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Abstract 

Background:  Given the severe infection, poor prognosis, and the low number of available effective drugs, potential 
prevention and treatment strategies for COVID-19 need to be urgently developed.

Main body:  Herein, we present and discuss the possible protective and therapeutic mechanisms of human micro-
biota and probiotics based on the previous and recent findings. Microbiota and probiotics consist of mixed cultures of 
living microorganisms that can positively affect human health through their antiviral, antibacterial, anti-inflammatory, 
and immunomodulatory effect. In the current study, we address the promising advantages of microbiota and probiot-
ics in decreasing the risk of COVID-19.

Conclusions:  Thus, we recommend further studies be conducted for assessing and evaluating the capability of these 
microbes in the battle against COVID-19.
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Background
Respiratory infections could cause global high rates of 
morbidity and mortality. The viruses commonly asso-
ciated with such infections include influenza viruses, 
parainfluenza viruses, coronaviruses, respiratory syncy-
tial virus, rhinoviruses, and adenoviruses. In December 
2019, an outbreak of pneumonia of unknown etiology 
was reported in Wuhan city in China [1]. WHO later 
identified this disease as Coronavirus disease (COVID-
19) which is caused by a novel coronavirus called Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). As yet, SARS-CoV-2 has become a global pan-
demic virus causing unprecedented crises regarding 
health, economy, and high mortality rate [2].

At present, there is no sole medication for the treat-
ment of COVID-19 thus, researchers all over the world 
are actively engaged to find out appropriate treatment for 

COVID-19. Using beneficial microbe-based drugs could 
be a novel approach to be used in the attempts being 
done for treatment and prevention of COVID-19. The 
recent research about microbiota has led to an improved 
understanding of the communities of the commen-
sal microorganisms (including bacteria, fungi, viruses, 
phages, archaea, and helminths) which live within the 
human body. Besides the extensively studied gut micro-
biota, the lung microbiota, which is only considered in 
recent years, represents an important member of the 
whole human microbiota [3]. It has been observed that 
in COVID-19 patients, there is microbial dysbiosis in 
the gastrointestinal tract (GIT) and lung which could be 
involved in the severity of the disease [4].

Probiotics are defined as living microorganisms 
that, when given in appropriate amounts, afford ben-
eficial effects to the host [5]. The potential of probiot-
ics to boost health benefits has been reported as they 
can regulate allergic reactions, alleviate inflammatory 
bowel disease, reduce tumor growth in some can-
cer models, prevent colon cancer, control the levels of 
blood cholesterol and protect hosts from bacterial and 
viral infections [6]. Human microbiota and probiotics 
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have anti-inflammatory and immunomodulatory effects 
that could be beneficial in the treatment of the severely 
ill COVID-19 patient who always suffers from cytokine 
storm that results from the production of a large quan-
tity of pro-inflammatory cytokines [7]. Besides, they 
have an antiviral and antibacterial activity which is nec-
essary for our fight against the SARS-CoV-2 virus [8, 9]. 
The rationale of using biotherapeutic drugs based on 
beneficial microbes like human microbiota and probi-
otics for treatment and prevention of COVID-19 infec-
tion is attributed to their antiviral, anti-inflammatory, 
and immunomodulatory effect, they also can prevent 
secondary bacterial infections as presented in Fig. 1.

Main text
Gut‑lung axis and COVID‑19
The alimentary tract hosts a complex group of the 
highly diverse microbial ecosystem which has a role in 
ensuring the establishment and persistence of immune 
homeostasis [10]. In addition to the widely investigated 
gut microbiota, the microbiota of other sites in the 
human body, especially the lungs, are crucial for host 
homeostasis. Interestingly, lung microbiota is now rec-
ognized to have an essential role in the physiopathol-
ogy of many respiratory diseases [11]. Consequently, 
a group of researchers has investigated if the infection 
caused by SARS-CoV-2 affects the lung microbiota 
[12]. They observed a severe microbiota dysbiosis in the 
lungs of COVID-19 patients, with a high incidence of 
pathogenic species like Klebsiella oxytoca and Tobacco 
mosaic virus (TMV) a finding which could contribute 
to the complications that occur in SARS-CoV-2 infec-
tions. From birth and throughout the entire life span, 
a close correlation exists between the gut and lung 
microbiota [13]. For example, if the newborns’ diet is 
modified, the composition of their lung microbiota will 
be affected, and fecal transplantation in experimental 
rats can induce changes in their lung microbiota [3].

On the opposite side, the lung microbiota could affect 
the gut microbiota. In an experimental model, Looft and 
Allen [14] found that infection with influenza virus trig-
gers an increased abundance of Enterobacteriaceae and 
decreased proportions of Lactobacilli in the gut. This 
connection is called the gut-lung axis and the mecha-
nisms mediating this communication are still unclear 
[15]. Although respiratory distress is a main symptom 
of COVID-19, this disease is also associated with some 
other non-classical symptoms such as gastrointestinal 
symptoms. Noteworthy, patients with gastrointestinal 
symptoms had more serious respiratory complications. 
This could be associated with microbial dysbiosis in the 
lungs and GIT [16].

Human microbiota‑virus interaction
Substantial interactions occur between the viruses invad-
ing the human body and commensal microbiota leading 
to certain suppressive outcomes for the viral infection 
[17]. This is based on the research carried out by Botic 
et  al. who noticed that lactic acid bacteria (LAB) [18], 
which colonize the human gut, decreased the infectivity 
of vesicular stomatitis virus by direct binding to the virus, 
thus they blocked the entry of the viruses to the human 
cells. Also, Wang and his colleagues showed that Entero-
coccus faecium, a Gram-positive bacterium living in the 
human GIT, can prevent the influenza viral infection by 
direct adsorptive trapping of the viruses [19]. Further-
more, human microbiota can exert antiviral activity by its 
cellular components or through the production of several 
metabolites with antimicrobial activity [17].

An extracted cell wall-associated component from Lac-
tobacillus brevis vaginal strain is an example of the anti-
viral activity of the microbiome cellular components. It 
has been found that this component potently inhibited 
the HSV-2 viral replication in an in vitro model [20, 21]. 
On the other hand, the extracellular matrix-binding pro-
tein which is produced by Staphylococcus epidermidis 
(bacterial commensal found in the human nasal cavity) 
can stably bind to the influenza virus thus, blocking fur-
ther viral infection [22]. Microbiota may also have a role 
in decreasing the entry of SARS-CoV-2. It is well known 
that the SARS-CoV-2 virus enters human cells by trans-
membrane spike glycoprotein forming homotrimers 
expressed on its surface. This spike glycoprotein binds 
to trans-membrane angiotensin-converting enzyme 
(ACE2) receptor, which is expressed in different tissues 
in the human body like lung, kidney, and GIT [23]. Yang 
and his colleagues [24] studied the effect of microbiota 
on colonic ACE-2 receptors in a murine model and they 
noticed that gut microbiota regulated these receptors. 
Notably, various research articles have speculated the 
interaction of microbiota with ACE2 receptors in certain 
diseases like cardiovascular diseases [25] and intestinal 
inflammation [26, 27].

Anti‑inflammatory and immunomodulatory effect 
of human microbiota
An indirect role of microbiota on viral infection is its 
anti-inflammatory and immunomodulatory effect. 
Microbiota, especially gut and lung microbiota have 
effects on the local immunity [28, 29]. Gut microbiota 
can trigger the local immune response through interac-
tions with the immune cells expressing pattern recogni-
tion receptors (PRRs) (e.g., Toll-like receptors [TLRs]) 
[30]. They can also activate local dendritic cells through 
interactions with PRRs [31]. Then the activated dendritic 
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Fig. 1  Role of a probiotics and b microbiota in treatment of COVID-19
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cells travel from the GIT to mesenteric lymph nodes, 
where they induce the differentiation of the T cells into 
the effector T cells, mainly regulatory T cells (Tregs) and 
T helper 17 (Th17) cells. Some of these effector T cells 
migrate back to the GIT and affect the local immune 
responses [32]. Tregs can mediate the conversion of the 
immune system from the pro-inflammatory to the anti-
inflammatory state via the release of anti-inflammatory 
cytokines (like IL-10, TGF-β) [33].

Besides, several microbiota-derived metabolites like 
short-chain fatty acids (SCFAs) were found to protect the 
integrity of the GIT barrier against the disrupting effects 
of the pro-inflammatory cytokines [34]. A vital role of the 
lung microbiota in both maturation and homeostasis of 
lung immunity has been revealed over the last few years 
[29]. Preclinical studies confirmed the impact of lung 
microbiota on the regulation and maturation of immune 
cells of the respiratory system [34–37]. On the other side, 
the gut microbiota has a long-reaching immune impact 
(systemic effect), mainly on the pulmonary immune sys-
tem via the mesenteric lymphatic system through which 
the intact microbiota, their fragments, or metabolites 
(like SCFAs) may reach the systemic circulation and 
modulate the immune response of the lung [38]. Many 
researchers have studied the immunomodulatory impact 
of SCFAs impact on the pulmonary system [39–41]. They 
noticed that SCFAs act as signaling molecules on the 
antigen-presenting cells of the lungs leading to attenua-
tion of the inflammatory and allergic responses. Yin and 
his colleagues [42] have conducted bacteria research on 
the segmented filamentous (SFB), members of the gut 
microbiota, in humans and mice and they noticed that 
SFB has a significant role in the modulation of the host 
immune systems.

Microbiota and prevention of secondary bacterial 
infections
One more important role of the human microbiota is 
colonization resistance where commensal microbiota 
protects the host against colonization with pathogenic 
organisms and inhibits the overgrowth of the patho-
genic microbiota members. The postulated mechanisms 
of action for colonization resistance are: (1) directly by 
the interaction between human microbiota and differ-
ent pathogens in competition for the shared niches and 
nutrients, and (2) enhancement of the host defense abil-
ity by the human microbiota to suppress pathogens (as 
discussed before). The dominant non-pathogenic micro-
biota plays an important role in both occupying the niche 
and inhibiting the colonization and growth of different 
pathogens [33]. Yet, if microbiota is disturbed for any rea-
son, a decrease in the non-pathogenic dominant micro-
biota members decreases the capacity of colonization 

resistance, leading to colonization and overgrowth of the 
opportunistic pathogens in the empty niches. A classic 
example of this situation is the infection with Clostrid-
ium difficile which can cause pseudo-membranous coli-
tis, sepsis, and death in severe cases [43].

Fecal microbiota transfer as an example 
for microbiome‑based biotherapeutic drug
Fecal microbiota transfer (FMT) involves the suspension 
of the donor stool in certain solutions, homogenization 
then filtration and finally, it is delivered through upper 
and/or lower GIT as gelatin capsules after centrifugation 
[44]. FMT is approved as a therapy for the treatment of 
recurrent infection with Clostridium difficile [45, 46]. It is 
now under research to be used in the treatment of some 
other diseases like metabolic disorders [47] and hepatic 
encephalopathy [48]. The main benefit of the use of FMT 
is to restore gut health and to reverse the gut dysbio-
sis that is induced by either antibiotic [49] or microbial 
infection [50] like in the case of COVID-19 infection. 
Thus, depending on the previously mentioned associa-
tions between gut microbiota and respiratory diseases, 
FMT could be effective in the treatment of COVID-19 
patients.

Immunomodulatory effect of probiotics
The effectiveness of probiotics in the treatment and pre-
vention of a variety of diseases have been investigated like 
the prevention of allergy and certain intestinal diseases, 
in addition to the treatment of gastrointestinal diseases 
and certain types of cancers [51]. The health benefits 
conferred from probiotics are attributed to their effects 
on the immune system. Immunomodulators can be clas-
sified into immunostimulants or immunosuppressants 
[52]. The immunomodulatory effect of probiotics has 
been identified via the release of cytokines, interleukins, 
interferons, transforming growth factors, tumor necrosis 
factors (TNF), and chemokines from different immune 
cells such as lymphocytes, macrophages, mast cells, epi-
thelial cells, granulocytes, and dendritic cells which boost 
the regulation of innate and adaptive immune system 
[53]. Several types of genera of bacteria have been iden-
tified as probiotics, among them, Lactobacillus and Bifi-
dobacterium have been consumed as a part of fermented 
foods like those in dietary supplements [54]. It was found 
that L. reuteri and L. casei, can stimulate the production 
of IFN-gamma, and activate the pro-inflammatory Th1 
cells [55]. Also, the oral administration of B. infantis into 
mice was noticed to stimulate dendritic cells that can 
suppress the biased responses of Th2 cells and stimulate 
the pro-inflammatory responses of Th1 that are required 
for virus elimination [56]. Besides, probiotics L. acidophi-
lus, L. gasseri, L. delbrueckii, and B. bifidum strains can 
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induce the production of IFN-alpha by monocytes [57]. 
The probiotic L. paracasei was found to increase the 
release of TNF-alpha, IL-6, IL-8 of the human monocyte 
cell line that is required for the antiviral effect [58].

Antiviral activity of probiotics
A growing interest in the effectiveness of probiotics as 
viral inhibitors has emerged in the treatment of dis-
eases and infections associated with HIV [59]. Probi-
otics have exhibited a potential role as antiviral agents 
against several groups of viruses like rotavirus [60], cox-
sackieviruses, enterovirus, [61], and herpes simplex [62]. 
Interestingly, the exo-polysaccharides produced by Lac-
tobacillus plantarum were shown to have an antiviral 
effect against human rotavirus-induced diarrhea [63] and 
transmissible gastroenteritis virus [64]. Probiotics have 
antiviral activity against many respiratory viruses like 
influenza and syncytial viruses via boosting the immunity 
of individuals through activating the secretion of IgA and 
enhancing the activity of neutrophils, natural killer cells, 
and macrophages [65, 66].

ACE inhibitory activity of probiotics
As previously mentioned, the entry of SARS-CoV-2 is 
facilitated by binding to ACE2 receptors and this inter-
action, when occurs in the gut, may be responsible for 
the GIT symptoms, which are reported in 12–60% cases 
of COVID-19 and it could be associated with increased 
disease severity [67]. In an interesting study [68], four 
metabolic products of Lactobacillus plantarum; Planta-
ricin BN, Plantaricin W, Plantaricin D, Plantaricin JLA-9 
have been selected to design computer-based antiviral 
computational product for COVID-19. This study aimed 
to target and block the residual binding protein (RBP) 
on ACE2 receptor proteins by selected probiotics along 
with RNA-dependent RNA polymerase (RdRp). Three 
metabolic products of L. plantarum, significantly inter-
acted with RdRp and ACE2, recording the lowest bind-
ing energy. These results suggest that probiotics could be 
used as a potential ACE2 receptor blocker, hence their 
importance in treating COVID-19 [68].

Antimicrobial substances produced by probiotics
Probiotics like LAB can produce antimicrobial sub-
stances such as bacteriocins that have a broad spectrum 
of antagonistic effects against many bacterial pathogens 
[69]. Bacteriocins have been considered as promising 
antimicrobial compounds with potential applications 
in the food, health, and veterinary sectors [70]. Novel 
applications of LAB bacteriocins are steadily increasing, 
with horizons of more fascinating roles to be played by 
these agents in the future in anti-quorum sensing strat-
egies and site-specific drug delivery [71]. Additionally, 

LAB strains often produce polymeric substances such 
as exopolysaccharides (EPS) that are proven by several 
researchers to have the ability to express antagonistic 
effects against pathogenic bacteria [72–77]. LAB can 
also produce biosurfactant agents which have shown a 
broad range of antimicrobial activity against bacterial 
pathogens as well as anti-adhesion properties that can 
reduce the pathogens’ adhesion to the gastric wall mem-
brane [69]. This ability of probiotics is important to fight 
against the secondary bacterial infections that commonly 
occur in severely ill COVID-19 patients.

Impact of probiotics on gut microbiota and its link 
with COVID‑19
Probiotics exert their beneficial effects via various 
mechanisms including treatment and restoration of gut 
microbiota, enhancement of intestinal barrier function, 
competition with pathogens for adhesion to gut epithe-
lium and nutrition, suppression of opportunistic patho-
gens, production of antimicrobial substances, activation 
of mucosal immunity, and modulation of the innate and 
adaptive immune response. These actions of probiot-
ics have been proven in various experimental and clini-
cal studies [78]. As early mentioned, the respiratory viral 
infection is known to cause a disturbance in the gut 
microbiota, as in cases of COVID-19 infection, the gut 
microbiota is altered with severe hypoxemia. Some pro-
biotic strains may restore the gut microbiota, maintain a 
healthy gut-lung axis, reduce translocation of pathogenic 
bacteria across gut mucosa and reduce the chances of 
secondary bacterial infection [79]. The most commonly 
used species in probiotics preparations are Lactobacil-
lus sp, Bifidibacterium sp, Enterococcus sp, Streptococ-
cus sp, Bacillus sp, and Pediococcus sp. Table 1 illustrated 
examples of different probiotics microbes, mechanisms 
of action, and their beneficial health effects [80–83]. It 
was reported that most of the patients with relatively 
mild symptoms of COVID-19 had received probiotics 
along with the established treatment protocols and this 
is in agreement with COVID-19 infection affecting the 
normal bacterial balance in the human intestine based on 
the observation of reduced numbers of Lactobacillus and 
Bifidobacterium species in patients with COVID-19 [84].

Conclusion
Based on the aforementioned impacts of both micro-
biota and probiotics, we strongly believe that microbi-
ota and probiotics-based drugs have antiviral potential 
which deserves more investigation of their role in the 
prevention and treatment of COVID-19. Preclinical 
and clinical trials should be carried out in the near 
future to get benefits from these beneficial bacteria in 
the treatment of COVID-19 pandemic. In addition, 
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the COVID-19 prevention guidelines should include 
these bacteria as an important means to fight against 
COVID-19 infection. We will be so excited to see 
how they will be applied in the clinical practice and 
afford therapeutic benefits to patients and high-risk 
individuals.
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