Levine A, Oren M. The first 30 years of P53: growing ever more complex. Nature Reviews Cancer [Internet]. (2009) [cited 11 may 2020]; 9(10):749-758Available from https://doi.org/https://doi.org/10.1038/nrc2723
Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J et al (2016) [cited 11 may 2020]; 37(9):865-876Available from https://doi.org/https://doi.org/10.1002/humu.23035
Vousden K, Prives C. Blinded by the light: the growing complexity of P53. Cell [Internet]. (2009) 137(3):413-431Available from https://doi.org/https://doi.org/10.1016/j.cell.2009.04.037
Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human P53-regulated genes. Nature Reviews Molecular Cell Biology [Internet]. (2008) [cited 11 may 2020]; 9(5):402-412Available from https://doi.org/https://doi.org/10.1038/nrm2395
Levine A. P53, the cellular gatekeeper for growth and division. Cell [Internet]. (1997) [cited 11 may 2020]; 88(3):323-331Available from https://doi.org/https://doi.org/10.1016/s0092-8674(00)81871-1
Census FM, evaluation of P53 target genes. Oncogene [Internet]. (2017) [cited 11 may 2020]; 36(28):3943-3956Available from https://doi.org/https://doi.org/10.1038/onc.2016.502
Lane D, Madhumalar A, Lee A, Tay B, Verma C, Brenner S et al (2011) [cited 11 may 2020]; 10(24):4272-4279Available from https://doi.org/https://doi.org/10.4161/cc.10.24.18567
Belyi V, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A et al (2009) [cited 11 may 2020]; 2(6):a001198-a001198Available from https://doi.org/https://doi.org/10.1101/cshperspect.a001198
Jain A, Barton M. P53: emerging roles in stem cells, development and beyond. Development [Internet]. (2018) [cited 23 July 2020];145(8):dev158360Available from https://doi.org/https://doi.org/10.1242/dev.158360
Lin J, Chen J, Elenbaas B, Levine A. Several hydrophobic amino acids in the P53 amino-terminal domain are required for transcriptional activation, binding to MDM-2, and the adenovirus 5 E1B 55-kD protein. Genes & Development [Internet]. (1994) [cited 11 may 2020]; 8(10):1235-1246Available from https://doi.org/https://doi.org/10.1101/gad.8.10.1235
Chen X, Farmer G, Zhu H, Prywes R, Prives C. Cooperative DNA binding of P53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes & Development [Internet]. 1993 [cited 11 may 2020]; 7(10):1837-1849. Available from: https://doi.org/https://doi.org/10.1101/gad.7.10.1837
Thut C, Chen J, Klemm R, Tjian R. P53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science [Internet]. (1995) 267(5194):100-104Available from https://doi.org/https://doi.org/10.1126/science.7809597
Walker K, Levine A. Identification of a novel P53 functional domain that is necessary for efficient growth suppression. Proceedings of the National Academy of Sciences [Internet]. (1996) [cited 11 may 2020];93(26):15335-15340Available from https://doi.org/https://doi.org/10.1073/pnas.93.26.15335
Bargonetti J, Manfredi J, Chen X, Marshak D, Prives C. A proteolytic fragment from the central region of P53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant P53 protein. Genes & Development [Internet]. (1993) [cited 11 may 2020]; 7(12b):2565-2574Available from https://doi.org/https://doi.org/10.1101/gad.7.12b.2565
Pavletich N, Chambers K, Pabo C. The DNA-binding domain of P53 contains the four conserved regions and the major mutation hot spots. Genes & Development [Internet]. 1993 [cited 11 may 2020]; 7(12b):2556-2564. Available from: https://doi.org/https://doi.org/10.1101/gad.7.12b.2556
El-Deiry W, Kern S, Pietenpol J, Kinzler K, Vogelstein B. Definition of a consensus binding site for P53. Nature Genetics [Internet]. (1992) [cited 11 may 2020];1(1):45-49Available from https://doi.org/https://doi.org/10.1038/ng0492-45
Cho Y, Gorina S, Jeffrey P, Pavletich N. Crystal structure of a P53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science [Internet]. (1994) [cited 11 may 2020];265(5170):346-355Available from https://doi.org/https://doi.org/10.1126/science.8023157
Jeffrey P, Gorina S, Pavletich N. Crystal structure of the tetramerization domain of the P53 tumor suppressor at 1.7 angstroms. Science [Internet]. 1995;267(5203):1498-1502. Available from: https://science.sciencemag.org/content/267/5203/1498
McCoy M Hydrophobic side-chain size is a determinant of the three-dimensional structure of the P53 oligomerization domain. The EMBO Journal [Internet]. 1997;16(20):6230-6236. Available from https://doi.org/https://doi.org/10.1093/emboj/16.20.6230
Stommel J. A leucine-rich nuclear export signal in the P53 tetramerization domain: regulation of subcellular localization and P53 activity by NES masking. The EMBO Journal [Internet]. (1999) [cited 11 may 2020];18(6):1660-1672Available from https://doi.org/https://doi.org/10.1093/emboj/18.6.1660
Fischer N, Prodeus A, Malkin D, Gariépy J. P53 oligomerization status modulates cell fate decisions between growth, arrest, and apoptosis. Cell Cycle [Internet]. (2016) [cited 11 May 2020];15(23):3210-3219Available from https://doi.org/https://doi.org/10.1080/15384101.2016.1241917
Bourdon J. P53 isoforms can regulate P53 transcriptional activity. Genes & Development [Internet]. (2005) [cited 11 may 2020];19(18):2122-2137Available from https://doi.org/https://doi.org/10.1101/gad.1339905
Dai C, Gu W. P53 post-translational modification: deregulated in tumorigenesis. Trends in Molecular Medicine [Internet]. (2010) [cited 11 may 2020];16(11):528-536Available from https://doi.org/https://doi.org/10.1016/j.molmed.2010.09.002
Zhang Y, Xiong Y, Yarbrough W. ARF promotes MDM2 degradation and stabilizes P53: ARF-INK4a locus deletion impairs both the Rb and P53 tumor suppression pathways. Cell [Internet]. (1998) [cited 11 may 2020];92(6):725-734Available from https://doi.org/https://doi.org/10.1016/s0092-8674(00)81401-4
Genome EC, Stability Requires P53. Cold spring harbor perspectives in medicine [Internet]. (2016) [cited 23 July 2020];6(6):a026096Available from https://doi.org/https://doi.org/10.1101/cshperspect.a026096
Kruiswijk F, Labuschagne C, Vousden K. P53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology [Internet]. (2015) [cited 11 may 2020];16(7):393-405Available from https://doi.org/https://doi.org/10.1038/nrm4007
Hafner A, Bulyk M, Jambhekar A, Lahav G. The multiple mechanisms that regulate P53 activity and cell fate. Nature Reviews Molecular Cell Biology [Internet]. (2019) [cited 11 may 2020];20(4):199-210Available from https://doi.org/https://doi.org/10.1038/s41580-019-0110-x
Mirza A, Wu Q, Wang L, McClanahan T, Bishop W, Gheyas F et al (2003) [cited 11 may 2020];22(23):3645-3654Available from https://doi.org/https://doi.org/10.1038/sj.onc.1206477
Purvis J, Karhohs K, Mock C, Batchelor E, Loewer A, Lahav G. P53 dynamics control cell fate. Science [Internet]. (2012) [cited 11 may 2020];336(6087):1440-1444Available from https://doi.org/https://doi.org/10.1126/science.1218351
El-Deiry W. WAF1, a potential mediator of P53 tumor suppression. Cell [Internet]. (1993) [cited 11 may 2020];75(4):817-825Available from https://doi.org/https://doi.org/10.1016/0092-8674(93)90500-P
El-Deiry W. Regulation ofP53downstream genes. Seminars in Cancer Biology [Internet]. (1998) [cited 11 may 2020];8(5):345-357Available from https://doi.org/https://doi.org/10.1006/scbi.1998.0097
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology [Internet]. 2013 [cited 11 may 2020];14(4):197-210. Available from: https://doi.org/https://doi.org/10.1038/nrm3546
Xiong Y, Hannon G, Zhang H, Casso D, Kobayashi R, Beach D. P21 is a universal inhibitor of cyclin kinases. Nature [Internet]. (1993) [cited 11 may 2020];366(6456):701-704Available from https://doi.org/https://doi.org/10.1038/366701a0
Weinberg R. The retinoblastoma protein and cell cycle control. Cell [Internet]. (1995) [cited 11 may 2020];81(3):323-330Available from https://doi.org/https://doi.org/10.1016/0092-8674(95)90385-2
Dulić V, Kaufmann W, Wilson S, Tisty T, Lees E, Harper J et al (1994) [cited 11 may 2020];76(6):1013-1023Available from https://doi.org/https://doi.org/10.1016/0092-8674(94)90379-4
Deng C, Zhang P, Wade Harper J, Elledge S, Leder P. Mice Lacking P21CIP1/WAF1 undergo normal development but are defective in G1 checkpoint control. Cell [Internet]. 1995 [cited 12 may 2020];82(4):675-684. Available from: https://doi.org/https://doi.org/10.1016/0092-8674(95)90039-x
Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer W et al (1997) [cited 12 may 2020];94(12):6048-6053Available from https://doi.org/https://doi.org/10.1073/pnas.94.12.6048
Shreeram S, Demidov O, Hee W, Yamaguchi H, Onishi N, Kek C et al (2006) [cited 12 may 2020];23(5):757-764Available from https://doi.org/https://doi.org/10.1016/j.molcel.2006.07.010
Goloudina A, Kochetkova E, Pospelova T, Demidov O. Wip1 phosphatase: between P53 and MAPK kinases pathways. Oncotarget [Internet]. 2016 [cited 12 May 2020];7(21):31563-31571. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.7325
Vogelstein B, Lane D, Levine A. Surfing the P53 network. Nature [Internet]. (2000) [cited 12 may 2020];408(6810):307-310Available from https://doi.org/https://doi.org/10.1038/35042675
Harris S, Levine A. The P53 pathway: positive and negative feedback loops. Oncogene [Internet]. 2005 [cited 12 may 2020];24(17):2899-2908. Available from: https://doi.org/https://doi.org/10.1038/sj.onc.1208615
Lakin N, Jackson S. Regulation of P53 in response to DNA damage. Oncogene [Internet]. (1999) [cited 12 may 2020];18(53):7644-7655Available from https://doi.org/https://doi.org/10.1038/sj.onc.1203015
Hermeking H, Lengauer C, Polyak K, He T, Zhang L, Thiagalingam S et al (1997) [cited 12 may 2020];1(1):3-11Available from https://doi.org/https://doi.org/10.1016/s1097-2765(00)80002-7
Taylor W, Stark G. Regulation of the G2/M transition by P53. Oncogene [Internet]. (2001) [cited 12 may 2020];20(15):1803-1815Available from https://doi.org/https://doi.org/10.1038/sj.onc.1204252
Deng Y, Chan S, Chang S. Telomere dysfunction and tumor suppression: the senescence connection. Nature Reviews Cancer [Internet]. (2008) [cited 12 may 2020];8(6):450-458Available from https://doi.org/https://doi.org/10.1038/nrc2393
Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of P21CIP1/WAF1 gene in normal diploid human fibroblasts. Science. 277(5327):831–834 https://doi.org/10.1126/science.277.5327.831
Article
CAS
Google Scholar
Childs B, Durik M, Baker D, van Deursen J. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine [Internet]. (2015) [cited 13 may 2020];21(12):1424-1435Available from https://doi.org/https://doi.org/10.1038/nm.4000
Childs B, Baker D, Kirkland J, Campisi J, Deursen J. Senescence and apoptosis: dueling or complementary cell fates?. EMBO reports [Internet]. 2014 [cited 13 May 2020];15(11):1139-1153. Available from: https://doi.org/https://doi.org/10.15252/embr.201439245
Sharpless N, Sherr C. Forging a signature of in vitro senescence. Nature Reviews Cancer [Internet]. (2015) [cited 13 may 2020];15(7):397-408Available from https://doi.org/https://doi.org/10.1038/nrc3960
Kortlever R, Higgins P, Bernards R. Plasminogen activator inhibitor-1 is a critical downstream target of P53 in the induction of replicative senescence. Nature Cell Biology [Internet]. (2006) [cited 13 may 2020];8(8):877-884Available from https://doi.org/https://doi.org/10.1038/ncb1448
Reymond A. The tripartite motif family identifies cell compartments. The EMBO Journal [Internet]. (2001) [cited 13 may 2020];20(9):2140-2151Available from https://doi.org/https://doi.org/10.1093/emboj/20.9.2140
Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al (2000) [cited 13 may 2020];406(6792):207-210Available from https://doi.org/https://doi.org/10.1038/35018127
Deconstructing BO, PML-induced premature senescence. The EMBO Journal [Internet]. (2002) [cited 13 may 2020];21(13):3358-3369Available from https://doi.org/https://doi.org/10.1093/emboj/cdf341
Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M et al (1998) [cited 13 may 2020];18(2):1084-1093Available from https://doi.org/https://doi.org/10.1128/mcb.18.2.1084
Kuilman T, Peeper D. Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer [Internet]. (2009) [cited 13 may 2020];9(2):81-94Available from https://doi.org/https://doi.org/10.1038/nrc2560
Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh D, Bolden J et al (2013) [cited 13 may 2020];153(2):449-460Available from https://doi.org/https://doi.org/10.1016/j.cell.2013.03.020
Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein R, Biton M et al (2013) [cited 13 may 2020];24(2):242-256Available from https://doi.org/https://doi.org/10.1016/j.ccr.2013.06.005
Brady C, Attardi L. P53 at a glance. Journal of Cell Science [Internet]. (2010) [cited 13 may 2020];123(15):2527-2532Available from https://doi.org/https://doi.org/10.1242/jcs.064501
Sengupta S, Harris C. P53: traffic cop at the crossroads of DNA repair and recombination. Nature Reviews Molecular Cell Biology [Internet]. (2005) [cited 13 may 2020];6(1):44-55Available from https://doi.org/https://doi.org/10.1038/nrm1546
Tilgner K, Neganova I, Moreno-Gimeno I, Al-Aama J, Burks D, Yung S et al. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death & Differentiation [Internet]. 2013 [cited 13 may 2020];20(8):1089-1100. Available from: https://doi.org/https://doi.org/10.1038/cdd.2013.44
Campisi J Aging, tumor suppression and cancer: high wire-act!. Mechanisms of ageing and Development [Internet]. 2005;126(1):51-58. Available from https://doi.org/https://doi.org/10.1016/j.mad.2004.09.024
Friedberg E. How nucleotide excision repair protects against cancer. Nature Reviews Cancer [Internet]. (2001) [cited 13 may 2020];1(1):22-33Available from https://doi.org/https://doi.org/10.1038/35094000
Lieber M, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Reviews Molecular Cell Biology [Internet]. 2003 [cited 13 may 2020];4(9):712-720. Available from: https://doi.org/https://doi.org/10.1038/nrm1202
Sancar A, Lindsey-Boltz L, Ünsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry [Internet]. (2004) [cited 13 may 2020];73(1):39-85Available from https://doi.org/https://doi.org/10.1146/annurev.biochem.73.011303.073723
Bennardo N, Cheng A, Huang N, Stark J. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genetics [Internet]. (2008) [cited 13 may 2020];4(6):e1000110Available from https://doi.org/https://doi.org/10.1371/journal.pgen.1000110
Christophorou M, Ringshausen I, Finch A, Swigart L, Evan G. The pathological response to DNA damage does not contribute to P53-mediated tumor suppression. Nature [Internet]. (2006) [cited 13 may 2020];443(7108):214-217Available from https://doi.org/https://doi.org/10.1038/nature05077
Tan T, Chu G. P53 binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Molecular and Cellular Biology [Internet]. (2002) [cited 13 may 2020];22(10):3247-3254Available from https://doi.org/https://doi.org/10.1128/mcb.22.10.3247-3254.2002
Adimoolam S, Ford J P53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proceedings of the National Academy of Sciences [Internet]. 2002;99(20):12985-12990. Available from https://doi.org/10.1073/pnas.202485699
Hoeijmakers J. DNA damage, aging, and cancer. New England Journal of Medicine [Internet]. (2009) [cited 13 may 2020];361(15):1475-1485Available from https://doi.org/https://doi.org/10.1056/NEJMra0804615
Bergink S, Jaspers N, Vermeulen W. Regulation of UV-induced DNA damage response by ubiquitylation. DNA Repair [Internet]. (2007) [cited 13 may 2020];6(9):1231-1242Available from https://doi.org/https://doi.org/10.1016/j.dnarep.2007.01.012
Hanawalt P, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Reviews Molecular Cell Biology [Internet]. 2008 [cited 13 may 2020];9(12):958-970. Available from: https://doi.org/https://doi.org/10.1038/nrm2549
Lagerwerf S, Vrouwe M, Overmeer R, Fousteri M, Mullenders L. DNA damage response and transcription. DNA Repair [Internet]. (2011) [cited 13 may 2020];10(7):743-750Available from https://doi.org/https://doi.org/10.1016/j.dnarep.2011.04.024
Sugasawa K, Ng J, Masutani C, Iwai S, van der Spek P, Eker A et al (1998) [cited 13 may 2020];2(2):223-232Available from https://doi.org/https://doi.org/10.1016/s1097-2765(00)80132-x
Volker M, Moné M, Karmakar P, van Hoffen A, Schul W, Vermeulen W et al (2001) [cited 13 may 2020];8(1):213-224Available from https://doi.org/https://doi.org/10.1016/s1097-2765(01)00281-7
Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K et al (2000) [cited 13 may 2020];404(6773):42-49Available from https://doi.org/https://doi.org/10.1038/35003506
Moldovan G, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell [Internet]. 2007 [cited 13 may 2020];129(4):665-679. Available from: https://doi.org/https://doi.org/10.1016/j.cell.2007.05.003
Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264(23):13856–13864
CAS
PubMed
Google Scholar
Garg P, Burgers P. DNA polymerases that propagate the eukaryotic DNA replication fork. Critical Reviews in Biochemistry and Molecular Biology [Internet]. (2005) [cited 13 may 2020];40(2):115-128Available from https://doi.org/https://doi.org/10.1080/10409230590935433
Liu G, Chen X. DNA polymerase η, the product of the xeroderma pigmentosum variant gene and a target of P53, modulates the DNA damage checkpoint and P53 activation. Molecular and Cellular Biology [Internet]. (2006) [cited 13 may 2020];26(4):1398-1413Available from https://doi.org/https://doi.org/10.1128/MCB.26.4.1398-1413.2006
Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M et al (1999) [cited 13 may 2020];399(6737):700-704Available from https://doi.org/https://doi.org/10.1038/21447
Menck C, Munford V. DNA repair diseases: what do they tell us about cancer and aging?. Genetics and Molecular Biology [Internet]. (2014) [cited 13 may 2020];37(1 suppl 1):220-233Available from https://doi.org/https://doi.org/10.1590/s1415-47572014000200008
Friedberg E, Lehmann A, Fuchs R. Trading places: how do DNA polymerases switch during translesion DNA synthesis?. Molecular Cell [Internet]. (2005) [cited 13 may 2020];18(5):499-505Available from https://doi.org/https://doi.org/10.1016/j.molcel.2005.03.032
Knudson C, Tung K, Tourtellotte W, Brown G, Korsmeyer S. BAX-deficient mice with lymphoid hyperplasia and male germ cell death. Science [Internet]. (1995) [cited 13 may 2020];270(5233):96-99Available from https://doi.org/https://doi.org/10.1126/science.270.5233.96
Eischen C, Roussel M, Korsmeyer S, Cleveland J. BAX loss impairs Myc-induced apoptosis and circumvents the selection of P53 mutations during Myc-mediated lymphomagenesis. Molecular and Cellular Biology [Internet]. (2001) [cited 13 may 2020];21(22):7653-7662Available from https://doi.org/https://doi.org/10.1128/MCB.21.22.7653-7662.2001
Luke J, van de Wetering C, Knudson C. Lymphoma development in BAX transgenic mice is inhibited by BCL-2 and associated with chromosomal instability. Cell Death & Differentiation [Internet]. (2003) [cited 13 may 2020];10(6):740-748Available from https://doi.org/https://doi.org/10.1038/sj.cdd.4401233
Ke F, Vanyai H, Cowan A, Delbridge A, Whitehead L, Grabow S et al Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell [Internet]. 2018 [cited 13 may 2020];173(5):1217-1230.e17. Available from https://doi.org/https://doi.org/10.1016/j.cell.2018.04.036
Los M, CrAEN M, Penning L, Schenk H, Westendorp M, Baeuerle P et al (1995) [cited 13 may 2020];375(6526):81-83Available from https://doi.org/https://doi.org/10.1038/375081a0
Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 75(4):653–660 https://doi.org/https://doi.org/10.1016/0092-8674(93)90486-A
Taylor R, Cullen S, Martin S. Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology [Internet]. (2008) [cited 13 may 2020];9(3):231-241Available from https://doi.org/https://doi.org/10.1038/nrm2312
Tait S, Green D. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology [Internet]. 2010 [cited 13 may 2020];11(9):621-632. Available from: https://doi.org/https://doi.org/10.1038/nrm2952
Yonish-Rouach E, Resnftzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type P53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature [Internet]. 1991 [cited 13 may 2020];352(6333):345-347. Available from: https://doi.org/https://doi.org/10.1038/352345a0
Chipuk J, Green D. Dissecting P53-dependent apoptosis. Cell Death & Differentiation [Internet]. 2006 [cited 13 may 2020];13(6):994-1002. Available from: https://doi.org/https://doi.org/10.1038/sj.cdd.4401908
Yu J, Zhang L. No PUMA, no death. Cancer Cell [Internet]. 2003 [cited 13 may 2020];4(4):248-249. Available from: https://doi.org/https://doi.org/10.1016/s1535-6108(03)00249-6
Green D, Kroemer G. Cytoplasmic functions of the tumor suppressor P53. Nature [Internet]. (2009) [cited 13 may 2020];458(7242):1127-1130Available from https://doi.org/https://doi.org/10.1038/nature07986
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) [cited 13 may 2020];11(3):577-590Available from https://doi.org/https://doi.org/10.1016/s1097-2765(03)00050-9
Follis A, Llambi F, Ou L, Baran K, Green D, Kriwacki R. The DNA-binding domain mediates both nuclear and cytosolic functions of P53. Nature Structural & Molecular Biology [Internet]. 2014 [cited 13 may 2020];21(6):535-543. Available from: https://doi.org/https://doi.org/10.1038/nsmb.2829
Chipuk J, Moldoveanu T, Llambi F, Parsons M, Green D. The BCL-2 family reunion. Molecular Cell [Internet]. 2010 [cited 13 may 2020];37(3):299-310. Available from: https://doi.org/https://doi.org/10.1016/j.molcel.2010.01.025
Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C et al (2006) [cited 13 may 2020];281(13):8600-8606Available from https://doi.org/https://doi.org/10.1074/jbc.M507611200
Karbowski M, Norris K, Cleland M, Jeong S, Youle R. Role of BAX and BAK in mitochondrial morphogenesis. Nature [Internet]. (2006) [cited 13 may 2020];443(7112):658-662Available from https://doi.org/https://doi.org/10.1038/nature05111
Robles AI, Bemmels NA, Foraker AB, Harris CC (2001) APAF-1 is a transcriptional target of P53 in DNA damage-induced apoptosis. Cancer Res 61(18):6660–6664 https://cancerres.aacrjournals.org/content/61/18/6660
CAS
PubMed
Google Scholar
Rozenfeld-Granot G, Krishnamurthy J, Kannan K, Toren A, Amariglio N, Givol D et al A positive feedback mechanism in the transcriptional activation of Apaf-1 by P53 and the coactivator Zac-1. Oncogene [Internet]. 2002;21(10):1469-1476. Available from https://doi.org/https://doi.org/10.1038/sj.onc.1205218
Kawase T, Ichikawa H, Ohta T, Nozaki N, Tashiro F, Ohki R et al (2008) [cited 13 may 2020];27(27):3797-3810Available from https://doi.org/https://doi.org/10.1038/onc.2008.32
Fekry B, Jeffries K, Esmaeilniakooshkghazi A, Ogretmen B, Krupenko S, Krupenko N. CERS6Is a novel transcriptional target of P53 protein activated by non-genotoxic stress. Journal of Biological Chemistry [Internet]. (2016) [cited 13 may 2020];291(32):16586-16596Available from https://doi.org/https://doi.org/10.1074/jbc.M116.716902
Panjarian S, Kozhaya L, Arayssi S, Yehia M, Bielawski J, Bielawska A et al (2008) [cited 13 may 2020];86(1-4):41-48Available from https://doi.org/https://doi.org/10.1016/j.prostaglandins.2008.02.004
Park W, Nakamura Y. P53CSV, a novel P53-inducible gene involved in the P53-dependent cell-survival pathway. Cancer Research [Internet]. (2005) [cited 13 may 2020];65(4):1197-1206Available from https://doi.org/https://doi.org/10.1158/0008-5472.CAN-04-3339
Tasdemir E, Maiuri M, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M et al (2008) [cited 13 may 2020];10(6):676-687Available from https://doi.org/https://doi.org/10.1038/ncb1730
Choundhury S, Kolukula V, Preet A, Albanese C, Avantaggiati M. Dissecting the pathways that destabilize mutant P53: The proteasome or autophagy?. Cell Cycle [Internet]. (2013) [cited 13 may 2020];12(7):1022-1029Available from https://doi.org/https://doi.org/10.4161/cc.24128
Kenzelmann Broz D, Spano Mello S, Bieging K, Jiang D, Dusek R, Brady C et al (2013) [cited 13 may 2020];27(9):1016-1031Available from https://doi.org/https://doi.org/10.1101/gad.212282.112
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison P et al (2006) [cited 13 may 2020];126(1):121-134Available from https://doi.org/https://doi.org/10.1016/j.cell.2006.05.034
Gao W, Shen Z, Shang L, Wang X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor P53 contributes to DNA-damage-induced cell death. Cell Death & Differentiation [Internet]. (2011) [cited 13 may 2020];18(10):1598-1607Available from https://doi.org/https://doi.org/10.1038/cdd.2011.33
Kenzelmann Broz D, Attardi L. TRP53 activates a global autophagy program to promote tumor suppression. Autophagy [Internet]. (2013) [cited 13 may 2020];9(9):1440-1442Available from https://doi.org/https://doi.org/10.4161/auto.25833
Arico S, Petiot A, Bauvy C, Dubbelhuis P, Meijer A, Codogno P et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246
Article
CAS
Google Scholar
Feng Z, Zhang H, Levine A, Jin S. The coordinate regulation of the P53 and mTOR pathways in cells. Proceedings of the National Academy of Sciences [Internet]. (2005) [cited 13 may 2020];102(23):8204-8209Available from https://doi.org/https://doi.org/10.1073/pnas.0502857102
Lee J, Budanov A, Park E, Birse R, Kim T, Perkins G et al (2010) [cited 13 may 2020];327(5970):1223-1228Available from https://doi.org/https://doi.org/10.1126/science.1182228
Budanov A, Karin M. P53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell [Internet]. (2008) [cited 13 may 2020];134(3):451-460Available from https://doi.org/https://doi.org/10.1016/j.cell.2008.06.028
Crighton D, Wilkinson S, Ryan K. DRAM links autophagy to P53 and programmed cell death. Autophagy [Internet]. (2007) [cited 13 may 2020];3(1):72-74Available from https://doi.org/https://doi.org/10.4161/auto.3438
Wang E, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum L P53 mediates autophagy and cell death by a mechanism contingent on BNIP3. Hypertension [Internet]. 2013;62(1):70-77. Available from https://doi.org/https://doi.org/10.1161/HYPERTENSIONAHA.113.01028
Yee K, Wilkinson S, James J, Ryan K, Vousden K. PUMA- and BAX-induced autophagy contributes to apoptosis. Cell Death & Differentiation [Internet]. (2009) [cited 13 may 2020];16(8):1135-1145Available from https://doi.org/https://doi.org/10.1038/cdd.2009.28
Pattingre S, Tassa A, Qu X, Garuti R, Liang X, Mizushima N et al (2005) [cited 13 may 2020];122(6):927-939Available from https://doi.org/https://doi.org/10.1016/j.cell.2005.07.002
Pimkina J, Humbey O, Zilfou J, Jarnik M, Murphy M. ARF induces autophagy by virtue of interaction with Bcl-xl. Journal of Biological Chemistry [Internet]. (2008) [cited 13 may 2020];284(5):2803-2810Available from https://doi.org/https://doi.org/10.1074/jbc.M804705200
Balaburski G, Hontz R, Murphy M. P53 and ARF: unexpected players in autophagy. Trends in Cell Biology [Internet]. (2010) [cited 13 may 2020];20(6):363-369Available from https://doi.org/https://doi.org/10.1016/j.tcb.2010.02.007
Gade P, Manjegowda S, Nallar S, Maachani U, Cross A, Kalvakolanu D. Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1. Molecular and Cellular Biology [Internet]. (2014) [cited 13 may 2020];34(21):4033-4048Available from https://doi.org/https://doi.org/10.1128/MCB.00397-14
Zalckvar E, Berissi H, Eisenstein M, Kimchi A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with BCL-2 and Bcl-XL. Autophagy [Internet]. (2009) [cited 13 may 2020];5(5):720-722Available from https://doi.org/https://doi.org/10.4161/auto.5.5.8625
Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P et al (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283(15):9999–10014
Article
CAS
Google Scholar
Jones R, Plas D, Kubek S, Buzzai M, Mu J, Xu Y et al AMP-activated protein kinase induces a P53-dependent metabolic checkpoint. Molecular Cell [Internet]. 2005;18(3):283-293. Available from https://doi.org/https://doi.org/10.1016/j.molcel.2005.03.027
Reid M, Wang W, Rosales K, Welliver M, Pan M, Kong M. The B55α subunit of PP2A drives a P53-dependent metabolic adaptation to glutamine deprivation. Molecular Cell [Internet]. 2013 [cited 13 may 2020];50(2):200-211. Available from: https://doi.org/https://doi.org/10.1016/j.molcel.2013.02.008
Maddocks O, Berkers C, Mason S, Zheng L, Blyth K, Gottlieb E et al (2012) [cited 13 may 2020];493(7433):542-546Available from https://doi.org/https://doi.org/10.1038/nature11743
Tarangelo A, Magtanong L, Bieging-Rolett K, Li Y, Ye J, Attardi L et al (2018) [cited 13 may 2020];22(3):569-575Available from https://doi.org/https://doi.org/10.1016/j.celrep.2017.12.077
Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, Hu W (2013) Tumour-associated mutant P53 drives the Warburg effect. Nat Commun 4(1):1–5 https://doi.org/https://doi.org/10.1038/ncomms3935
Kawauchi K, Araki K, Tobiume K, Tanaka N. P53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nature Cell Biology [Internet]. (2008) [cited 13 may 2020];10(5):611-618Available from https://doi.org/https://doi.org/10.1038/ncb1724
Ros S, Flöter J, Kaymak I, Da Costa C, Houddane A, Dubuis S et al 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for P53-null cancer cells. Oncogene [Internet]. 2017;36(23):3287-3299. Available from https://doi.org/https://doi.org/10.1038/onc.2016.477
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185 https://cancerres.aacrjournals.org/content/65/1/177
CAS
PubMed
Google Scholar
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J et al. Tumor suppressor P53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget [Internet]. 2014 [cited 13 May 2020];5(14):5535-5546. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.2137
Contractor T, Harris C. P53 negatively regulates transcription of the pyruvate dehydrogenase kinase PDK2. Cancer Research [Internet]. (2011) [cited 13 may 2020];72(2):560-567Available from https://doi.org/https://doi.org/10.1158/0008-5472.CAN-11-1215
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel P53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences [Internet]. (2010) [cited 13 may 2020];107(16):7455-7460Available from https://doi.org/https://doi.org/10.1073/pnas.1001006107
Suzuki S, Tanaka T, Poyurovsky M, Nagano H, Mayama T, Ohkubo S et al Phosphate-activated glutaminase (GLS2), a P53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences [Internet]. 2010;107(16):7461-7466. Available from https://doi.org/https://doi.org/10.1073/pnas.1002459107
Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P et al (2011) [cited 13 may 2020];72(4):939-948Available from https://doi.org/https://doi.org/10.1158/0008-5472.CAN-11-2474
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) P53 regulates mitochondrial respiration. Science. 312(5780):1650–1653 https://doi.org/10.1126/science.1126863
Article
CAS
Google Scholar
Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M et al Regulation of AIF expression by P53. Cell Death & Differentiation [Internet]. 2006;13(12):2140-2149. Available from https://doi.org/10.1038/sj.cdd.4401965
Kitamura N, Nakamura Y, Miyamoto Y, Miyamoto T, Kabu K, Yoshida M et al (2011) [cited 13 may 2020];6(1):e16060Available from https://doi.org/https://doi.org/10.1371/journal.pone.0016060
Sahin E, Colla S, Liesa M, Moslehi J, Müller F, Guo M et al (2011) [cited 13 may 2020];470(7334):359-365Available from https://doi.org/https://doi.org/10.1038/nature09787
Lee P, Vousden K, Cheung E TIGAR, TIGAR, burning bright. Cancer & Metabolism [Internet]. 2014;2(1):1. Available from https://doi.org/https://doi.org/10.1186/2049-3002-2-1
Duan L, Perez R, Chen L, Blatter L, Maki C. P53 promotes AKT and SP1-dependent metabolism through the pentose phosphate pathway that inhibits apoptosis in response to Nutlin-3a. Journal of Molecular Cell Biology [Internet]. (2018) [cited 13 may 2020];10(4):331-340Available from https://doi.org/https://doi.org/10.1093/jmcb/mjx051
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al (2011) [cited 13 may 2020];13(3):310-316Available from https://doi.org/https://doi.org/10.1038/ncb2172
Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V. P53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer & Metabolism [Internet]. (2013) [cited 13 may 2020];1(1)Available from https://doi.org/https://doi.org/10.1186/2049-3002-1-9
Harami-Papp H, Pongor L, Munkácsy G, Horváth G, Nagy Á, Ambrus A et al. TP53 mutation hits energy metabolism and increases glycolysis in breast cancer. Oncotarget [Internet] 2016;7(41):67183-67195. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.11594
Wang S, Yu G, Jiang L, Li T, Lin Q, Tang Y et al (2013) [cited 13 may 2020];12(5):753-761Available from https://doi.org/https://doi.org/10.4161/cc.23597
Prokesch A, Graef F, Madl T, Kahlhofer J, Heidenreich S, Schumann A et al. Liver P53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J [Internet]. 2016;31(2):732-742. Available from: https://doi.org/https://doi.org/10.1096/fj.201600845R
Zhang P, Tu B, Wang H, Cao Z, Tang M, Zhang C et al. Tumor suppressor P53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc Natl Acad Sci [Internet]. 2014;111(29):10684-10689. Available from: https://doi.org/https://doi.org/10.1073/pnas.1411026111
Berkers C, Maddocks O, Cheung E, Mor I, Vousden K. Metabolic regulation by P53 family members. Cell Metabolism [Internet]. (2013) [cited 13 may 2020];18(5):617-633Available from https://doi.org/https://doi.org/10.1016/j.cmet.2013.06.019
Goldstein I, Ezra O, Rivlin N, Molchadsky A, Madar S, Goldfinger N et al (2012) [cited 14 may 2020];56(3):656-662Available from https://doi.org/https://doi.org/10.1016/j.jhep.2011.08.022
Zaugg K, Yao Y, Reilly P, Kannan K, Kiarash R, Mason J et al (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25(10):1041–1051
Article
CAS
Google Scholar
Sanchez-Macedo N, Feng J, Faubert B, Chang N, Elia A, Rushing E et al (2013) [cited 14 may 2020];20(4):659-668Available from https://doi.org/https://doi.org/10.1038/cdd.2012.168
Assaily W, Rubinger D, Wheaton K, Lin Y, Ma W, Xuan W et al (2011) [cited 14 may 2020];44(3):491-501Available from https://doi.org/https://doi.org/10.1016/j.molcel.2011.08.038
Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y et al (2003) [cited 14 may 2020];278(28):25395-25400Available from https://doi.org/https://doi.org/10.1074/jbc.M302364200
Zhou G, Wang J, Zhao M, Xie T, Tanaka N, Sano D et al (2014) [cited 14 may 2020];54(6):960-974Available from https://doi.org/https://doi.org/10.1016/j.molcel.2014.04.024
Freed-Pastor W, Mizuno H, Zhao X, Langerød A, Moon S, Rodriguez-Barrueco R et al (2012) [cited 14 may 2020];148(1-2):244-258Available from https://doi.org/https://doi.org/10.1016/j.cell.2011.12.017
Jennis M, Kung C, Basu S, Budina-Kolomets A, Leu J, Khaku S et al (2016) [cited 14 may 2020];30(8):918-930Available from https://doi.org/https://doi.org/10.1101/gad.275891.115
Lowman X, Hanse E, Yang Y, Ishak Gabra M, Tran T, Li H et al P53 promotes cancer cell adaptation to glutamine deprivation by upregulating SLC7A3 to increase arginine uptake. Cell Reports [Internet]. 2019;26(11):3051-3060.e4. Available from https://doi.org/https://doi.org/10.1016/j.celrep.2019.02.037
Tajan M, Hock A, Blagih J, Robertson N, Labuschagne C, Kruiswijk F et al A role for P53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metabolism [Internet]. 2018 [cited 14 may 2020];28(5):721-736.e6. Available from https://doi.org/https://doi.org/10.1016/j.cmet.2018.07.005
Ou Y, Wang S, Jiang L, Zheng B, Gu W. P53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. Journal of Biological Chemistry [Internet]. (2014) [cited 14 may 2020];290(1):457-466Available from https://doi.org/https://doi.org/10.1074/jbc.M114.616359
Riscal R, Schrepfer E, Arena G, Cissé M, Bellvert F, Heuillet M et al (2016) [cited 14 may 2020];62(6):890-902Available from https://doi.org/https://doi.org/10.1016/j.molcel.2016.04.033
Kandoth C, McLellan M, Vandin F, Ye K, Niu B, Lu C et al (2013) [cited 20 July 2020];502(7471):333-339Available from https://doi.org/https://doi.org/10.1038/nature12634
Zhao D, Tahaney W, Mazumdar A, Savage M, Brown P. Molecularly targeted therapies for p53-mutant cancers. Cellular and Molecular Life Sciences [Internet]. (2017) [cited 26 July 2020];74(22):4171-4187Available from https://doi.org/https://doi.org/10.1007/s00018-017-2575-0
Foster B, Coffey H, Morin M, Rastinejad F (1999) Pharmacological rescue of mutant P53 conformation and function. Science. 286(5449):2507–2510
Article
CAS
Google Scholar
Madka V, Zhang Y, Li Q, Mohammed A, Sindhwani P, Lightfoot S et al (2013) [cited 20 July 2020];15(8):966-974 Available from https://doi.org/https://doi.org/10.1593/neo.13704
Zache N, Lambert J, Rökaeus N, Shen J, Hainaut P, Bergman J et al (2008) [cited 20 July 2020];2(1):70-80Available from https://doi.org/https://doi.org/10.1016/j.molonc.2008.02.004
Bykov V, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al (2002) [cited 20 July 2020];8(3):282-288Available from https://doi.org/https://doi.org/10.1038/nm0302-282
Lambert J, Gorzov P, Veprintsev D, Söderqvist M, Segerbäck D, Bergman J et al (2009) [cited 20 July 2020];15(5):376-388Available from https://doi.org/https://doi.org/10.1016/j.ccr.2009.03.003
Zhang Q, Bykov V, Wiman K, Zawacka-Pankau J. APR-246 reactivates mutant P53 by targeting cysteines 124 and 277. Cell Death & Disease [Internet]. (2018) [cited 20 July 2020];9(5)Available from https://doi.org/https://doi.org/10.1038/s41419-018-0463-7
Peng X, Zhang M, Conserva F, Hosny G, Selivanova G, Bykov V et al (2013) [cited 20 July 2020];4(10):e881-e881Available from https://doi.org/https://doi.org/10.1038/cddis.2013.417
Tessoulin B, Descamps G, Moreau P, Maïga S, Lodé L, Godon C et al (2014) [cited 20 July 2020];124(10):1626-1636Available from https://doi.org/10.1182/blood-2014-01-548800
Google Scholar
Study of the safety and efficacy of APR-246 in combination with azacitidine - full-text wiew - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 [cited 6 July 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT03588078
Phase 1b/2 Safety and Efficacy of APR-246 w/Azacitidine for tx of TP53 Mutant myeloid neoplasms - full-text view - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 [cited 6 July 2020]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03072043
Bykov V, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J et al (2005) [cited 20 July 2020];280(34):30384-30391Available from https://doi.org/https://doi.org/10.1074/jbc.M501664200
Zhao C, Grinkevich V, Nikulenkov F, Bao W, Selivanova G. Rescue of the apoptotic-inducing function of mutant P53 by small-molecule RITA. Cell Cycle [Internet]. (2010) [cited 21 July 2020];9(9):1847-1855Available from https://doi.org/https://doi.org/10.4161/cc.9.9.11545
Burmakin M, Shi Y, Hedstrom E, Kogner P, Selivanova G. Dual targeting of wild-type and mutant P53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vitro and in vitro. Clinical Cancer Research [Internet]. (2013) [cited 21 July 2020];19(18):5092-5103Available from https://doi.org/https://doi.org/10.1158/1078-0432.CCR-12-2211
Rivera M, Stinson S, Vistica D, Jorden J, Kenney S, Sausville E. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines. Biochemical Pharmacology [Internet]. (1999) [cited 21 July 2020];57(11):1283-1295Available from https://doi.org/https://doi.org/10.1016/s0006-2952(99)00046-5
Nieves-Neira W, Rivera M, Kohlhagen G, Hursey M, Pourquier P, Sausville E et al DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Molecular pharmacology [Internet]. 1999;56(3):478-484. Available from https://doi.org/https://doi.org/10.1124/mol.56.3.478
Liu X, Wilcken R, Joerger A, Chuckowree I, Amin J, Spencer J et al (2013) [cited 21 July 2020];41(12):6034-6044Available from https://doi.org/https://doi.org/10.1093/nar/gkt305
Bauer M, Joerger A, Fersht A. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward P53-compromised cells. Proceedings of the National Academy of Sciences [Internet]. (2016) [cited 21 July 2020];113(36):E5271-E5280Available from https://doi.org/https://doi.org/10.1073/pnas.1610421113
Yu X, Vazquez A, Levine A, Carpizo D. Allele-specific P53 mutant reactivation. Cancer Cell [Internet]. 2012 [cited 21 July 2020];21(5):614-625. Available from: https://doi.org/https://doi.org/10.1016/j.ccr.2012.03.042
Salim K, Maleki Vareki S, Danter W, San-Marina S, Koropatnick J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vitro. Oncotarget [Internet]. 2016 [cited 21 July 2020];7(27):41363-41379. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.9133
Punganuru S, Madala H, Venugopal S, Samala R, Mikelis C, Srivenugopal K. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimiCROTubule and mutant P53-reactivating properties. European Journal of Medicinal Chemistry [Internet]. 2016 [cited 21 July 2020];107:233-244. Available from: https://doi.org/https://doi.org/10.1016/j.ejmech.2015.10.052
Weinmann L, Wischhusen J, Demma M, Naumann U, Roth P, DasMahapatra B et al (2008) [cited 21 July 2020];15(4):718-729Available from https://doi.org/https://doi.org/10.1038/sj.cdd.4402301
Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, Dyba M et al (2016) [cited 21 July 2020];23(10):1615-1627Available from https://doi.org/https://doi.org/10.1038/cdd.2016.48
Soragni A, Janzen D, Johnson L, Lindgren A, Thai-Quynh Nguyen A, Tiourin E et al (2016) [cited 21 July 2020];29(1):90-103Available from https://doi.org/https://doi.org/10.1016/j.ccell.2015.12.002
Zhang Y, Xu L, Chang Y, Li Y, Butler W, Jin E et al (2019) [cited 21 July 2020];23(1):160-171Available from https://doi.org/https://doi.org/10.1038/s41391-019-0172-z
Demma M, Maxwell E, Ramos R, Liang L, Li C, Hesk D et al (2010) [cited 21 July 2020];285(14):10198-10212Available from https://doi.org/https://doi.org/10.1074/jbc.M109.083469
Wassman C, Baronio R, Demir Ö, Wallentine B, Chen C, Hall L et al (2013) [cited 21 July 2020];4(1)Available from https://doi.org/https://doi.org/10.1038/ncomms2361
Hiraki M, Hwang S, Cao S, Ramadhar T, Byun S, Yoon K et al (2015) [cited 21 July 2020];22(9):1206-1216Available from https://doi.org/https://doi.org/10.1016/j.chembiol.2015.07.016
Boeckler F, Joerger A, Jaggi G, Rutherford T, Veprintsev D, Fersht A. Targeted rescue of a destabilized mutant of P53 by an in silico screened drug. Proceedings of the National Academy of Sciences [Internet]. (2008) [cited 21 July 2020];105(30):10360-10365Available from https://doi.org/https://doi.org/10.1073/pnas.0805326105
Kravchenko J, Ilyinskaya G, Komarov P, Agapova L, Kochetkov D, Strom E et al (2008) [cited 21 July 2020];105(17):6302-6307Available from https://doi.org/https://doi.org/10.1073/pnas.0802091105
Terzian T, Suh Y, Iwakuma T, Post S, Neumann M, Lang G et al (2008) [cited 21 July 2020];22(10):1337-1344Available from https://doi.org/https://doi.org/10.1101/gad.1662908
Li D, Marchenko N, Moll U. SAHA shows preferential cytotoxicity in mutant P53 cancer cells by destabilizing mutant P53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death & Differentiation [Internet]. (2011) [cited 21 July 2020];18(12):1904-1913Available from https://doi.org/https://doi.org/10.1038/cdd.2011.71
Li D, Marchenko N, Schulz R, Fischer V, Velasco-Hernandez T, Talos F et al (2011) [cited 21 July 2020];9(5):577-588Available from https://doi.org/https://doi.org/10.1158/1541-7786.MCR-10-0534
Vakifahmetoglu-Norberg H, Kim M, Xia H, Iwanicki M, Ofengeim D, Coloff J et al (2013) [cited 21 July 2020];27(15):1718-1730Available from https://doi.org/https://doi.org/10.1101/gad.220897.113
Vakifahmetoglu-Norberg H, Yuan J. A degradative detour for mutant TP53. Autophagy [Internet]. (2013) [cited 21 July 2020];9(12):2158-2160Available from https://doi.org/https://doi.org/10.4161/auto.26338
Padmanabhan A, Candelaria N, Wong K, Nikolai B, Lonard D, O’Malley B et al (2018) [cited 21 July 2020];9(1)Available from https://doi.org/https://doi.org/10.1038/s41467-018-03599-w
Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A et al (2016) [cited 21 July 2020];18(11):1233-1243Available from https://doi.org/https://doi.org/10.1038/ncb3427
Wang J, Zhao Q, Qi Q, Gu H, Rong J, Mu R et al (2011) [cited 21 July 2020];112(2):509-519Available from https://doi.org/https://doi.org/10.1002/jcb.22941
Foggetti G, Ottaggio L, Russo D, Monti P, Degan P, Fronza G et al (2017) [cited 21 July 2020];1864(2):382-392Available from https://doi.org/https://doi.org/10.1016/j.bbamcr.2016.11.023
Gu H, Wang X, Rao S, Wang J, Zhao J, Ren F et al (2008) [cited 21 July 2020];7(10):3298-3305Available from https://doi.org/https://doi.org/10.1158/1535-7163.MCT-08-0212
Yi Y, Kang H, Kim H, Kong Y, Brown M, Bae I. Targeting mutant P53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells. Oncotarget [Internet]. 2013 [cited 21 July 2020];4(7):984-994. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.1070
Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D et al (2015) [cited 21 July 2020];523(7560):352-356Available from https://doi.org/https://doi.org/10.1038/nature14430
. Why therapeutic response may not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle [Internet]. (2005) [cited 21 July 2020];4(12):1693-1698Available from https://doi.org/https://doi.org/10.4161/cc.4.12.2259
Discovery MP, development of SAHA as an anticancer agent. Oncogene [Internet]. (2007) [cited 21 July 2020];26(9):1351-1356Available from https://doi.org/https://doi.org/10.1038/sj.onc.1210204
VanderMolen K, McCulloch W, Pearce C, Oberlies N. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics [Internet]. (2011) [cited 21 July 2020];64(8):525-531Available from https://doi.org/https://doi.org/10.1038/ja.2011.35
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L et al (2011) [cited 21 July 2020];147(1):223-234Available from https://doi.org/https://doi.org/10.1016/j.cell.2011.08.037
Liao Y, Guo Z, Xia X, Liu Y, Huang C, Jiang L et al (2019) [cited 21 July 2020];38(1)Available from https://doi.org/https://doi.org/10.1186/s13046-019-1165-4
Wang L, Yu Y, Chow D, Yan F, Hsu C, Stossi F et al (2015) [cited 21 July 2020];28(2):240-252Available from https://doi.org/https://doi.org/10.1016/j.ccell.2015.07.005
Zhao K, Zhang S, Song X, Yao Y, Zhou Y, You Q et al. Gambogic acid suppresses cancer invasion and migration by inhibiting TGFβ1-induced epithelial-to-mesenchymal transition. Oncotarget [Internet]. 2017 [cited 21 July 2020];8(16):27120-27136. Available from: https://doi.org/https://doi.org/10.18632/oncotarget.15449
Xia G, Wang H, Song Z, Meng Q, Huang X, Huang X. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). Journal of Experimental & Clinical Cancer Research [Internet]. (2017) [cited 21 July 2020];36(1)Available from https://doi.org/https://doi.org/10.1186/s13046-017-0579-0
De la Monte SM, Sohn YK, Ganju N, Wands JR. P53-and CD95-associated apoptosis in neurodegenerative diseases. Laboratory investigation; a journal of technical methods and pathology. 1998 1;78(4):401-11. Available from: http://europepmc.org/abstract/MED/9564885
Gupta A, Shah K, Oza M, Behl T. Reactivation of P53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomedicine & Pharmacotherapy [Internet]. (2019) [cited 23 July 2020];109:484-492Available from https://doi.org/https://doi.org/10.1016/j.biopha.2018.10.155
Yee-Lin V, Pooi-Fong W, Soo-Beng A. Nutlin-3, a P53-Mdm2 antagonist for nasopharyngeal carcinoma treatment. Mini-Reviews in Medicinal Chemistry [Internet]. (2018) [cited 21 July 2020];18(2)Available from https://doi.org/https://doi.org/10.2174/1389557517666170717125821
Shangary S, Qin D, McEachern D, Liu M, Miller R, Qiu S et al (2008) [cited 21 July 2020];105(10):3933-3938Available from https://doi.org/https://doi.org/10.1073/pnas.0708917105
Zheng M, Yang J, Xu X, Sebolt JT, Wang S, Sun Y (2010) Efficacy of MDM2 inhibitor MI-219 against lung cancer cells alone or in combination with MDM2 knockdown, a XIAP inhibitor or etoposide. Anticancer Res 30(9):3321–3331
CAS
PubMed
Google Scholar
Mohammad R, Wu J, Azmi A, Aboukameel A, Sosin A, Wu S et al (2009) [cited 21 July 2020];8(1):115Available from https://doi.org/https://doi.org/10.1186/1476-4598-8-115
Lai Z, Yang T, Kim Y, Sielecki T, Diamond M, Strack P et al (2002) [cited 21 July 2020];99(23):14734-14739Available from https://doi.org/https://doi.org/10.1073/pnas.212428599
Davydov I, Woods D, Safiran Y, Oberoi P, Fearnhead H, Fang S et al (2004) [cited 21 July 2020];9(8):695-703Available from https://doi.org/https://doi.org/10.1177/1087057104267956
Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T et al (2009) [cited 22 July 2020];15(9):1082-1087Available from https://doi.org/https://doi.org/10.1038/nm.2014
Bonfigli A, Sirolla C, Testa R, Cucchi M, Spazzafumo L, Salvioli S et al (2012) [cited 22 July 2020];50(3):429-436Available from https://doi.org/https://doi.org/10.1007/s00592-012-0450-x
Kung C, Leu J, Basu S, Khaku S, Anokye-Danso F, Liu Q et al (2016) [cited 22 July 2020];14(10):2413-2425Available from https://doi.org/https://doi.org/10.1016/j.celrep.2016.02.037
Liu Z, Jin L, Yang J, Wang B, Wu K, Hallenborg P et al (2018) [cited 22 July 2020];67(11):2397-2409Available from https://doi.org/https://doi.org/10.2337/db18-0684
Peifer M, Fernández-Cuesta L, Sos M, George J, Seidel D, Kasper L et al (2012) [cited 22 July 2020];44(10):1104-1110Available from https://doi.org/https://doi.org/10.1038/ng.2396
Comprehensive molecular portraits of human breast tumours. Nature [Internet]. (2012) [cited 22 July 2020];490(7418):61-70Available from https://doi.org/https://doi.org/10.1038/nature11412
Integrated genomic analyses of ovarian carcinoma. Nature [Internet]. (2011) [cited 22 July 2020];474(7353):609-615Available from https://doi.org/https://doi.org/10.1038/nature10166
Song Y, Li L, Ou Y, Gao Z, Li E, Li X et al (2014) [cited 22 July 2020];509(7498):91-95Available from https://doi.org/https://doi.org/10.1038/nature13176
Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms: a familial syndrome?. Annals of internal medicine. 1969 1;71(4):747-52. Available from: https://doi.org/https://doi.org/10.7326/0003-4819-71-4-747
Ruijs M, Verhoef S, Rookus M, Pruntel R, van der Hout A, Hogervorst F et al (2010) [cited 22 July 2020];47(6):421-428Available from https://doi.org/https://doi.org/10.1136/jmg.2009.073429
McBride K, Ballinger M, Killick E, Kirk J, Tattersall M, Eeles R et al (2014) [cited 22 July 2020];11(5):260-271Available from https://doi.org/https://doi.org/10.1038/nrclinonc.2014.41
Cenini G, Sultana R, Memo M, Butterfield D. Elevated levels of pro-apoptotic P53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. Journal of Cellular and Molecular Medicine [Internet]. (2008) [cited 22 July 2020];12(3):987-994Available from https://doi.org/https://doi.org/10.1111/j.1582-4934.2008.00163.x
Ohyagi Y, Asahara H, Chui D, Tsuruta Y, Sakae N, Miyoshi K et al (2004) [cited 22 July 2020];19(2):1-29Available from https://doi.org/https://doi.org/10.1096/fj.04-2637fje
Sajan F, Martiniuk F, Marcus D, Frey W, Hite R, Bordayo E et al (2007) [cited 22 July 2020];22(4):319-328Available from https://doi.org/https://doi.org/10.1177/1533317507302447
Mogi M, Kondo T, Mizuno Y, Nagatsu T. P53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neuroscience Letters [Internet]. (2007) [cited 22 July 2020];414(1):94-97Available from https://doi.org/https://doi.org/10.1016/j.neulet.2006.12.003
Bae B, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y et al (2005) [cited 22 July 2020];47(1):29-41Available from https://doi.org/https://doi.org/10.1016/j.neuron.2005.06.005
Illuzzi J, Vickers C, Kmiec E. Modifications of P53 and the DNA damage response in cells expressing mutant form of the protein Huntingtin. Journal of Molecular Neuroscience [Internet]. (2011) [cited 22 July 2020];45(2):256-268Available from https://doi.org/https://doi.org/10.1007/s12031-011-9516-4
Ryan A, Zeitlin S, Scrable H. Genetic interaction between expanded murine Hdh alleles and P53 reveal deleterious effects of P53 on Huntington’s disease pathogenesis. Neurobiology of Disease [Internet]. (2006) [cited 22 July 2020];24(2):419-427Available from https://doi.org/https://doi.org/10.1016/j.nbd.2006.08.002
Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a P53 inhibitor. Journal of the American Society of Nephrology. 2003 1;14(1):128-38. Available from: https://doi.org/https://doi.org/10.1097/01.asn.0000040596.23073.01
Molitoris B, Dagher P, Sandoval R, Campos S, Ashush H, Fridman E et al (2009) [cited 22 July 2020];20(8):1754-1764Available from https://doi.org/https://doi.org/10.1681/ASN.2008111204
Zhang D, Liu Y, Wei Q, Huo Y, Liu K, Liu F et al (2014) [cited 22 July 2020];25(10):2278-2289Available from https://doi.org/https://doi.org/10.1681/ASN.2013080902
Lee Y, Bae S, Choi S, Ji J, Song G. Associations between the P53 codon 72 polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis. Lupus [Internet]. (2012) [cited 22 July 2020];21(4):430-437Available from https://doi.org/https://doi.org/10.1177/0961203311434941
Macchioni P, Nicoli D, Casali B, Catanoso M, Farnetti E, Boiardi L, Salvarani C (2007) The codon 72 polymorphic variants of P53 in Italian rheumatoid arthritis patients. Clin Exp Rheumatol 25(3):416–421 Available from: http://europepmc.org/abstract/MED/9564885
CAS
PubMed
Google Scholar
Chen R, Chang C, Wang T, Huang W, Tsai C, Tsai F. P53codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. Journal of Clinical Laboratory Analysis [Internet]. (2008) [cited 22 July 2020];22(5):321-326Available from https://doi.org/https://doi.org/10.1002/jcla.20249