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Abstract 

Background:  A missense gain-of-function fibroblast growth factor-23 (FGF23) gene single nucleotide polymorphism 
(SNP) (rs7955866) has been associated with FGF23 hypersecretion, phosphaturia, and bone disease. Excess circulating 
FGF23 was linked with atherosclerosis, hypertension, initiation, and progression of chronic kidney disease (CKD).

Methods:  The study included 72 CKD stage 2/3 Egyptian patients (27–71 years old, 37 females) and 26 healthy 
controls matching in age and sex. Repeated measures of blood pressure were used to quantify hypertension on 
a semiquantitative scale (grades 0 to 5). Fasting serum urea, creatinine, uric acid, total proteins, albumin, calcium, 
phosphorus, vitamin D3, intact parathyroid hormone (iPTH), and intact FGF23 (iFGF23) were measured. DNA extracted 
from peripheral blood leucocytes was used for genotyping of FGF23 rs7955866 SNP using the TaqMan SNP genotyp‑
ing allelic discrimination method.

Results:  Major causes of CKD were hypertension, diabetic kidney disease, and CKD of unknown etiology. There 
was no significant difference in minor allele (A) frequency between the studied groups (0.333 in GI and 0.308 in GII). 
Median (IQR) serum iFGF23 was significantly higher in GI [729.2 (531.9–972.3)] than in GII [126.1 (88.5–152.4)] pg/mL, 
P < 0.001. Within GI, the minor allele (A) frequency load, coded for codominant inheritance, had a significant positive 
correlation with both hypertension grade (r = 0.385, P = 0.001) and serum iFGF23 (r = 0.259, P = 0.028). Hypertension 
grade had a significant positive correlation with serum phosphorus and iFGF23.

Conclusions:  For the first time in an Egyptian cohort, we report a relatively high frequency of the rs7955866 SNP. It 
may remain dormant or become upregulated in response to some environmental triggers, notably dietary phospho‑
rus excess, leading to increased circulating iFGF23 with ensuing hypertension and/or renal impairment. Subjects with 
this SNP, particularly in the homozygous form, are at increased risk for CKD of presumably “unknown” etiology, with 
a tendency for early onset hypertension and increased circulating iFGF23 out of proportion with the degree of renal 
impairment. Large-scale population studies are needed to confirm these findings and explore the role of blockers of 
the renin–angiotensin–aldosterone system and sodium chloride cotransporters in mitigating hypertension associated 
with FGF23 excess.
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Background
Chronic kidney disease (CKD), defined as kidney damage 
or glomerular filtration rate (GFR) < 60 mL/min/1.73  m2 
for ≥ 3  months [1], is a major clinical and public health 
problem, afflicting about one-tenth of the population 
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worldwide [2]. It is a complex, inherently progressive 
condition that drastically reduces a person`s produc-
tivity, impairs quality of life, and increases rates of hos-
pitalizations and mortality, particularly in low- and 
middle-income countries [3]. Parallel with renal dysfunc-
tion, these patients typically develop CKD-mineral bone 
disorder (CKD-MBD); which is a complex syndrome 
encompassing abnormal bone histology, perturbed cal-
cium and phosphorus metabolism, and progressive extra-
skeletal (predominantly vascular) calcification (VC) and 
accelerated atherosclerotic cardiovascular disease [4]. 
In a significant proportion of patients, CKD cannot be 
attributed to an identifiable cause, the so-called CKD of 
unknown etiology (UKN). In these cases, trying to iden-
tify the as yet unknown, possibly genetic, underlying 
factors is tempting and might open avenues for earlier 
recognition and more specific management [5].

Fibroblast growth factor 23 (FGF23), the master regula-
tor of phosphorus homeostasis, is a 251 amino acid poly-
peptide, primarily secreted by osteocytes and osteoblasts 
in response to phosphorus loading. In the renal tubules, 
it forms a trimeric signaling complex with FGF23 recep-
tor (FGFR) and α-klotho coreceptor [6] that efficiently 
promotes phosphaturia, both directly (by suppressing 
apical epithelial expression of type 2 sodium phosphate 
cotransporters responsible for proximal tubular phos-
phate reabsorption), and indirectly (by inhibiting one 
α-hydroxylase activation of vitamin D and promoting 
its inactivation by 24-hydroxylase) [7, 8]. Cleavage of the 
intact FGF23 (iFGF23) between Arg179 and Ser180 gener-
ates two (n- and c-terminal) inactive fragments. Excess 
cFGF23 competitively inhibits the biologically active, 
full-length iFGF23. Therefore, cleavage of iFGF23 is an 
important post-translational regulatory event [9]. Mis-
sense gain-of-function mutations affecting the cleavage 
site might result in iFGF23 molecules becoming more 
resistant to proteolytic cleavage, increasing their cir-
culating level [10, 11]. In fact, the FGF23 gene was first 
identified by positional cloning on chromosome 12p13.3 
as being responsible for autosomal dominant hypophos-
phatemic rickets (ADHR), a rare hereditary disorder, 
characterized by increased circulating FGF23, hypophos-
phatemia, hypovitaminosis D, and impaired skeletal 
development [12].

By direct sequencing of the three coding exons and the 
two flanking introns, screening for FGF23 gene variation 
in 183 Finnish children and adolescents identified nine 
variants. A relatively common exon 3 variant (rs7955866) 
occurred in a heterozygote form in 37 (one-fifth) of 
these subjects [13]. In this variant, the normal ACG tri-
plet (encoding threonine) at codon 239 changes to an 
ATG triplet (encoding methionine), with a correspond-
ing change from guanine to adenine on the opposite 

DNA strand [14]. This variant was designated c.716C > T, 
g.4370383G > A, or p.T239M [15]. In vitro, FGF23 levels 
were significantly higher in conditioned media contain-
ing human embryonic kidney (HEK293) cells transfected 
with FGF23-239M plasmids, compared with media of 
cells expressing the wild FGF23-239T protein [16]. How-
ever, in instrumental analysis, FGF23 gene variance was 
a weak determinant of circulating FGF23 and phosphate 
concentrations [13]. ADHR mutations have variable pen-
etrance and age at clinical presentation, with spontane-
ous resolution of the renal phosphate wasting in some 
cases [17]. Among 42 subjects with ADHR mutations, 
only 24% and 9% had increased c-terminal and iFGF23 
levels, respectively. The iFGF23 increments and ADHR 
features tended to wax and wane over time [18].

FGF23 is a pleotropic hormone with a host of klotho-
dependent and klotho-independent functions [19, 20]. 
Early in CKD, an adaptive increase of circulating FGF23 
precedes alterations of other CKD-MBD markers and 
guards against hyperphosphatemia [21]. With CKD pro-
gression, serum iFGF23 continues to increase due to pro-
gressive hyperphosphatemia [22], hyperparathyroidism 
[23], klotho deficiency [24], as well as decreased renal 
clearance [25]. The highest ever reported serum iFGF23 
values (> 10,000 pg/mL) occur in patients with advanced 
CKD and constitute a significant harbinger of end-stage 
renal disease (ESRD) and mortality [26, 27]. Several 
recent reports have linked circulating FGF23 excess with 
an expanding spectrum of disease conditions including 
CKD initiation [28] and progression [29, 30], renal allo-
graft loss [31, 32], chronic inflammation [33], immune 
deficiency [34], insulin resistance [35], dyslipidemia [36], 
early [37, 38] and advanced atherosclerosis [39, 40], VC 
[41], hypertension [42–44], left ventricular hypertro-
phy [45], heart failure [46], as well as cardiovascular and 
all-cause mortality [47, 48], particularly in CKD [49] 
and ESRD [50–53] patients. The adverse consequences 
of circulating FGF23 excess remained significant after 
adjustment for serum calcium, phosphorus, parathyroid 
hormone (PTH) [29], and vitamin D levels [52].

In Egypt, the prevalence of ESRD has been steadily 
increasing. Although this trend may reflect increased 
surveillance, more availability of dialysis centers, and 
increased longevity on treatment, a true surge of inci-
dent cases is evident and compatible with the increased 
prevalence of non-communicable diseases closely linked 
with CKD development and progression, particularly 
hypertension and diabetes mellitus [54]. Hypertension 
is highly prevalent in Egypt, with apparently suboptimal 
management [55–57]. It has been repeatedly recognized 
as the major cause of ESRD [58–60]. About one-fifth of 
ESRD cases are not attributable to a known factor (UKN) 
and may represent the tip of a large iceberg of poorly 
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identified CKD cases [61]. There is now ample evidence 
for the role of circulating FGF23 excess in occurrence and 
progression of hypertension [42–44] and CKD [28–30] 
that may be more prominent in genetically predisposed 

individuals [10, 11]. Therefore, we hypothesized that 
gain-of-function variants of FGF23 gene might represent 
unforeseen contributors to the recognizable burden of 
hypertensive CKD in Egypt. Accordingly, we studied the 
occurrence and correlates of the rs7955866 FGF23 gene 
single nucleotide polymorphism (SNP) among Egyptian 
subjects with or without CKD.

Methods
Study design and participants
This was a cross-sectional, case–control study that 
involved two comparative groups (Fig. 1, Table 1):

Group 1 (G I): 72 CKD patients (27–71  years old, 37 
females).

•	 Inclusion Criteria:

•	Adult age.
•	Having CKD stage 2 or 3, as defined by an esti-

mated glomerular filtration rate (eGFR) of 
30–89  mL/min/1.73  m2 as per K/DOQI guide-
lines[62].

•	Providing a written informed consent to partici-
pate.

•	 Exclusion criteria: secondary hypertension, (such 
as patients with endocrinopathies and renovascu-
lar hypertension), urologic abnormalities potentially 

Fig. 1  Study flowchart. Main causes of CKD were hypertension (HTN), 
diabetic kidney disease (DKD), unknown cause (UKN), lupus nephritis 
(LN), primary glomerulonephritis (1ry GN), chronic pyelonephritis 
(CPN), obstructive uropathy (ObUro), gouty nephropathy (GoN), 
and autosomal dominant polycystic kidney disease (ADPKD). 
Hypertension load in CKD patients ranged from G0 (normal BP 
without any treatment) to G5 (stage 2 hypertension despite multiple 
antihypertensive therapies). Number of patients within each category 
is shown as absolute numbers followed by (percent)

Table 1  Characteristics of the study subjects

CKD, chronic kidney disease; S., serum; GFR-EPI, estimated glomerular filtration rate by CKD epidemiology collaboration equation; iPTH, intact parathyroid hormone; 
iFGF23, intact fibroblast growth factor 23; WBCs, white blood cells; k, one thousand; MWU, Mann–Whitney U test; TT, independent sample t-test

Data are expressed as either mean ± SD or median (interquartile range), *: significant (P < 0.05), **: highly significant (P < 0.01)

Parameter CKD patients (N = 72) Controls (N = 26) Statistical test P value

Male 35 (48.6%) 14 (53.8%) Chi-square 0.647

Female 37 (51.4%) 12 (46.2%)

Age (Y) 48 (38.8–59.3) 43 (36.5–52) MWU 0.179

S. Creatinine (mg/dL) 1.5 (1.2–1.9) 0.9 (0.7–1) MWU  < 0.001**

GFR-EPI (mL/min/1.73) 44 (35.3–61.5) 95.5 (81.3–112) MWU  < 0.001**

Proteinuria (gm/day) 2.1 (1.2–4) 0.1 (0.1–0.1) MWU  < 0.001**

S. Urea (mg/dL) 81.44 ± 20.6 27.77 ± 5.9 TT  < 0.001**

S. Uric Acid (mg/dL) 7.39 ± 2.4 5.08 ± 1.2 TT  < 0.001**

S. Proteins (gm/dL) 6.4 (5.7–6.9) 6.9 (6.4–7.1) MWU  < 0.001**

S. Albumin (gm/dL) 3.2 (2.6–3.5) 3.9 (3.7–4.1) MWU  < 0.001**

S. Calcium (mg/dL) 9.09 ± 0.9 9.35 ± 0.6 TT 0.105

S. Phosphorus (mg/dL) 4.88 ± 1 3.5 ± 0.3 TT  < 0.001**

S. iPTH (pg/mL) 160.5 (100–202.5) 41.5 (30–48) MWU  < 0.001**

S. Vitamin D3 (ng/mL) 14.8 (12–22) 35.2 (29.3–38.2) MWU  < 0.001**

S. iFGF23 (pg/mL) 729.2 (531.9–972.3) 126.1 (88.5–152.4) MWU  < 0.001**

Hemoglobin (gm/dL) 10.2 (9.4–11.3) 13.1 (12.9–14.3) MWU  < 0.001**

WBCs (k/uL) 7.5 (5.9–9.3) 5.9 (4–7.1) MWU  < 0.001**

Platelets (k/uL) 296.63 ± 74.7 320.81 ± 39.8 TT 0.043*
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impacting urinary protein excretion or renal func-
tions (such as vesicoureteric reflux), malignancies, 
and paraproteinemias.

Group 2 (G II): 26 healthy control subjects matching in 
age and sex.

The main causes of CKD were identified by thorough 
history, clinical examination, and medical record review. 
Blood pressure (BP) was measured by a standard tech-
nique in the upper arm while sitting comfortably. Three 
measures were made, one minute apart; and the aver-
age of the last two was recorded. Measurements were 
repeated at 2–3 visits, 2–3  weeks apart. Further office 
and/or home measurements were made, if required. 
The BP was ultimately given a score of either 0 (nor-
mal), 1 (elevated), 2 (stage 1 HTN), or 3 (stage 2 HTN), 
according to the 2017 ACC/AHA guidelines [63]. To 
account for the effect of therapy, one extra point was 
added if the patient achieved this level of BP with inter-
rupted or single-agent therapy; and two points were 
added for patients on regular treatment with ≥ 2 agents. 
Patients with inconsistent findings were checked at 
more occasions until they were ultimately placed on a 
semiquantitative scale to express hypertension burden 
extending from 0 (normal without treatment) to 5 (stage 
2 hypertension despite regular multiple antihypertensive 
medications).

Laboratory studies [64]
After an overnight fast, blood samples were drawn into 
EDTA tubes (for complete blood count and DNA extrac-
tion) and serum separator tubes that were immedi-
ately transported and centrifuged. The separated serum 
was kept at –  80  °C until batch analysis was made for 
urea, creatinine, uric acid, total proteins, albumin, cal-
cium, phosphorus, intact parathyroid hormone (iPTH) 
(third-generation assay), vitamin D3, and intact FGF23 
(iFGF23). The latter was tested by Kainos ELISA kit that 
targets the iFGF23 molecule by utilizing two monoclonal 
antibodies which simultaneously capture two epitopes 
flanking the cleavage site of the c-terminal fragment 
(Kainos Laboratories, Tokyo, Japan) [65]. Estimated GFR 
was calculated by the CKD epidemiology collaboration 
(CKD-EPI) equation [66]. A 24-h urine collection was 
used to assess total daily urinary protein excretion.

Study of FGF23 Gene rs7955866 SNP
DNA extraction
DNA was extracted from whole blood EDTA samples 
using a spin column protocol [QIAamp DNA Blood 
Mini Kit] provided by QIAGEN Inc. (Qiagen, Hilden, 

Germany) according to manufacturer’s instructions. 
Extracted DNA was kept at – 80 °C till analysis.

Determination of the DNA concentration and quality
NanoDrop 2000/2000c (Thermoscientific, USA) was 
used to check DNA quality and quantity. Samples hav-
ing poor DNA-purity or extensively fragmented DNA 
were excluded from the analysis [67].

Genotyping
This was performed using 40 × TaqMan® predesigned 
SNP genotyping assay provided by Thermo Fisher 
Scientific, Waltham, Massachusetts, USA (Assay 
ID: C_25605491_10). The context sequence of the 
rs7955866 FGF23 SNP was:

AGC​CTT​CCG​GGC​CC[G/A]TTC​CCC​CAG​CGT​
GTT​CAC​T.

The A allele was detected with VIC® dye and the G 
allele with FAM® dye.

The reaction mix was composed of 40X TaqMan® 
genotyping assay, TaqMan® universal PCR master 
mix, and nuclease-free water. The 40X predesigned 
SNP assay was diluted to a 20X working solution with 
nuclease-free water. The recommended final reaction 
volume per well was 20 μL for a 48-well plate (17 μL 
reaction mix + 3 μL DNA sample). For reaction mix 
preparation, 10μL of 2X TaqMan® Genotyping Mas-
ter Mix, 1  µL of 20X Assay Working Solution (0.5  µL 
40X TaqMan assay + 0.5  µL Nuclease free water), and 
6  µL of nuclease-free water were added in each well. 
The total reaction volume uses 20 ng of genomic DNA. 
Real-time PCR was performed using Applied Biosys-
tems StepOne™ Real-Time PCR System.

In the real-time PCR system software, an experi-
ment or plate document was using the following ther-
mal cycling conditions; first AmpliTaq Gold® Enzyme 
Activation step at 95 °C for 10 min then 40 cycles; each 
consisted of 15  s at 95  °C for denaturation and 1  min 
at 60 °C for annealing/extension. No template controls 
(NTC) were performed by adding 3  µl of DNase-free 
water into each well instead of DNA.

Post‑PCR plate read and analysis
Life Technologies real-time instrument software plotted 
the results of the allelic discrimination data as a scatter 
plot of allele 1 (VIC® dye) versus allele 2 (FAM™ dye). 
Each well of the 48-well reaction plate was represented 
as an individual point on the plot. Applied Biosystems 
Step One™ Software was the software application used 
to analyze raw data from genotyping experiments cre-
ated on a Life Technologies real-time PCR system.
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Statistical methods
Data were analyzed using SPSS software package ver-
sion 20 (SPSS Inc., Chicago, Illinois, USA). Categorical 
data were expressed as absolute numbers (percentages) 
and compared by Chi-square or Fisher exact test. Con-
tinuous data were tested for normality using Shapiro–
Wilk test. Parametric data were presented as mean ± SD 
and compared by independent t-test or analysis of vari-
ance (ANOVA). Nonparametric data were presented as 
median (interquartile range) and compared by Mann–
Whitney U or Kruskal–Wallis H test. Correlations were 
tested by the Spearman’s rank correlation coefficient. 
Significance was judged at the 5% level.

Results
Among CKD patients, 15.3% had normal BP without 
any treatment (G0), whereas 18%, 20.8%, 26.4%, 12.5%, 
and 7% had hypertension grades 1 through 5, respec-
tively (Fig.  1). Compared with controls, CKD patients 
had significantly higher S. creatinine, urea, uric acid, 
phosphorus, iPTH, iFGF23, WBCs, and proteinuria, and 
significantly lower eGFR, serum total proteins, albumin, 
vitamin D3, hemoglobin, and platelets (Table 1).

There was no significant difference in the minor allele 
frequency (MAF) of the rs7955866 FGF23 SNP (A allele) 
between CKD patients (0.333) and controls (0.308) with 
any mode of inheritance (all P > 0.7). (Table 2, Fig. 2).

CKD patients with the homozygote variant “AA” were 
compared with the other two genotypes, either separately 
(Table 3, Figs. 3, 4), or considering these two genotypes 
as one group “GG/GA” (not shown). In both instances, 
“AA” CKD patients had significantly higher hyperten-
sion grade, significantly higher serum iFGF23, and sig-
nificantly lower serum albumin. The “A” allele load had a 
significant positive correlation with hypertension grade, 
which was consistent across the 3 inheritance modes 
(Table  4). Coded for some inheritance modes only, the 
“A” allele load had a significant but weak positive cor-
relation with serum iFGF23, and a significant but weak 
negative correlation with serum albumin and WBCs. In 

the codominant and recessive modes, correlations of the 
“A” allele load with serum iFGF23 persisted, after control-
ling for GFR, serum phosphorus, and iPTH. Hyperten-
sion grade had a significant but weak positive correlation 
with serum phosphorus and iFGF23 (Table  5). Having 
“AA” genotype modestly increased the risk for having 
hypertension (OR: 1.73, CI 0.2–15.21, P = 0.621) and for 
being in the highest serum iFGF23 tertile (OR: 2.26, CI 
0.59–8.75, P = 0.236).

Discussion
Genetic variants affecting circulating FGF23 level may 
occur within the FGF23 gene itself or within loci con-
trolling vitamin D and phosphate metabolism [68]. 
Most previous studies of the rs7955866 SNP (c.716C > T, 
g.4370383G > A, p.T239M) have reported a MAF < 0.2 
[14, 69, 70]. For the first time in an Egyptian cohort, we 
report a remarkably higher MAF (0.327), which was 
insignificantly higher among CKD subjects compared 
with controls (0.333 versus 0.308, respectively). Both 
experimental [16] and clinical [14, 71] studies have estab-
lished that the missense, gain-of-function ADHR muta-
tions may result in increased tissue or circulating FGF23 
levels that are attributed to the resistance of the vari-
ant molecule to proteolytic cleavage [10, 11]. However, 

Table 2  Comparison between CKD patients and controls regarding FGF23 RS7955866 polymorphism genotypes

CKD, chronic kidney disease; FGF23, fibroblast growth factor 23

Inheritance mode Genotypes CKD patients (N = 72) Controls (N = 26) Total (N = 98) P value

Codominance GG 34 (47.2%) 13 (50%) 47 0.946

GA 28 (38.9%) 10 (38.5%) 38

AA 10 (13.9%) 3 (11.5%) 13

G Dominance GG–GA 62 (86.1%) 23 (88.5%) 86 0.762

AA 10 (13.9%) 3 (11.5%) 13

A Dominance GG 34 (47.2%) 13 (50%) 47 0.808

GA–AA 38 (52.8%) 13 (50%) 51

Fig. 2  Distribution of the 3 genotypes of FGF23 gene rs7955866 SNP 
in the two study groups
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complex translational and post-translational FGF23 
regulatory mechanisms tend to maintain its circulating 
levels within normal, unless the expression of the variant 
FGF23 gene is stimulated by some acquired triggering 
factors, notably anemia, iron deficiency or hyperphos-
phatemia, which typically accompany renal function 
impairment [18, 72–74]. The differential expression of 
the variant FGF23 gene was evident in the present study. 

Within controls, serum iFGF23 showed neither a signifi-
cant difference between different genotypes (Additional 
file 1: Supplemental Sheet 1), nor a significant correlation 
with the “A” allele load, employing different inheritance 
modes (Additional file 1: Supplemental Sheet 2). On the 
other hand, CKD patients, with their significantly lower 
eGFR, hemoglobin, and significantly higher serum phos-
phorus, displayed a significant elevation of serum iFGF23 

Table 3  Comparison between CKD patients regarding FGF23 RS7955866 polymorphism genotypes

CKD, chronic kidney disease; Hypertension grades are numbered 0 (none) through 5 (most severe); S., serum; GFR-EPI, glomerular filtration rate by CKD epidemiology 
collaboration equation; iPTH, intact parathyroid hormone; iFGF23, intact fibroblast growth factor 23; WBCs, white blood cells; k, one thousand; ANOVA, analysis of 
variance; KWH, Kruskal–Wallis H Test

Data are expressed as either mean ± SD or median (interquartile range), *: significant (P < 0.05), **: highly significant (P < 0.01)

Parameter GG (N = 34) GA (N = 28) AA (N = 10) Statistical test P

Hypertension Grade 2 (0.75–3) 2.5 (1–3) 4 (2.75–4.25) KWH 0.003**

S. Creatinine (mg/dL) 1.45 (1.2–1.7) 1.65 (1.1–2) 1.50 (1.1–1.83) KWH 0.619

GFR-EPI (mL/min/1.73) 45.68 (36.75–60.52) 42.53 (34.01–64.44) 41.84 (37.55–64.76) KWH 0.913

Proteinuria (gm/day) 2.16 (1.17–3.96) 2.18 (1.09–4.14) 1.83 (1.19–3.96) KWH 0.988

S. Urea (mg/dL) 79.91 ± 20.56 84.07 ± 21.83 79.30 ± 18.34 ANOVA 0.693

S. Uric Acid (mg/dL) 7.74 ± 2.43 7.33 ± 2.33 6.35 ± 2.61 ANOVA 0.278

S. Proteins (gm/dL) 6.41 ± 0.78 6.39 ± 0.79 5.95 ± 0.77 ANOVA 0.242

S. Albumin (gm/dL) 3.35 (2.58–3.73) 3.15 (2.9–3.4) 2.5 (2.45–3.05) KWH 0.007**

S. Calcium (mg/dL) 9.04 ± 0.86 9.24 ± 0.86 8.81 ± 0.95 ANOVA 0.37

S. Phosphorus (mg/dL) 4.75 (4.10–5.93) 4.55 (3.95–5.1) 5.3 (4.13–5.78) KWH 0.368

S. iPTH (pg/mL) 127.5 (101.3–192.3) 178 (111–221) 133.5 (74.5–237) KWH 0.387

S. Vitamin D3 (ng/mL) 14.75 (12–19.75) 13.25 (11.13–22) 17 (14.25–26.1) KWH 0.268

S. iFGF23 (pg/mL) 676.71 (409.49–916.85) 729.19 (544.03–970.98) 879.53 (791.83–1486.7) KWH 0.038*

Hemoglobin (gm/dL) 10.49 ± 1.28 10.22 ± 1.20 10.42 ± 1.33 ANOVA 0.708

WBCs (k/uL) 7.75 (5.78–9.85) 7.65 (6.75–9.45) 5.78 (5.13–7.33) KWH 0.09

Platelets (k/uL) 304.24 ± 77.12 282.18 ± 68.27 311.20 ± 84.47 ANOVA 0.416

Fig. 3  Comparison of different genotypes of FGF23 gene rs7955866 
SNP in CKD patients according to hypertension grade, showing the P 
value for the difference between GG and AA phenotypes in post hoc 
pairwise comparison

Fig. 4  Comparison of different genotypes of FGF23 gene rs7955866 
SNP in CKD patients according to serum iFGF23, showing the P 
value for the difference between GG and AA phenotypes in post hoc 
pairwise comparison
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in “AA” compared with “GG” patients. Moreover, the “A” 
allele load, coded for codominant and recessive modes, 
had significant positive correlations with serum iFGF23, 
which persisted after controlling for serum phosphorus, 
iPTH and eGFR (Table  4). The rs7955866 FGF23 SNP 
may therefore be relatively dormant in healthy subjects. 

Once subjects with this variant develop impaired kid-
ney function, the variant becomes actively expressed, 
leading to increased circulating FGF23 with its potential 
multi-system morbid sequelae, including further pro-
gression of CKD, thus creating a vicious cycle. Indeed, 
CKD is the protype and most common disorder of sec-
ondary increased circulating iFGF23 [72]. These patients 
typically have a constellation of the key FGF23 secretion 
triggers (hyperphosphatemia, hyperparathyroidism, and 
klotho deficiency), in addition to the frequent occurrence 
of hypoxia, anemia, iron deficiency, and chronic inflam-
mation, which are all known to upregulate FGF23 gene 
expression [75, 76].

The global burden of hypertension is increasing [77], 
with comparatively higher prevalence but lower recog-
nition and control rates in lower- and middle-income 
countries [78]. In the present study, hypertension was 
the most common cause of CKD, accounting for 23.6% 
of cases, which was matching with the role of hyper-
tension as the leading cause of ESRD in Egypt [58–60]. 
Hypertension is a salient feature of CKD of whatever 
etiology; both conditions have a well-recognized bidi-
rectional relation in which the kidney behaves as both a 
culprit and a victim [79]. Some degree of hypertension 

Table 4  Statistical correlations of "A" allele load of FGF23 RS7955866 polymorphism in CKD patients

CKD, chronic kidney disease; S., serum; GFR-EPI, glomerular filtration rate by CKD epidemiology collaboration equation; iPTH, intact parathyroid hormone; iFGF23, 
intact fibroblast growth factor 23; WBCs, white blood cells; r, Spearman correlation coefficient

*: significant (P < 0.05), **: highly significant (P < 0.01)

Parameter Assumed mode of "A’ allele inheritance

Codominant Dominant Recessive

r P r P r P

Hypertension grade 0.385 0.001** 0.324 0.006** 0.349 0.003**

S. Creatinine 0.061 0.612 0.089 0.455  − 0.035 0.771

GFR-EPI  − 0.025 0.832  − 0.038 0.750 0.016 0.891

Proteinuria 0.018 0.881 0.019 0.876 0.008 0.949

S. Urea 0.023 0.846 0.044 0.712  − 0.037 0.759

S. Uric Acid  − 0.170 0.155  − 0.137 0.25  − 0.166 0.163

S. Proteins  − 0.124 0.3  − 0.075 0.531  − 0.181 0.128

S. Albumin  − 0.29 0.014*  − 0.199 0.094  − 0.368 0.001**

S. Calcium 0.017 0.887 0.069 0.564  − 0.113 0.344

S. Phosphorus  − 0.100 0.402  − 0.138 0.247 0.036 0.765

S. iPTH 0.015 0.901 0.066 0.58  − 0.113 0.344

S. Vitamin D3 0.094 0.431 0.036 0.767 0.189 0.113

Hemoglobin  − 0.071 0.551  − 0.092 0.44 0.012 0.923

WBCs  − 0.11 357  − 029 81  − 0.25 0.034*

Platelets  − 0.061 0.609  − 0.1 0.404 0.058 0.629

S. iFGF23 0.259 0.028* 0.194 0.102 0.29 0.014*

S. iFGF23, controlled for GFR 0.289 0.015* 0.341  0.004**

S. iFGF23, controlled for S. Phosphorus 0.311 0.008** 0.344  0.003**

S. iFGF23, controlled for S. iPTH 0.262 0.027* 0.32  0.006**

Table 5  Other correlations of hypertension grade in CKD 
patients

CKD, chronic kidney disease; S., serum; GFR-EPI, glomerular filtration rate by CKD 
epidemiology collaboration equation; iPTH, intact parathyroid hormone; iFGF23, 
intact fibroblast growth factor 23; r, Spearman correlation coefficient

*: significant (P < 0.05), **: highly significant (P < 0.01)

S. Creatinine r 0.147 S. Calcium r  − 0.205

P 0.217 P 0.085

GFR-EPI r  − 0.128 S. Phosphorus r 0.269

P 0.282 P 0.023*

Proteinuria r  − 0.034 S. Vitamin D3 r  − 0.195

P 0.776 P 0.1

S. Urea r 0.068 S. iPTH r 0.014

P 0.572 P 0.907

S. Uric Acid r  − 0.2 S. iFGF23 r 0.401

P 0.092 P  < 0.001**
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occurred in 84.7% of CKD patients in the present study, 
emphasizing the importance of hypertension control as 
a feasible approach to delay CKD progression [80, 81]. 
Hypertension is a highly heritable trait, with genetic fac-
tors significantly determining the rates of its prevalence 
and response to therapy among different ancestral groups 
[82]. In the present study, “AA” CKD patients had signifi-
cantly higher hypertension grade and significantly higher 
serum iFGF23, compared with the other genotypes. 
Hypertension grade had a significant positive correlation 
with both the “A” allele load (coded for different inherit-
ance modes) and serum iFGF23. Therefore, harboring the 
“A” genotype, in a homo- or a heterozygote state, stood 
out as a significant risk factor for hypertension, which is 
mediated through circulating iFGF23 excess.

The association between increased circulating iFGF23 
and hypertension has been described both in community 
dwellers [42, 43] and CKD patients [44]. Urinary FGF23/
creatinine ratio was found to be significantly higher in 
42 hypertensive children and adolescents, compared 
with controls; and it had a significant direct correlation 
with systolic BP in all study participants [83]. Circulating 
iFGF23 excess may be related to hypertension through its 
stimulant effect on the renin–angiotensin–aldosterone 
system (RAAS) [84]. RAAS activation may be mediated 
by FGF23 either by suppressing the angiotensin convert-
ing enzyme-2 (ACE2) expression in the kidney, inde-
pendent of other CKD-MBD abnormalities [85], or by 
inducing active vitamin D (calcitriol) deficiency. FGF23 
is a strong independent predictor of low calcitriol levels, 
even after adjustment for renal function, serum phospho-
rus, and calcidiol levels [86]. Calcitriol behaves as a nega-
tive RAAS regulator [87, 88], probably by reducing renin 
gene expression [89]. More recently, further pathoge-
netic associations between FGF23 and hypertension were 
established when its ability to augment distal renal tubu-
lar sodium reabsorption was disclosed [90]. Mice treated 
with an intraperitoneal injection of recombinant FGF23 
developed a klotho-dependent 40% upregulation of the 
distal tubular sodium chloride cotransporter (NCC), 
reduced urinary sodium and water excretion coupled 
with circulatory sodium and water retention, and ensu-
ing hypertension. Therefore, FGF23 was assigned a sig-
nificant role as a sodium-retaining hormone involved in 
volume and BP regulation [91]. Further studies should 
explore whether RAAS blockers (as ACE inhibitors) and 
NCC blockers (as thiazide diuretics) are particularly 
effective in treating hypertension in the context of FGF23 
excess. The hypertensive effects of iFGF23 may also stem 
from induction of endothelial dysfunction [37, 38] and 
VC [41].

The relationship between circulating iFGF23 levels and 
serum phosphorus is largely influenced by renal function 

[92]. The markedly increased circulating iFGF23 levels 
in patients with hereditary hypophosphatemic disorders 
and normal renal function are closely correlated with 
increased urinary fractional excretion of phosphate and 
hypophosphatemia [93–95]. A similar situation occurs 
in the early few months following renal transplanta-
tion, when increased serum iFGF23 is the primary fac-
tor responsible for post-transplant hypophosphatemia 
[96–98]. In patients with less striking iFGF23 elevations 
and normal to moderately decreased renal function (like 
the current study cohort, Additional file  1: Supplemen-
tal Sheet 3), serum iFGF23 has no significant correla-
tion with serum phosphorus [99, 100]. However, as CKD 
progresses to ESRD, serum iFGF23 increases in a strong 
direct correlation with serum phosphorus [52, 53, 101]; 
hyperphosphatemia may then partly explain the asso-
ciation of iFGF23 with adverse cardiovascular outcomes 
[102–104]; and control of hyperphosphatemia may be a 
feasible approach to mitigate FGF23 excess and its mor-
bid sequelae [105].

Hyperphosphatemia is a common finding and a major 
risk factor for cardiovascular events and mortality in 
CKD patients [106–108]. A graded association between 
serum phosphorus and cardiovascular disease extends to 
the normal serum phosphorus range and to people with 
normal renal function [109–111]. In the present study, 
serum phosphorus had a significant positive correlation 
with hypertension grade in the CKD patients. Previously, 
hyperphosphatemia has been strongly and independently 
associated with hypertension in hemodialysis patients 
[112], and with increased BP variability in patients with 
earlier stages of CKD [113]. It was also associated with 
poor response to antihypertensive therapy, irrespective of 
renal function status [114]. Several mechanisms explain 
the association between hyperphosphatemia and hyper-
tension. Phosphorus exposure decreased endothelium-
dependent vasodilatation of the brachial artery in healthy 
men; a similar in vitro effect was documented in rat aor-
tic rings [115]. Similar results were recently reproduced 
by a study involving two counterparts of humans and rat 
mesenteric vessels [116]. Hyperphosphatemia may also 
increase endothelial production of the vasoconstrictor 
endotelin-1 [117], increase renin expression [118], and 
activate the sympathetic nervous system [119], besides 
playing a key role in CKD progression [120], VC and arte-
rial stiffness [121–123]. High phosphorus diet may also 
stimulate FGF23 secretion, leading to RAAS activation, 
sodium and water retention, and consequently hyperten-
sion, in subjects with or without CKD [90]. Therefore, 
phosphorus overconsumption may be a dietary factor 
augmenting the pressor effect of the rs7955866 SNP, 
particularly in less-privileged communities, habitually 
consuming relatively low-cost processed foods having 
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high inorganic phosphate content, that is almost totally 
absorbed [124–127].

We report also an association between the “A” allele 
load and lower serum albumin in the studied CKD 
patients (Tables 3, 4). This effect could not be explained 
by variations in total proteinuria, which had no relation 
with the occurrence of the SNP or the serum iFGF23 
level. Circulating FGF23 has been correlated with the 
extent of proteinuria in CKD patients in some [128, 129], 
but not all studies [130]. It is possible that patients with 
the FGF23 SNP had lower serum albumin due to higher 
albuminuria. Increased circulating FGF23 increases the 
risk of albuminuria in patients with normal kidney func-
tion to moderate CKD [30, 131]. However, urinary albu-
min excretion rate was not specifically assayed in the 
present study.

Previous studies have described an association between 
circulating FGF23 excess and both CKD initiation [28] 
and progression [29, 30]. Increased circulating iFGF23 
may directly affect the glomerular endothelial function or 
glomerular hemodynamics, through klotho-independent 
signaling [38, 131]. Alternatively, FGF23 may exert its 
detrimental effects on renal function through its associa-
tion with hypertension, atherosclerosis, and VC. The pre-
sent study did not reveal a clear association between the 
rs7955866 SNP and all-cause CKD, although, more spe-
cifically, this SNP seemed to increase the risk of hyper-
tension and hypertensive CKD, an association mediated 
by circulating FGF23 excess. In 18% of the patients, CKD 
could not be attributed to a definitive cause (UKN). 
When CKD develops in relation to a gain-of-function 
FGF23 gene mutation, it is conceivable that the insidi-
ously occurring hypertension and renal impairment 
would be largely asymptomatic and difficult to recog-
nize, at least initially, unless the condition is specifically 
looked for. The considerable frequency of this SNP in the 
studied Egyptian cohort, and the prevalence of environ-
mental triggers that tend to over-express it as iron defi-
ciency [76, 132] and dietary phosphate overconsumption 
[126], should generate an impetus to develop nationwide 
gene studies to further explore the role of genetic fac-
tors in such significant health problems. Increased serum 
iFGF23 has emerged as an early biochemical marker of 
increased risk for hypertension and hypertensive CKD 
in genetically predisposed individuals. Further research 
should determine its practical utility as a diagnostic 
parameter, and possibly as a therapeutic target, and 
should try to define its recommended target range that 
provides the best balance between its adaptive and mala-
daptive effects in patients with different stages of CKD.

To the best of our knowledge, this is the first study 
to address the rs7955866 FGF23 SNP in the Arab 
region. Studies of this SNP are generally scarce. We 

acknowledge the limitations imposed by the limited 
number of included subjects and the cross-sectional 
nature of the study, which undermine its power to draw 
firm conclusions about cause–effect relationships, par-
ticularly regarding very complex and multi-factorial 
traits like hypertension and CKD. Hypertension load 
may have been better assessed by ambulatory BP moni-
toring [133]. The study did not include other FGF23 
genetic variants or other related biochemical measures 
like urinary albumin and phosphate excretion, active 
vitamin D, and markers of iron profile.

Conclusions
For the first time in an Egyptian cohort, we report a 
relatively high frequency of the rs7955866 SNP. It may 
remain dormant or become upregulated in response 
to some environmental triggers, notably dietary phos-
phorus excess, leading to increased circulating iFGF23 
with ensuing hypertension and/or renal impairment. 
Subjects with this SNP, particularly in the homozy-
gous form, are at increased risk for CKD of presumably 
“unknown” etiology, with a tendency for early onset 
hypertension and increased circulating iFGF23 out of 
proportion with the degree of renal impairment.

Large-scale population studies are needed to con-
firm these findings and explore the role of blockers of 
the renin–angiotensin–aldosterone system and sodium 
chloride cotransporters in mitigating hypertension 
associated with FGF23 excess.
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