL-10 predicted by MutPred2. Here ‘g-value’ stands for general score of MutPred2

SNPs Actionable/confident hypothesis g-value p value Probability

F48L Gain of relative solvent accessibility 0.705 0.01 0.29

Altered transmembrane protein 0.0082 0.26

Altered coiled coil 0.03 0.13

L91V Gain of loop 0.506 0.02 0.27

Altered transmembrane protein 0.0025 0.23

Gain of sulfation at Y 90 0.04 0.02

M95T Altered transmembrane protein 0.732 0.00085 0.27

Loss of sulfation at Y 90 0.04 0.01

A98D Gain of intrinsic disorder 0.612 0.04 0.31

Gain of loop 0.0086 0.29

Gain of B-factor 0.02 0.26

Altered transmembrane protein 0.0051 0.20

R125S Altered disorder interface 0.543 0.01 0.30

Y155C Altered metal binding 0.764 0.00046 0.50

Altered Ordered interface 0.0044 0.36

Altered Disordered interface 0.0074 0.36

Altered Transmembrane protein 0.000063 0.32

Loss of Relative solvent accessibility 0.0059 0.32

Loss of Acetylation at K152 0.0078 0.27

Loss of Allosteric site at E160 0.03 0.23

Gain of Catalytic site at E160 0.04 0.11

I168T Altered Disordered interface 0.512 0.0026 0.44

Altered Ordered interface 0.02 0.30

Gain of Relative solvent accessibility 0.02 0.27

Altered Transmembrane protein 0.04 0.10

Altered Coiled coil 0.04 0.10

Gain of N-linked glycosylation at N166 0.04 0.02

Table 3  Protein stability change prediction using I-Mutant 3.0, MUpro, and INPS-MD. AA = amino acid

AA mutation I-Mutant 3.0 MUpro IPNS-MD

Stability ΔΔG (kcal/mol) Stability ΔΔG (kcal/mol) Stability ΔΔG (kcal/mol)

R42G Decrease − 1.68 Decrease − 1.269029 Decrease − 1.40964

[R45Q Decrease − 1.28 Decrease − 1.1934308 Decrease − 1.21672

F48L Decrease − 1.49 Decrease − 1.3723104 Decrease − 1.95635

E72G Decrease − 0.82 Decrease − 1.9791607 Decrease − 1.06295

M95T Decrease − 0.81 Decrease − 1.1092068 Decrease − 1.81955

A98D Decrease − 0.95 Decrease − 0.74453775 Decrease − 1.38504

R125S Decrease − 0.96 Decrease − 1.0951197 No result No result

Y155C Increase − 0.93 Decrease − 0.64707048 Decrease 1.59442

I168T Decrease − 2.14 Decrease − 1.8132602 Decrease − 3.01639

http://www.cmbi.ru.nl/hope/
http://www.cmbi.ru.nl/hope/
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from the A98D mutation, the size of the remaining eight 
mutant amino acids become smaller than the wild type 
variant. Out of nine nsSNPs, five nsSNPs (R42G, R45Q, 
E72G, A98D, and R125S) found to alter the amino acid 
charges in the mutant variant. Also, seven of the nsS-
NPs (R42G, E72G, M95T, A98D, R125S, Y155C, and 
I168T) caused changes in hydrophobicity of amino acids 
(Table 4).

Further analysis with HOPE project found that out of 
the nine mutations, four (R42G, R45Q, F48L, and R125S) 
were situated in the domain region. Besides, four muta-
tions (R42G, E72G, R125S, and Y155C) were found to 
cause the loss of hydrogen bond interaction and three 
(M95T, A98D, and I168T) caused the loss of hydrophobic 
interaction. Interestingly, all of the nine mutations were 
found to locate in the conserved region that might affect 
the structure and function of IL-10 protein (Table 5).

Protein–protein interaction analysis
The STRING server result showed that Interleukin-10 
protein interacts with ten proteins including, interleu-
kin-10 receptor alpha subunit (IL-10RA), interleukin-6 
(IL6), tumor necrosis factor (TNF), interleukin-1 beta 
(IL1B), Interleukin-8 (CXCL8), C–C motif chemokine-2 

(CCL2), signal transducer and activator of transcrip-
tion-3 (STAT 3), Granulocyte–macrophage colony stim-
ulating factor (CSF2), C–C motif chemokine-5 (CCL5), 
and T-lymphocyte activation antigen CD80 (CD80) 
(Fig. 5).

Clinical correlation between IL‑10 deregulation 
and the survival rate of patients with different cancer types
In this step, we attempted to associate the deregulation 
of the IL-10 gene with clinical databases to infer possible 
functional consequences of IL-10 deregulation in cancer 
patients. Kaplan–Meier Plotter was used to retrieve the 
prognostic information of IL-10 gene and analyzed with 
the survival of patients with gastric, lungs, breast, and 
ovarian cancer that is shown in Fig. 6. The plot analysis 
revealed that IL-10 deregulation shows different implica-
tions in different cancer types. In the case of gastric and 
ovarian cancer, the increased level of IL-10 expression 
predicted decreased number of patients at risk (more 
survival rate). The HR ratio and P-value for gastric and 
ovarian cancer were (HR 1.37 [1.14–1.64], P = 0.00078) 
and (HR 1.22 [1.08–1.39], P = 0.0017) (Fig.  6). In addi-
tion, for breast (HR 0.85 [0.75–0.97], P = 0.013) and 
lung (HR 1.84 [1.52–2.24], P = 0.00000000028) cancer, a 

Fig. 3  Analysis of evolutionary conservancy of IL-10 by Consurf (UniProt ID P22301)
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low level of IL-10 expressions is associated with a high 
number of patients at risk (Less survival rate). A control 
expression of the IL-10 gene appears to be inevitable for 
a healthy person. An erroneous transcription of the IL-10 
gene could lead to the development of different types of 
cancer. Therefore, the IL-10 gene could be advantageous 
as a putative prognostic marker for some cancers. Since 

the nsSNPs have an impact on IL-10 protein’s structure 
and function, we believe that the nine nsSNPs identified 
in this study are expected to have almost similar func-
tional consequences in IL-10 deregulation.

Discussion
The human IL-10 gene is located on Chromosome-1 
that encodes 178 amino acid long protein. After cleav-
age of the N-terminal 18 amino acid signal sequence, 
the mature protein consists of 160 amino acids [8, 50, 
51]. Thousands of polymorphisms have already been 
reported in the both coding and noncoding region of the 
IL-10 gene. Identification of functionally important SNPs 
from a pool containing both damaging and neutral SNPs 
with molecular approaches seems to be expensive and 
time-consuming. Multiple computational approaches 
play a great role in predicting and identifying impor-
tant variants that have damaging effects on proteins 
structure and function [52–54]. However, the present in 
silico approaches have some weaknesses in prediction 
of deleterious nsSNPs because every algorithms use dif-
ferent parameters for prediction. Thereby, single algo-
rithms should not be considered for proper prediction 
of deleterious nsSNPs. In order to predict deleterious 
nsSNPs precisely requires implementation of different 
algorithms with different parameters and aspects. A con-
sensus result obtained from the majority of the tools can 
provide a reliable outcome. In this study, we investigated 
the genetic variations in IL-10 locus. Nine high-risk 
missense SNPs were identified by seven different com-
putational tools amid 91 missense SNPs that have been 
reported to date. The filtered nine nsSNPs were analyzed 
in I-Mutant 3.0, Mupro and IPNS-MD to investigate 
their protein stability effects. Seven of the nsSNPs were 
found to cause a decrease in stability, whereas the two 
others predicted to increase the rigidity of IL-10 protein 
(Table  3). We have predicted the conserved amino acid 
residues in the IL10 protein based on evolutionary con-
servation using ConSurf. The ConSurf results revealed 
that most of the high risk nsSNPs position located in a 
highly conserved region (Fig. 3). The reason of molecular 
alternation that potentially affects the structure and func-
tion of the IL10 protein were examined using MutPred2 
web server (Table  2). Alternation of protein’s stability 
affects the conformational structure and thus governs 
the function of a protein [55]. The aforementioned nsS-
NPs affect the proteins stability and might cause maxi-
mum damaging effects on its structure and function. 
Decreased protein stability may change the protein fold-
ing mechanism and can cause increased degradation or 
aberrant aggregation of proteins [56, 57]. Project HOPE 
software results have provided important information 
about the possible effects of missense SNPs of IL-10 

Fig. 4  Prediction of 3-D model structure of IL-10 protein by using 
Project HOPE. Here, violet color on the ribbon diagram represents the 
site of mutation. Green and red colors indicate native and mutated 
amino acids, respectively
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gene. The polymorphisms (rs1274280163, rs550164520, 
rs745923816, rs545228684, rs1354773439, rs1421978042, 
rs771912629, rs1022828778, and rs1310781150) result in 
R42G, R45Q, F48L, E72G, M95T, A98D, R125S, Y155C, 
and I168T amino acid substitutions, respectively. Those 
substituted amino acids have different physiochemical 
properties that may interrupt the IL-10 protein structure. 
Due to the polymorphisms, the mutated residues (R42G, 
E72G, R125S, and Y155C) were more hydrophobic than 
wild-type residues, which might cause the loss of Hydro-
gen bond with other molecules and may disrupt correct 
protein folding. In contrast, the wild-type amino acid res-
idues were more hydrophobic than in A98D and I168T 
mutation, resulting in loss of hydrophobic interactions 
with other molecules on the surface of the protein.

It is well established that the human IL-10 protein is a 
tight dimer consisting of two interpenetrating subunits. 
Each of the subunits of IL-10 protein comprises six alpha-
helices named A-F. The dimeric structure of IL-10 is 
mainly stabilized by the intertwining of helices E (amino 
acid position 118 to 131) and F (amino acid position 133 
to 159) across the subunit interface [50]. Any mutation 
within the E and F helix regions of IL-10 subunits could 
affect the dimerization process of IL-10 protein. Interest-
ingly, R125S and Y155C polymorphisms are found to be 
located in the E and F helices of IL-10 subunits, respec-
tively. From our HOPE project analysis, we observed that 
R125S and Y155C mutations cause loss of hydrophobic 
interaction. Additionally, R125S mutation is found to be 
responsible for amino acid charge alternation. This find-
ing indicates R125S and Y155C mutations could inter-
fere with the intertwining of two subunits and thereby 
with the dimerization process of IL-10. Furthermore, the 
polymorphisms R42G, R45Q, F48L, R125S, and Y155C 
are located in the protein catalytic domain and are cru-
cial for its catalytic function. Mutation of these residues 
might disrupt the catalytic activity of IL-10. In the wild 

type IL-10 protein, the amino acids M95 and A98 resi-
dues produce an alpha-helix structure (annotated from 
UniProt). However, the M95T and A98D polymorphisms 
of IL-10 do not support the alpha-helix as a secondary 
structure in the respective position. The other two muta-
tions R42G and E72G introduced a glycine residue at 
these positions. Glycine is very flexible and can disrupt 
the required rigidity of the protein at this position. The 
overall results showed that the modeled mutated protein 
(Fig. 4) is different from wild-type IL-10 protein, result-
ing in destabilization of the protein and can cause defec-
tive binding of IL-10 with its receptor. The mature IL-10 
protein harbors three regions, namely region A, B, and C. 
The region A (LRDLRDAFSRV is in the position no 23 
to 33 amino acids), region B (FFQMKDQLDNLLLKES-
LLE is in 36 to 54 position), and region C (DIFINY-
IEAYMTMKIRN amino acid positions 144 to 160) are 
binding site regions that interact with the IL-10R1 recep-
tor [58]. Our findings showed that out of nine high-risk 
nsSNPs, five are (R42G, R45Q, F48L, E72G, and I168T) 
mainly situated in the binding site regions. A previous 
study by Yoon et  al. reported previously that the R42G 
mutation of IL-10 causes an 80% loss of binding affinity 
with IL-10R1 [59]. Therefore, we can speculate that the 
mutations in the binding site regions of IL-10 may dis-
rupt their interactions with their respective receptors, 
ultimately preventing the downstream signaling by IL-10. 
Blockage of IL-10 signaling may lead to enhanced inflam-
mation and increased number of Tregs and MDSCs, 
which inhibit tumor immunity, allowing tumors to grow 
[28]. Long-term enhanced inflammation contributes to 
tumor initiation and progression [29]. The other pre-
dicted four nsSNPs (R45Q, F48L, E72G, and M95T) 
would be responsible for the loss of protein function, 
which may result in the deregulation of the JAK-STAT 
pathway, causing an imbalance in cellular signaling. The 
mutations caused by those high risk nine nsSNPs may 

Table 4  Results of wild-type and mutant-type amino acid properties obtained from Project Hope software

Amino Acid 
change

Wild type amino acids Mutant type amino acid

Size Charge Hydrophobicity Size Charge Hydrophobicity

R42G Larger Positive Less More smaller Neutral More hydrophobic

R45Q Larger Positive – More smaller Neutral –

F48L Larger – – More smaller – –

E72G Larger Negative Less hydrophobic More smaller Neutral More Hydrophobic

M95T Larger – More hydrophobic More smaller – Less hydrophobic

A98D Smaller Neutral More hydrophobic More larger Negative Less hydrophobic

R125S Larger Positive Less hydrophobic Smaller Neutral More hydrophobic

Y155C Larger – More hydrophobic Smaller – More hydrophobic

I168T Larger – More hydrophobic Smaller – Less Hydrophobic
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have structural and functional consequences that may 
lead to enhanced immune response. This observation 
suggests that the nine nsSNPs could prioritize diseases 
like Crohn’s disease, allergy, autoimmunity, and other 
immune-related disorders.

The data obtained from STRING analysis reveal that 
the IL-10 protein has many vital functions: it inhibits the 
synthesis of several cytokines, including INF-gamma, 
IL-2, and IL-3, TNF GN-CSF produced by activated mac-
rophages and by helper T-cells (Fig. 5). It also regulates the 
growth and differentiation of various cells such as B cells, 
NK cells, cytotoxic and helper T cells, and other immune 
cells [2]. Several studies revealed that low level of IL-10 
aggravates autoimmunity pathology and disease severity in 

Fig. 5  Protein–protein interaction network of IL-10 protein using 
STRING

Fig. 6  IL-10 expression data-based (microarray) association study in the survival rate of patients with different types of cancers. This analysis was 
performed by Kaplan–Meirer Plotter



Page 12 of 14Das et al. Egyptian Journal of Medical Human Genetics           (2022) 23:10 

patients with multiple sclerosis (MS), juvenile onset arthri-
tis, rheumatoid arthritis (RA), severe asthma, and systemic 
lupus erythematosus (SLE) [25, 60–64]. The abnormal 
function of IL-10 caused by the identified nsSNPs might 
enhance the severity of the mentioned diseases.

IL-10 also shows tumor-promoting and tumor-inhib-
iting properties. Elevated levels of IL-10 are associated 
with increased tumor growth with poor prognosis and 
drug resistance. Again, elevated IL-10 expression down 
regulates class-I and other cytokines that results in con-
trol metastasis and inhibits tumorigenesis. Previous 
studies showed that IL-10 might contribute to gastric 
cancer pathogenesis [65]. Similarly, a high expression 
level of IL-10 was reported in ovarian cancer and found 
to inhibit ovarian cancer cell growth via downregula-
tion of inflammatory cytokine production [66]. The dual 
effects of IL-10 could be the result of the concentration 
ranges of this protein. Through this study, elevated IL-10 
gene expression has been shown to govern positive sig-
nificance on overall survival of gastric and ovarian can-
cer patients (Fig. 6). Any kind of deregulation caused by 
SNPs in IL-10 gene might create drastic effects on the 
survival rate of gastric and ovarian cancer patients. It 
has been found in many studies that a low level of IL-10 
expression is associated with the development of human 
cervical, sporadic colon, and prostate cancer [67–69]. It 
cannot be neglected that a functionally defective version 
of IL-10 protein could reproduce similar types of pheno-
type as observed in the lowly expressed IL-10 patients. 
However, further studies are warranted in order to verify 
the correlation between defective IL-10 protein and the 
development of different types of cancers.

Conclusion
In this study we identified nine putative deleterious nsS-
NPs of IL-10 by using multiple in silico tools. We believe 
identification of these nsSNPs should aid in the cost-
effective and fast screening method to diagnose diseases 
that are related to IL-10 expression. Additionally, it will 
greatly ease the approach of experimental designing for 
future laboratory-based research.
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