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Abstract 

Background:  Tibial muscular dystrophy (TMD), tardive, is a dominantly inherited mild degenerative disorder of 
anterior tibial muscles. Mutations of Titin (TTN) have been reported in patients with different phenotypes such as 
skeletal muscular abnormalities or complex overlapping disorders of muscles. Titin (TTN) is a large 363 exon gene that 
encodes an abundant protein (the longest polypeptide known in nature) expressed in the heart and skeletal muscles.

Methods:  DNA from peripheral blood sample was extracted, whole exome sequencing (WES) was performed, and a 
neuromuscular disorders related gene-filtering strategy was used to analyse the disease-causing mutations. Fur-
ther, sanger sequencing was applied to confirm the variant.

Results:  A novel missense variant (c.41529G > C;p.Arg13843Ser) of TTN gene was identified in a patient with lower 
limb weakness, occasional tongue fasciculation and mild scoliosis. This variant leads to a substitution of arginine with 
serine, causing structural changes in titin protein that is responsible for the TMD disease.

Conclusion:  The novel variant detected has widened the genetic spectrum of TTN-associated diseases, further func-
tional studies will aid in establishing the clinical diagnosis.
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Background
Tibial muscular dystrophy (TMD) is a late-onset distal 
myopathy with an autosomal dominant inheritance pat-
tern. It was first described in a Finnish patient affecting 
at least one in 10,000 people [1, 2]. In patients with the 
mildest form of TMD, symptoms may go unnoticed, are 
usually confined to the lower leg in particular, the tibi-
alis anterior muscle, and appear between the ages of 35 to 
45 years. The strength of the muscles just below the ankle 
can be affected by muscle weakness in the ankle [2, 3].

With the  progressive onset, weakness and atrophy of 
the long toe extensors make it difficult to lift the foot 

while walking, causing a condition called foot drop. 
This can cause clumsiness and difficulty in walking. But 
despite the difficulties, most patients retain the ability to 
walk [4, 5]. In rare cases, this condition can weaken the 
arm muscles, but cardiomyopathy and involvement of the 
facial muscles have not been diagnosed in patients with 
TMD [2, 6].

TMD is caused by mutations in the TTN gene that car-
ries the instructions for making a protein called titin [7]. 
The TTN gene is on chromosome 2 (2q31); the entire 
coding region consists of 363 exons encoding 38,138 
amino acid residues (4200 kD) [8]. The terminal ends of 
titin are embedded in two specific sarcomeric regions; 
the N-terminus within the Z-disc, and the C-terminus 
within the M-line. Mutation in extreme C terminus of 
TTN, situated at the end of M-band of the TTN, results 
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in TMD. One of the best characterized functions of titin 
is that of a scaffold protein aiding myofibrillar assem-
bly during myogenesis, and it is responsible for muscle 
stretching [9]. However, it is also the backbone to keep 
the contractile elements of the sarcomere in place [10, 
11]. An important role in the myofibrillar signalling 
pathway has also been demonstrated, and Titin appears 
to integrate or coordinate multiple signalling pathways 
involved in gene activation and/or protein folding, qual-
ity control and degradation [12–14].

Mutations in the TTN gene lead to the production of 
a defective titin protein, the structure and function of 
which are altered. This defective protein titin impairs 
the function of sarcomeres and normal muscle contrac-
tion. The severity of the symptoms of TMD is determined 
by the type of TTN mutation and varies from patient to 
patient. The effects of mutations in the TTN gene in the 
muscles of the lower leg are yet to be ascertained [15].

Many additional TTN-related muscular phenotypes are 
emerging as a consequence of next-generation sequenc-
ing (NGS) screening in patients with myopathy [16]. 
Whole exome sequencing (WES) is rapidly being imple-
mented in genetic diagnostic practice for patients with 
neuromuscular diseases [17–19]. TTN gene is huge in 
size, makes it difficult to sequence the entirely on a rou-
tine basis in diagnostic laboratories. Therefore, before the 
introduction of NGS technology, only a limited number 
of TTN mutations were identified. WES has enabled the 
rapid identification of new TTN variants [20]. However, 
NGS screenings reveal many rare titin variants but their 
clinical interpretation is a challenge [16, 21, 22].

The present study detects the novel TTN gene variant 
in patient with neuromuscular disorders and provides 
a path for further functional studies to establish clinical 
diagnosis.

Case presentation
A 20-year-old male with no bilateral facial weakness/ 
ophthalmoplegia was  presented with 2-year long his-
tory of walking difficulties. While walking he has to 
drag the feet and upon examination was notable for 
severe lower limb weakness and occasional tongue fas-
ciculation. Further examination also showed moderate 
weakness of abductor digiti minimi (ADM) and mild 
scoliosis. In clinical investigation, magnetic resonance 
imaging (MRI) was conducted for Cervico Dorsal Spine 
and showed no abnormality, cervical spine was normal 
in curvature and alignment, and intervertebral discs 
were also normal in height. While in blood test, marker 
for the detection of skeletal muscle disease, CK-NAC 
[N-acetyl-cystein-(NAC)-activated creatinkinase (CK)] 
was elevated to 672 U/L and uric acid was found to be in 
normal range along with non-reactive HBsAg (Hepatitis 

B surface antigen). Nerve conduction study  (NCS) was 
normal. Needle electromyography (EMG) showed dener-
vation active patterns in First Dorsal Interosseous (FDI) 
muscles. To further investigate the diagnosis, Whole 
Exome Sequencing  was performed which revealed a 
novel heterozygous missense variant (c.41529G > C;p.
Arg13843Ser) in TTN gene. DNA was extracted using 
Qiagen DNA mini kit, as per the manufacturer’s instruc-
tions. The quality of extracted genomic DNA (gDNA) 
was measured with a NanoDrop2000 spectrophotometer 
and then with a Qubit 3.0 fluorometer for more accurate 
DNA quantification using the Qubit dsDNA High Sensi-
tivity (HS) Assay Kit. Approximately 100 ng of genomic 
DNA was taken for exome libraries construction employ-
ing the Ion Ampliseq Exome RDY panel (Thermo Fisher 
Scientific) according to the manufacturer’s protocol.

Sequencing was done using Hi-Q chemistry on Ion 
Proton platform (Thermo Fisher Scientific). Sequences 
were aligned against the reference genome (GRCh37/
hg19) in Torrent Suite v.5.12.0 and Torrent Suite Vari-
ant Caller v.5.2.1 software (Thermo Fisher Scientific), 
with default parameters followed by annotation of VCF 
file using Ion Reporter v5.18 (Thermo Fisher). A total 
of 38,767 variants composed of 54% synonymous, 43% 
missense and 2% frameshift/indels were found in the 
WES data. For WES data filtering procedures, first phase 
consisted of benign and synonymous variant filter-
ing, and the  second phase was  based on variant impact 
(nonsynonymous, truncating), allele frequency (< 0.1%) 
and pathogenicity prediction tools for missense variants 
(score > 3). Since, there were still many candidate variants 
and genes, we performed a second prioritization step 
based on manual regulation of biological function and fil-
tered out variants of genes not relevant to the patient’s 
phenotype. WES results indicated a novel heterozygous 
missense variant (c.41529G > C;p.Arg13843Ser) in TTN 
gene responsible for Tibial muscular dystrophy. Identified 
variant was located in GC region and variant coverage 
and alignment at position chr2:179,484,592 was viewed 
using the Integrative Genomics Viewer (IGV, http://​www.​
broad​insti​tute.​org/​igv/) (Fig.  1B). Confirmation of the 
identified variant was done by Sanger sequencing using 
the BigDye™ Terminator v3.1 Cycle Sequencing kit and 
loaded on an ABI 3500Dx automated Genetic Analyzer 
(Applied Biosystems, Thermo Fisher Scientific). Primer 
sequences for the pathogenic variant in the  TTN  gene 
(NM_001256850.1) were designed using Primer 3.0 
online as follow: Forward 5′-ATG​CTT​GCG​GGG​TAG​
AAG​AC-3′ and Reverse 5′- CCT​GGT​CAC​GGG​GCT​
TAA​T-3′. Sanger sequencing analysis confirmed that 
the proband carried the variant in heterozygous state 
(Fig. 1C). The pathogenicity of detected variant was eval-
uated using different online bioinformatics tools; SIFT 
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(https://​sift.​bii.a-​star.​edu.​sg/), Mutation Taster (http://​
www.​mutat​ionta​ster.​org), PROVEAN (http://​prove​an.​
jcvi.​org/​index.​php), and FATHMM-XF (http://​fathmm.​
bioco​mpute.​org.​uk/​fathmm-​xf/)  which predicted this 
variant to be damaging (Table 1). Finally, for the interpre-
tation of variant, American College of Medical Genetics 
and Genomics (ACMG) 2015 guidelines were followed 
[23].

Discussion
TTN performs several critical functions in all skeletal 
muscle cells that are well adapted to its role as an archi-
tectural protein and provide specific binding to a vari-
ety of essential proteins [24]. TTN had previously been 
linked to cardiovascular syndromes until Hackman and 

his colleagues identified it as a cause of tibial muscular 
dystrophy (TMD) (OMIM #600334) in a Finnish popula-
tion in the year  2002 [25]. In addition to Finnish popu-
lation, disease-causing  TTN  variants in TMD patients 
were also reported in other European families, enlisted 
in Table  2. TMD is a dominant, distal myopathy which 
typically presents in adulthood. Weakness usually affects 
the anterior tibial muscle and does not cause cardiomyo-
pathy. Hackman and co-workers were the first to report 
TTN as a cause of skeletal muscle disease and demon-
strated that a variant of Mex6 (the last exon of TTN) 
causes a functional defect in the titin M line and results 
in a predominantly inherited TMD phenotype.

Several research groups have used next generation 
sequencing to assess the role of TTN variants in skeletal 

(A)

(C) TTN:c.41529G>C

(B)

Fig. 1  A Pedigree of the probands’ family. B IGV plot showing the mutation region in WES data in the proband. Track comprises two parts: a 
histogram of the read depth and the reads as aligned to the reference sequence. Reads are colored according to the aligned strand (red = forward 
strand; blue = reverse strand). C Sanger sequence chromatogram showing a novel heterozygous missense variant in exon 200 of the TTN gene 
(c.41529G > C;p.Arg13843Ser) associated with tibial muscular dystrophy

Table 1   WES analysis of identified the TTN gene variant in the proband

D, damaging or deleterious

Locus Gene Exon Protein Coding Mutation Taster SIFT PROVEAN FATHMM-XF

chr2:179484592 TTN 200 p.Arg13843Ser c.41529G > C D D D D

https://sift.bii.a-star.edu.sg/
http://www.mutationtaster.org
http://www.mutationtaster.org
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
http://fathmm.biocompute.org.uk/fathmm-xf/
http://fathmm.biocompute.org.uk/fathmm-xf/
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disease. Savarese and his group attempted to distinguish 
positive TTN variants from pathogenic variants by 
iteratively sequencing patients with skeletal myopathy 
(n = 504) with uncharacterized disease [28]. The classi-
fication of TTN variants identified by WES is problem-
atic because of the large number of variants of this gene, 
both in size and predominance of heterozygous variants, 
which are reduced to 2% of the normal population [29–
31]. Using WES, we detected heterozygous missense var-
iant (c.41529G > C;p.Arg13843Ser) which was confirmed 
by Sanger DNA sequencing in exon 200 of TTN gene, 
associated with TMD phenotypes. In order to assess the 
degree of pathogenicity, functionality and stability of the 
protein, the identified variant was subjected to various 
in silico functional prediction algorithms based on cri-
teria such as the location of the variant on the genome, 
sequence homology, degree of conservation and phys-
icochemical properties and structure. SIFT, Mutation-
Taster, PROVEAN and FATHMM-XF protein function 
prediction softwares were used, and all agreed on the 
pathogenicity of the variant. The results from these tools 
classified the variant as deleterious and disease-causing, 
and boosted the variant pathogenicity level on the pro-
tein structure.

However, definitive evidence of pathogenicity for mis-
sense variants can only be established by functional 
study, segregation studies in very large families and/
or by identifying unrelated patients or families with the 
same mutation. The interpretation of the missense vari-
ant of TTN could also benefit from establishing a clinical 
and research consortium able to incorporate a group of 
patients into a larger cohort [32].

Diagnostic laboratories today are making widespread 
use of next-generation whole sequencing, which is 
increasing the number of TTN variants (particularly 
those of uncertain significance) enrolled in clinical test-
ing. This then presents a challenge for clinicians who 

need to assess the importance of TTN variants as part 
of their diagnostic assessment. Furthermore, the high 
rates of TTN variants in the general population limits 
the  understanding of pathogenicity [33]. It is estimated 
that at least three rare, non-synonymous TTN variants 
are identified in any one individual, which is certainly 
related to the sheer size of the gene [16]. Often these 
rare/novel variants, as well as missense variants are clas-
sified as variants of uncertain significance (VUS). Uncer-
tainties associated with VUS in TTN, especially those 
associated with skeletal myopathy, inevitably complicate 
the  diagnostic work-up, including genetic counselling 
and clinical management.

Previous studies have confirmed the association of 
TTN variants with several life-threatening neuromus-
cular and/or cardiovascular disease, though both inter-
pretation and clinical utility of TTN variants are often 
challenging in this setting [16, 31, 34, 35]. Although in-
silico predictions of the effects of any missense variant 
are frequently unreliable, functional validation of mis-
sense changes in TTN presents unique challenges as its 
large size prevents cloning and expression of full-length 
protein in in-vitro systems [16].

However, despite recent reports reducing overall popu-
lation estimates of TTN mutations, historical awareness 
of the prevalence of TTN mutations remains unexca-
vated which further exacerbate the problem of diagnostic 
interpretation.

Conclusions
WES has dramatically expanded the spectrum of skeletal 
muscle disorders associated with TTN causative muta-
tion. Our study sensitizes the neurologists and geneti-
cists on the potential role of TTN gene and titinopathies 
thereby, aiding in better understanding and more consist-
ent interpretation of titin mutations.

Table 2  Reported variants in TTN gene causing TMD in European families

Patient family Mutation References

Finnish family c.102857_102867delinsTGA​AAG​AAAAA (p.Glu34286_Trp34289delins-
ValLysGluLys)

Hackman et al. [25]

Finnish family c.102944T > C (p.Leu34315Pro) Hackman et al. [25]

French family c.107867T > C (p.Leu35956Pro) Hackman et al. [25], de 
Seze et al. [26]

French family c.107890C > T (p.Gln35964*) Hackman et al. [27]

Albacete family c.107889delA (p.Lys35963Asnfs*9) Hackman et al. [27]

Barcelona family c.107889delA (p.Lys35963Asnfs*9) Hackman et al. [27]

Belgian family c.107840T > A (p.Ile35947Asn) van den Bergh et al. [4]

Belgian family c.102917T > G (p.Ile34306Ser) van den Bergh et al. [4]

Italian family c.107837A > C (p.His35946Pro) Pollazzon et al. [5]
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