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Abstract 

Background:  Gestational diabetes mellitus is the most common metabolic dysfunction that arises during preg‑
nancy. GDM can lead to serious health complications for both the mother during pregnancy and after the delivery 
of the baby. Additionally, mother–offspring suffers from abnormalities in metabolism. The study aimed to investigate 
glutathione S‑transferase P1 and ghrelin genetic variants in pregnant women diagnosed with gestational diabetes 
using a tetra-primer amplification refractory mutation system.

Results:  This study demonstrated that the frequencies of genotypes in women with GDM were GSTP1-AG (87.1%) 
and GHRL-GG (100%). The study revealed no significant differences in the frequency of either genotype or allele of 
both GSTP1 and ghrelin between GDM and healthy pregnant women.

Conclusions:  This study may be the first study designed to demonstrate that there is no association between the 
genotype and allele frequencies of GSTP1 (rs1695) and ghrelin (rs696217) in the development of gestational diabetes 
mellitus in Egyptian women.
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Background
Gestational diabetes mellitus (GDM) is the most com-
mon metabolic dysfunction of pregnant women detected 
in the second or third trimester of pregnancy. In recent 
decades, GDM has been identified in 35% of preg-
nant women throughout the world [1]. GDM can cause 
hyperglycemia, macrosomia, high blood pressure, pre-
eclampsia, premature birth, and stillbirth at the end of 
pregnancy [2]. It is not caused by a lack of insulin but by 

partially blocking the effect of insulin (known as insulin 
resistance) by various other hormones produced by the 
placenta, including steroid hormones (progesterone, 
estradiol, and cortisol) and peptide placental hormone 
(human chorionic somatomammotropin (HCS) [3, 4]. 
Insulin resistance leads to metabolic disorders caus-
ing dyslipidemia such as high levels of total cholesterol, 
triglycerides, LDL-cholesterol, and low levels of HDL-
cholesterol. However, hyperlipidemia is a hallmark of the 
second half of pregnancy to improve fetal growth [5].

Glutathione S-transferase P1 (GSTP1) gene maps on 
the long arm of chromosome 11, which is composed 
of seven exons. In humans, GSTP1 exists as a dimer 
of identical subunits where each subunit contains 210 
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amino acid residues and two binding sites [6]. GSTP1 
polymorphism (rs1695) is distinguished by an adenine 
to guanine substitution leading to isoleucine (Ile) to 
valine (Val) exchange at position 105 of the coding 
region [7]. The glutathione S-transferases (GSTs) are 
isoenzyme superfamilies that detoxify toxic substances 
and protect macromolecules from reactive electro-
philes, reactive oxygen species, chemotherapeutic 
agents, and environmental carcinogens [8].

The short arm of chromosome 3 (3p25-26) con-
tains the sequence for the ghrelin (GHRL) gene. GHRL 
is composed of four exons encoding a precursor of 
preproghrelin (117-aa) [9]. Ghrelin polymorphism 
(rs696217) is distinguished by guanine to thymine 
substitution leading to leucine (Leu) to methionine 
(Met) exchange at position 72 in exon 2 [10]. Ghrelin 
is secreted by enteroendocrine cells in the stomach 
and binds to its growth hormone secretagogue recep-
tor (GHSR) [11]. Ghrelin regulates the growth hormone 
secretion from primary pituitary cells via modulating 
intracellular calcium levels. Additionally, ghrelin plays 
a role in glucose metabolism. Thus, ghrelin is a key reg-
ulator of energy homeostasis [12].

The study aimed to evaluate the single nucleotide 
polymorphisms (SNPs) in glutathione S-transferase P1 
(A/G rs1695) and ghrelin (G/T rs696217) and corre-
late its genotyping to gestational diabetes mellitus. This 
may be the first study designed to reveal that there is no 
association between the genotype and allele frequen-
cies of both GSTP1 (rs1695) and ghrelin (rs696217) 
in the development of gestational diabetes mellitus in 
Egyptian women.

Methods
This cross-sectional comparative study evaluated women 
with GDM according to the ethical standards of the Insti-
tutional Research Board, Faculty of Medicine, Mansoura 
University. Informed consent was taken from each par-
ticipant. One hundred forty pregnant women (seventy 
women with GDM and seventy healthy women) with a 
singleton pregnancy were recruited from the Obstetrics 
and Gynecology Department, Faculty of Medicine, Man-
soura University in the period from July 2017 to March 
2019.

All participants were at least 18 years of age and were 
diagnosed with gestational diabetes at > 24-weeks gesta-
tion. Pregnant women with type 1 diabetes mellitus, early 
macrosomia (baby with a birth weight more than 4000 g), 
polycystic ovary syndrome, or other associated serious 
medical disorders (hypertension, renal disease, moderate 
to severe anemia, thyroid disorder, etc.) interfering with 
maternal and perinatal outcomes were excluded.

Sample collection and DNA extraction
Venous blood samples were taken from each patient and 
dispensed in an EDTA-containing tube. The blood sam-
ple was separated into two portions (3 ml and 2 ml). The 
first portion phase was used to collect plasma after cen-
trifugation at > 2000 χ g for 10 min. The separated plasma 
was used in the investigation of the biochemical analysis. 
The second portion was used for DNA extraction. DNA 
was separated using a DNA extraction kit (ABIOpure™ 
Genomic DNA, Cat. No. M501DP). All samples showed 
bands, which represent the genomic DNA when gel elec-
trophoresis was applied. The DNA quantity and quality 
were measured by reading the absorbance at λ230 nm and 
λ260 nm by Thermo Scientific™ NanoDrop.

Tetra‑primer amplification refractory mutation system 
(T‑ARMS‑PCR) analysis
PCR analysis for glutathione S‑transferase P1 gene
The primers used in this study (FOP, FIP, ROP, and RIP) 
are provided in Tables 1 and 2. GSTP1 gene (A/G rs1695) 
primers were designed by Primer3 software, while ghrelin 

Table 1  Primers used in T‐ARMS‐PCR of glutathione S-transferase 
P1 gene (A/G rs1695)

FOR forward outer primer, ROP reverse outer primer, FIR forward inner primer, 
RIP reverse inner primer
a The mismatches of the allele-specific primers are emphasized in bold and 
underlined

Primer Sequence (5′–3′) Fragment size

FOP CAG​GTG​TCA GGT​GAG​CTC​TGA​GCA CC A allele 233 bp 
(FIP + ROP)

ROP ATA​AGG​GTG CAG​GTT​GTG​TCT​TGT​CCC​ G allele 290 bp 
(FOP + RIP)

FIP CGT​GGA​GGA​CCT​CCG​CTG​CAAAT​CCA Two outer primers 467

RIP GCT​CAC​ATA​GTT​GGT​GTA​GAT​GAG​GGA​
TAC

Table 2  Primers used in T‐ARMS‐PCR of ghrelin gene (G/T 
rs696217)

FOR forward outer primer, ROP reverse outer primer, FIR forward inner primer, 
RIP reverse inner primer
a The mismatches of the allele-specific primers are emphasized in bold and 
underlined

Primer Sequence (5′–3′) Fragment size

FOP GGG​GAT​TTT​TTT​TTT​TAT​GGG​TTG​GTGG​ G allele 197 bp 
(FIP + ROP)

ROP GGA​GGA​CAT​TGA​GGC​AGT​AGA​GCA​
GTTG​

T allele 266 
bp (FOP + RIP)

FIP GTG​GGT​TGG​TGG​TGA​GAT​GTT​TAC​CAA​
TAG

Two outer primer 407

RIP GTG​GAC​ATG​AGG​GAC​AAA​GTACC​CCA
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gene (G/T rs696217) primers were designed by using 
http://​www.​prime​r1.​soton.​ac.​uk/​prime​r1.​html. Polymer-
ase chain reaction (PCR) was performed in a 20 μL vol-
ume involving 200 ng of genomic DNA, 3 μL of G allele 
primers (FOP and RIP) or A allele primers (FOP and RIP) 
(Table 1), and 10 μL 2 × Taq Master Mix (EmeraldAmp® 
GT PCR Master Mix–Code No. RR310A). The PCR 
protocol was as follows: 94 °C for 5 min, followed by 35 
cycles at 94  °C for 2  min, annealing at 59  °C for 1  min, 
and extension at 72  °C for 1  min with a final extension 
at 72 °C for 10 min. The agarose gel electrophoresis (2%) 
was performed at 125 V and a 100 bp MaestroGen DNA 
ladder (Cat. No.02001_500) was used to investigate and 
confirm the quality of the PCR products (Cleaver Scien-
tific Ltd, UK).

PCR analysis for ghrelin gene
The polymerase chain reaction (PCR) was performed in 
a 25 μL volume involving 200 ng of genomic DNA, 1 μL 
of T allele primers (FOP and RIP) or G allele primers (FIP 
and ROP) (Table 2), 12.5 μL 2 × Taq Master Mix (Emer-
aldAmp® GT PCR Master Mix, Cat. No. RR310A), and 
4.5 μL H2O. The PCR protocol was as follows: 95 °C for 
3 min, followed by 35 cycles at 95 °C for 30 s, annealing 
at 60  °C for 30 s, and extension at 72  °C for 1 min, and 
30 s with a final extension at 72 °C for 10 min. The aga-
rose gel electrophoresis (2%) was performed at 125 V and 
a 100 bp MaestroGen DNA ladder (Cat. No. 02001_500) 
was used to investigate and confirm the quality of the 
PCR products (Cleaver Scientific Ltd, UK).

Biochemical measurements
The plasma lipid profile was assayed following the kit’s 
instructions by Biodiagnostic (Cairo, Egypt). Plasma lev-
els of total lipids, total cholesterol, triglycerides, and HDL 
cholesterol can be determined according to the meth-
ods of Zollner and Kirsch [13], Richmond [14], Fassati 
and Prencipe [15], and Burstein et  al. [16] respectively. 
Plasma levels of LDL-cholesterol and VLDL-cholesterol 
were calculated by the Friedewald equation where VLDL 
equals triglycerides divided by 5 [17]:

LDL Cholesterol =Total Cholesterol

− (HDL Cholesterol+ VLDL Cholesterol)

Statistical analysis
Statistical analysis was done using the software pack-
age, SPSS version 22, and Excel Software. The data were 
expressed as mean ± SD. One-way ANOVA was used for 
determining the significant difference between women 
with gestational diabetes and healthy pregnant women. 
P values < 0.05 were statistically significant. The frequen-
cies of either genotype or allele of GSTP1 polymorphism 
between two groups were analyzed by the Fisher exact 
test and Hardy–Weinberg equilibrium.

Results
Biochemical investigation of studied groups
Table 3 showed the demographic characteristics of preg-
nant women between the two groups. The data found 
that there was no significant difference in the mean age 
and body mass index (BMI) among women with gesta-
tional diabetes and healthy pregnant women.

The level of insulin resistance was higher in the ges-
tational diabetes group with a significant difference 
compared with the control group. Total lipids, total 
cholesterol, triglycerides, LDL-cholesterol, and VLDL-
cholesterol levels were significantly higher, whereas HDL-
cholesterol levels were significantly lower in women with 
GDM than healthy pregnant women (Table 4).

Genetic polymorphism and genotype frequencies
Genotype analysis of GSTP1 gene
The genetic polymorphisms in the GSTP1 gene were 
investigated and the genotypes were shown in Fig. 1. The 
frequencies of the genotype of the GSTP1 gene (rs1695) 
between women with gestational diabetes and healthy 
pregnant women were listed in Table 5. The distribution 
of genotypes of GSTP1 for both groups was in alignment 
with the Hardy_Weinberg equilibrium, which was ana-
lyzed by Fisher’s exact test (Table 6).

The major risk of gestational diabetes mellitus was eval-
uated by the codominant, dominant, recessive, and over-
dominant models as shown in Table 7. In the codominant 
model (AA vs AG vs GG), there was no significant risk of 
GDM (OR 2.40, 95% CI 0.38–14.88, P = 0.342) with the 
A/G and G/G genotypes compared with the AA geno-
type. The dominant model did not show any significant 

Table 3  Demographic characteristics of the involved subjects in this study

The data was presented as a mean and standard deviation

OR odds ratio, 95% CI 95% confidence interval for the difference between the means for both groups, GDM gestational diabetes mellitus. P is significant when ˂ 0.05

Parameters GDM group (n = 70) Control group (n = 70) OR (95% CI) P value

Age (years) Mean ± SD 28.30 ± 4.68 27.73 ± 3.34 1.0 (0.944–1.06) 0.407

BMI (kg/m2) Mean ± SD 26.30 ± 2.12 25.73 ± 2.07 1.14 (0.89–1.28) 0.109

http://www.primer1.soton.ac.uk/primer1.html
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risk of GDM when compared with the AA genotype 
(OR 1.22, 95% CI 0.354–4.195, P = 0.753). The recessive 
model did not display any significant risk of GDM com-
pared with the A/A-A/G genotype (OR 2.09, 95% CI 
0.502–8.73, P = 0.301). Similarly, the overdominant did 

not show any significant risk of GDM compared with 
the A/A-G/G genotype (OR 0.791, 95% CI 0.306–2.05, 
P = 0.629).

Table 4  Comparison of insulin resistance and lipid profile of gestational diabetes mellitus in pregnant women with healthy pregnant 
women

The data was presented as a mean and standard deviation

OR odds ratio, 95% CI 95% confidence interval for the difference between the means for both groups, GDM gestational diabetes mellitus. P is significant when ˂  0.05

Parameters GDM group (n = 70) Control group (n = 70) OR (95% CI) P value

Insulin resistance
Mean ± SD

24.20  ± 6.76 7.42 ± 2.66 undefined ˂ 0.001

Total lipids (mg/dL)
Mean ± SD

1145.60 ± 171.20 605.32 ± 155.50 1.02 (1.01–1.03) ˂ 0.001

Total cholesterol (mg/dL)
Mean ± SD

229.11 ± 34.78 150.03 ± 22.95 1.127 (1.09–1.17) ˂ 0.001

Triglycerides (mg/dL)
Mean ± SD

299.25 ± 53.55 140.31 ± 32.26 5.25 (undefined) ˂ 0.001

LDL-cholesterol (mg/dL)
Mean ± SD

142.0 ± 32.69 76.53 ± 18.05 1.16 (1.12–1.23) ˂ 0.001

VLDL-cholesterol (mg/dL)
Mean ± SD

60.0 ± 11.45 29.06 ± 7.05 undefined ˂ 0.001

HDL-cholesterol (mg/dL)
Mean ± SD

25.37 ± 6.09 51.45 ± 6.60 undefined ˂0.001

Fig. 1  Agarose gel electrophoresis (2%) of PCR product of tetra-primer ARMS-PCR for analyzing the rs1695 polymorphism in the glutathione 
S-transferase P1 gene (GSTP1). Lane M showed DNA marker; lane C1 and GD1 showed AA genotype; lane C2 and GD2 showed GG genotype; lanes 
C3, GD3, GD4, GD4, GD5, and GD6 showed AG genotype (Where C control group, GD gestational diabetes group)

Table 5  Genotype frequencies of GSTP1 gene (rs1695) in the current study

The data was expressed as frequency and percentage

GDM gestational diabetes mellitus

Genotype Amino acid change All subjects (n = 140) GDM group (n = 70) Control 
group 
(n = 70)

A/A IIe/IIe 11 (7.9%) 6 (8.6%) 5 (7.1%)

A/G IIe/Val 120 (85.7%) 61 (87.1%) 59 (84.3%)

G/G Val/Val 9 (6.4%) 3 (4.3%) 6 (8.6%)
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Correlation between insulin resistance, lipid profile, 
and GSTP1 (rs1695) SNP
The association between lipid profile, insulin resistance, 
and GSTP1 gene (rs1695) SNP in the population under 
the study was presented in Table  8. In all these study 
cases, no significant difference was found between the 
lipid profile, insulin resistance, and GSTP1 (rs1695) SNP.

Genotype analysis of GHRL gene
The genetic polymorphisms in the GHRL gene were ana-
lyzed and the genotypes were shown in Fig.  2. The fre-
quencies of genotype of the GHRL (rs696217) between 

pregnant women diagnosed with gestational diabetes and 
healthy pregnant women were listed in Table  9. In the 
distribution of genotypes, there were no significant dif-
ferences between groups.

Discussion
Gestational diabetes mellitus is the most prevalent dis-
ease in pregnant women worldwide. It is a complex meta-
bolic state that is distinguished by insulin resistance [18]. 
In this study, we assessed a possible association between 
glutathione S-transferase P1 Ile105Val SNP (rs1695) as 
well as ghrelin Leu72Met SNP (rs696217) and patient risk 
of gestational diabetes among Egyptian women.

Our results showed that insulin resistance was related 
to women with GDM. Previous studies have reported 
that women with GDM with high insulin resistance 
had a higher blood glucose level in either an early or a 
late pregnancy than women with GDM with less insulin 
resistance [19].

Hyperlipidemia is one of the metabolic disturbances 
that have been diagnosed in women with GDM. Insulin 
resistance and estrogen stimulation lead to an increase in 
plasma lipid levels throughout pregnancy [20]. The levels 
of total cholesterol, triglycerides, LDL-cholesterol, and 

Table 6  Fisher exact test for Hardy–Weinberg equilibrium in the 
current study

GDM gestational diabetes mellitus, χ2 chi-square test, HWE Hardy–Weignberg 
equilibrium

*Statistically significant if P < 0.05

GDM group (n = 70) Control 
group 
(n = 70)

HWE χ2 = 38.96 χ2 = 32.95

P value P < 0.001* P < 0.001*

Table 7  Association between genotypes of GSTP1 with response status in the current study

The data was presented as percentage and frequency

GDM gestational diabetes mellitus, OR odds ratio, 95% CI 95% confidence interval for the difference among the means for both groups. P is significant when < 0.005

Model Genotype GDM (n = 70) Control (n = 70) OR (95% CI) P

Codominant A/A 6 (8.6%) 5 (7.1%) 2.40 (0.38–14.88) 0.342

A/G 61 (87.1%) 59 (84.3%) 2.07 (0.494–8.65) 0.31

G/G 3 (4.3%) 6 (8.6%) 1

Dominant A/A 6 (8.6%) 5 (7.1%) 1.22 (0.354–4.195) 0.753

A/G-G/G 64 (91.4%) 5 (92.9%) –

Recessive A/A-A/G 67 (95.7%) 64 (91.4%) 2.09 (0.502–8.73) 0.301

G/G 3 (4.3%) 6 (8.6%) –

Overdominant A/A-G/G 9 (12.9%) 11 (15.7%) 0.791 (0.306–2.05) 0.629

A/G 61 (87.1%) 59 (84.3%) –

Table 8  Correlation between insulin resistance, lipid profile and GSTP1 (rs1695) SNP in the current study

The data was presented as median and interquartile range or mean and standard deviation 

95% CI 95% confidence interval for the difference between the means for both groups. P is significant when ˂  0.05

Parameters Genotype AA (n = 11) Genotype AG (n = 120) Genotype GG (n = 9) P

Insulin resistance 23.39 (16.19–29.0) 24.08 (17.68–28.89) 30.04 (20.60–35.18) 0.533

Total lipids (mg/dL)  1196.01 ± 229.76 1138.91 ± 170.10 1180.91 ± 16.89 0.697

Total cholesterol (mg/dL) 245.01 ± 25.54 227.59 ± 34.26 228.29 ± 63.70 0.510

Triglycerides (mg/dL) 321.93 ± 70.07 295.51 ± 51.69 329.93 ± 55.77 0.312

HDL-cholesterol (mg/dL) 27.22 ± 2.66 25.24 ± 6.01 24.25 ± 12.83 0.717

LDL-cholesterol (mg/dL) 151.29 ± 27.96 141.39 ± 32.78 135.91 ± 48.77 0.743

VLDL-cholesterol (mg/dL) 63.87 ± 14.37 59.83 ± 11.26 55.79 ± 11.44 0.582
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VLDL-cholesterol were elevated in GDM due to increas-
ing hyperphagia (an abnormally excessive appetite for the 
consumption of food-related to hypothalamic damage), 
progesterone, lipogenesis, and fat storage in the first two-
thirds of gestation [21].

Our results showed that total lipids, total cholesterol, 
triglycerides, LDL-cholesterol, VLDL-cholesterol lev-
els increased and HDL-cholesterol levels decreased in 
women with GDM. Previous studies revealed that GDM 
changes cholesterol metabolism where total cholesterol 
levels were significantly elevated in GDM compared 
with normal pregnant women. Women with GDM had 
high levels of LDL cholesterol [22]. Both VLDL cho-
lesterol and triglycerides were significantly elevated 
in GDM than in normal pregnant women. Shen et  al. 
[23] reported that the levels of lipids increased stead-
ily throughout pregnancy and reached a peak before 
delivery, but the levels of HDL cholesterol increased 
from the 1st to 2nd trimester accompanied by a little 
decrease in the 3rd trimester. However, hyperlipidemia 
may be a physiological or pathological condition, so 
it is difficult to determine it. In addition, there are no 
standards for measuring maternal lipid levels due to the 

heterogeneity in meta-analysis and the region of the 
world’s population [24].

Gene polymorphisms change the gene expression, 
structure, and quantity of the products that affect gene 
function. This is the first study to demonstrate that 
the frequencies of genotype and the allele of rs1695 in 
GSTP1 were not associated with gestational diabetes 
in Egyptian women. The dispersal of genotypes was in 
alignment with Hardy–Weinberg equilibrium. Similar to 
other studies, in a Chinese population, GSTP1 IIe105Val 
polymorphisms did not have an impact on the risk of ges-
tational diabetes mellitus [25]. Li et al. [26] found that the 
GSTP1 IIe105Val polymorphism was not associated with 
an elevated risk of gestational diabetes mellitus in a Chi-
nese population. Yalin et  al. [27] found that the GSTP1 
polymorphism was suggested to have no effect on the 
development of diabetes mellitus in Turkish patients. 
There was no significant association between the GSTP1 
IIe105Val polymorphism and developing type 2 diabetes 
mellitus in overall studies [28].

Zhang et al. [29] revealed that the GSTP1 heterozygous 
genotype is significantly associated with type 2 diabetes 
mellitus in the north Indian population. There was an 

Fig. 2  Agarose gel electrophoresis (2%) of PCR product of tetra-primer ARMS-PCR for analyzing the rs696217 polymorphism in the GHRL gene. Lane 
M showed DNA marker; lane C1, C2, and C3 showed GG genotype; lanes GD1, GD2, GD3, GD4, GD4, GD5, and GD6 showed GG genotype (Where C 
control group, GD gestational diabetes group)

Table 9  Genotype frequencies of GHRL gene (rs696217) in the current study

The data was expressed as frequency and percentage

GDM gestational diabetes mellitus

Genotype Amino acid change All subjects (n = 140) GDM group (n = 70) Control 
group 
(n = 70)

G/G Leu/Leu 100 (100%) 70 (100%) 70 (100%)

G/T Leu/Met 0 (0%) 0 (0%) 0 (0%)

T/T Met/ Met 0 (0%) 0 (0%) 0 (0%)
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association between the GSTP1 Ile105Val gene polymor-
phism in overweight and obese patients for more than 
60 years in southern Brazil [30]. Our study showed that 
there was no significant difference between the lipid 
profile, insulin resistance, and GSTP1 (rs1695) SNP in 
women with gestational diabetes. The current study is 
in agreement with Amer et  al. [31], who demonstrated 
that there was no significant influence of different geno-
types of the GSTP1 gene on lipid profile in the Egyptian 
population.

Ghrelin is a key factor in the hypothalamic melano-
cortin system, which is involved in various bioactivities 
[32]. The present study revealed that the GHRL gene 
(G/T rs696217) polymorphism was not significantly 
associated with gestational diabetes in Egyptian women. 
Rocha et al. revealed that the Gln90Leu polymorphism 
of the preproghrelin gene was not correlated with ges-
tational diabetes in the Euro-Brazilian population [33]. 
Kim et  al. [34] found that the Leu72Met polymor-
phism of the preproghrelin gene is not related to type 
2 diabetes mellitus or to its complications. Joatar et al. 
[35] found that the Leu72Met polymorphism of GHRL 
was not associated with T2DM, IR, or serum ghre-
lin levels in a Saudi population. No associations were 
found between genotypes and ghrelin serum levels in a 
Mexican population [36]. Bai et  al. [37] found that the 
genotype and allele frequencies of GHRL gene polymor-
phisms in participants with obesity showed no signifi-
cant difference compared to those in nonobese controls 
in Chinese subjects.

In disagreement with other studies, the Leu72Met pol-
ymorphism of the GHRL gene had an impact on type 2 
diabetes in the Finnish population [38]. In the Caucasian 
population, there was an association between the Leu-
72Met polymorphism of the GHRL gene and a decreased 
risk of type 2 diabetes [39]. A Ghrelin Arg51Gln poly-
morphism was detected in the Helsinki population with 
type 2 diabetes [40]. The Leu72Met polymorphism con-
tributes to the development of obesity in the Swedish 
population [41].

Conclusions
Worldwide, pregnant women are at high risk of devel-
oping gestational diabetes. The study of risk factors will 
decrease the incidence. Therefore, this study aimed to 
evaluate the correlation between gene polymorphism 
in GSTP1 and ghrelin in the development of gestational 
diabetes. It was found that glutathione S-transferase P1 
IIe105Val (A/G rs1695) and ghrelin Leu72Met SNP (G/T 
rs696217) were not correlated with gestational diabetes 
mellitus in Egyptian women.
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