Arias S (1974) Inherited congenital profound deafness in a genetic isolate. Birth Defects Orig Artic Ser 10:230–243
CAS
PubMed
Google Scholar
Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager R (1992) Transcriptional down-regulation of gap-junction proteins blocks junctional communication in human mammary tumor cells. J Cell Biol 118:1213–1221
Article
CAS
PubMed
Google Scholar
Guilford P, Ben Arab S, Blanchard S, Levilliers J, Weissenbach J, Belkahia A et al (1994) A non-syndrome form of neurosensory, recessive deafness maps to the centromeric region of chromosome 13q. Nat Genet 6:24–28
Article
CAS
PubMed
Google Scholar
Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 387:80–83
Article
CAS
PubMed
Google Scholar
Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N et al (1997) Connexin 26 mutations associate with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609
Article
CAS
PubMed
Google Scholar
Bartsch O, Vatter A, Zechner U, Kohlschmidt N, Wetzig C, Baumgart A et al (2010) GJB2 mutations and genotype-phenotype correlation in 335 patients from Germany with nonsyndromic sensorineural hearing loss: evidence for additional recessive mutations not detected by current methods. Audiol Neurotol 15:375–382
Article
CAS
Google Scholar
Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle S, Waligora J et al (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 97:945–957
Article
Google Scholar
Putcha GV, Benjjani BA, Bleoo S, Booker JK, Carey JC, Caron N et al (2007) A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet Med 9:413–426
Article
CAS
PubMed
Google Scholar
Dzhemileva LU. Molekulyarno-geneticheskiy analiz nasledstvennoy nesindromal’noy sensonevral’noy tugoukhosti. Dissertation. 2011. Moscow (in Russian) [Molecular genetic analysis of hereditary non syndromic sensorineural hearing loss] 48 pp. Accessed at http://www.rad.pfu.edu.ru:8080/tmp/avtoref5238.pdf.
Dai P, Yu F, Han B, Liu X, Wang G, Li Q et al (2009) GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment. J Transl Med. https://doi.org/10.1186/1479-5876-7-26
Albrecht K. Vorkommen und Verteilung von GJB2-Mutationen als Ursache angeborener Gehörlosigkeit in Ghana. Dissertation. 2006. Bernhard-Nocht Instittut für Tropenmedizin. Universität Hamburg, 67.
Tekin M, Xia X-J, Erdenetungalaz R, Cengiz FB, White TW, Radnaabazar J et al (2010) GJB2 mutations in Mongolia: complex alleles low frequency, and reduced fitness of the deaf. Ann Hum Genet 74:155–164
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian L, Yubin J, Bing H, Liang Z, Lan L, Hongyang W et al (2014) Comparative study of mutation spectrums of MT-RNR1 m.1555A>G, GJB2, and SLC26A4 between familial and sporadic patients with nonsyndromic sensorineural hearing loss in Chinese Han. Chin Med J 127:3233–3237
Article
Google Scholar
Petit C, Levilliers J, Martin S, Hardelin J-P (2001) Hereditary hearing loss. In: Scriver CR et al (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, pp 6281–6328
Google Scholar
Cryns K, Onzan F, Murgia A, Huygen PLM, Moreno F, del Castillo I et al (2004) A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet 41:147–154
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasparini P (2004. Ch.14) Connexins. In: Willems PJ (ed) Genetic hearing loss. Marcel Decker, Inc., pp 207–222
Google Scholar
del Castillo FI, del Castillo I (2011) The DFNB1 subtype of autosomal recessive non-syndromic hearing impairment. Front Biosci 17:3252–3274
Article
Google Scholar
Wingard JC, Zhao H-B (2015) Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss-a common hereditary deafness. Front Neurosci 9:202. https://doi.org/10.3389/fncel.2015.00202
Article
CAS
Google Scholar
Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D’Agruma L et al (1998) Connexin-26 and inherited sensorineural deafness. Lancet. 351:394–398
Article
CAS
PubMed
Google Scholar
den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12 Human Genome Variation Society (www.hgvs.org), Accessed July 2015
Article
Google Scholar
Späth F. Wyhl am Kaiserstuhl einst und jetzt. Ein Grenzdorfschicksal am Oberrhein. Verlag Emil Wild. Endingen/Kaiserstuhl. 1963. 448
Koch C (1969) La Colonia Tovar. Geschichte und Kultur einer alemannischen Siedlung in Venezuela. Bopp & Co., pp 1–336
Google Scholar
Paradisi I, Arias S (2010) Marked geographic aggregation of acute intermittent porphyria families carrying mutation Q180X in Venezuelan populations, with description of further mutations. J Inherit Metab Dis 33(Suppl 3):S455–S463
Article
PubMed
Google Scholar
Paradisi I, De Freitas L, Arias S (2015) Most frequent mutation c.3402delC in Venezuelan Wilson disease patients has a geographic wide distribution and two old origins. Eur J Med Genet 58:59–65
Article
PubMed
Google Scholar
Sistemas Genómicos, S.L. Parque Tecnológico, Valencia, Spain. www.sistemasgenomicos.com.
Paradisi I, Arias S (2007) IVIC syndrome is caused by a c.2607delA mutation in the SALL4 locus. Am J Med Genet 143A:326–332
Article
CAS
Google Scholar
del Castillo FJ, Rodríguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA et al (2005) A novel deletion involving the connexin-30 gene del (GJB2-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594
Article
PubMed
PubMed Central
CAS
Google Scholar
Parzefall T, Lucas T, Koenighofer M, Ramsebner R, Frohne A, Geiger S et al (2017) The role of alternative GJB2 transcription in screening for neonatal sensorineural deafness in Austria. Acta Otolaryngol 137:356–360
Article
CAS
PubMed
Google Scholar
Carrasquillo MM, Zlogotora I, Barges S, Chakravarti A (1997) Two different connexin 26 mutations in an inbred kindred segregating non-syndromic recessive deafness: implications for genetic studies in isolated populations. Hum Mol Genet 6:2163–2172
Article
CAS
PubMed
Google Scholar
Fetoni AR, Zorza V, Paciello F, Ziraldo G, Peres C, Raspa M et al (2018) Cx26 partial loss causes accelerated presbycusis by imbalance and dysregulation of Nfr2 pathway. Redox Biol 19:301–317
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan D, Yi MZ, Yu FG, Qiu JW, Xiao WL (2014) Prevalence of GJB2 mutations in the Silk Road region of China and a report of three novel variants. Acta Otolaryngol 134:373–381
Article
CAS
Google Scholar
Zheng J, Ying Z, Cai Z, Sun D, He Z, Gao Y et al (2015) GJB2 mutation spectrum and genotype-phenotype correlation in 1067 Han Chinese subjects with non-syndromic hearing loss. PLoS One 10(6):e0128691. https://doi.org/10.1371/journal.pone.0128691
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Xiao Y, Xu L, Zhang X, Zhang G, Li I et al (2016) Mutation analysis of the common deafness genes in patients with nonsyndromic hearing loss in Linyi by SNP scan assay. Biomed Res Int 2016:1302914. https://doi.org/10.1155/2016/1302914
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Lin Y, Xu T, Che T, Li L, Yang T et al (2020) Molecular epidemiology of Chinese Han deaf patients with bi-allelic and monoallelic GJB2 mutations. Orphanet J Rare Dis 15:29. https://doi.org/10.1186/s13023-020-1311-2
Article
PubMed
PubMed Central
Google Scholar
Erdenechuluun J, Lin Y-H, Gambat K, Bataakhun D, Makhbal Z, Tsai C-H et al (2018) Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS One 13:029797. https://doi.org/10.1371/journal.pone.0209797
Article
CAS
Google Scholar
Primignani P, Trotta L, Castorina P, Lalatta F, Sironi T, Radaelli C et al (2009) Analysis of the GJB2 and GJB6 genes in Italian patients with nonsyndromic hearing loss: frequencies, novel mutations, genotypes and degree of hearing loss. Genet Test Mol Biomark 13:209–217
Article
CAS
Google Scholar
Gabriel H, Kupsch P, Sudendy J, Winterhager E, Jahnke K, Lautermann J (2001) Mutations in the connexin 26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Hum Mutat 17:521–522. https://doi.org/10.1002/humu.1138
Article
CAS
PubMed
Google Scholar
Cifuentes L, Arancibia M, Torrente M, Acuña M, Farfán C, Ríos C (2013) Prevalence of the 35delG mutation in the GJB2 gene in two samples of non-syndromic subjects from Chile. Biol Res 46:239–242
Article
PubMed
Google Scholar
Carranza C, Menéndez R, Herrera M, Castellanos P, Amado P, Maldonado F et al (2016) A Mayan founder mutation is a common cause of deafness in Guatemala. Clin Genet 89:461–465. https://doi.org/10.1111/cge.12676
Article
CAS
PubMed
Google Scholar
Fonseca-Pérez T, González-Coira M, Arias S (1996) Pi locus (alpha-1 antitrypsin) allele frequencies in an Andean Venezuelan population. Gene Geogr 10:65–71
PubMed
Google Scholar
Gómez G, Arias S, Cárdenas L, Zoghbi D, Paradisi I (2017) GBA mutations in Gaucher type I Venezuelan patients: ethnic origins and frequencies. J Genet 96:583–589
Article
PubMed
CAS
Google Scholar
Grillo AP, de Oliveira FM, de Carvalho GQ, Medrano RFV, da Silva-Costa SM, Sartorato EL et al (2015) Single nucleotide polymorphisms of the GJB2 and GJB6 genes are associated with autosomal recessive nonsyndromic hearing loss. Biomed Res Int 2015:318727. https://doi.org/10.1155/2015/318727
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin W, Guo S, Xu X, Xu R, Zhang Y (2016) Analysis of deafness-related gene mutations in non-syndromic hearing loss patients in Fuzhou city. Chin Arch Otolaryngol Head Neck Surg 23:335–337
Google Scholar
Huang A, Yuan Y, Duan N, Bang X, Wang B, Liu Y et al (2014) Hearing loss associated with an unusual mutation combination in the gap junction beta 2 (GJB2) gene in a Chinese family. Int J Pediatr Otorhinolaryngol 78:599–603
Article
PubMed
Google Scholar
Dzhemileva LU, Posukh OL, Barashkov NA, Fedorova SA, Teryutin FM, Akhmetova VL et al (2011) Haplotype diversity and reconstruction of ancestral haplotype associated with the c.35delG mutation in the GJB2 (Cx26) gene among the Volgo-Ural populations of Russia. Acta Nat 3:52–63
Article
CAS
Google Scholar
van Laer L, Coucke P, Mueller RF, Caethoven G, Flothmann K, Prasad SD et al (2001) A common founder for the 35delG gene mutation in connexin 26 hearing impairment. J Med Genet 38:515–518
Article
PubMed
PubMed Central
Google Scholar
Rothrock CR, Murgia A, Sartorato EL, Leonardi E, Wei S, Lebeis SL et al (2003) Connexin 26 35delG does not represent a mutational hot spot. Hum Genet 113:18–23
Article
CAS
PubMed
Google Scholar
Ramsebner R, Ludwig M, Lucas T, de Jong D, Hamader G, del Castillo I et al (2013) Identification of a SNP region of GJB2 associated with idiopathic nonsyndromic autosomal recessive hearing loss in a multicenter study. Otolaryngol Neurotogy 34:650–656
Google Scholar
García Sánchez G, Alfaro-Rodríguez A, Poblano A (2014) Evidence for central Asiatic origin of the p.Val27Ile variant in the GJB2 gene. Int J Med Genet 856313:8. https://doi.org/10.1155/2014/856313
Article
Google Scholar
Kramp L. Can carriers of a Cx26 mutation be detected through audiological assessment? 2010. Retrieved from https://www.uwo.ca/fhs/lwm/teaching/EBP/2010_11/Kramp.pdf
Google Scholar
Franzé A, Caravelli A, Di Leva F, Marciano E, Auletta G, D’Aulos F et al (2005) Audiometric evaluation of the connexin 26 mutation 35delG. Eur Arch Otorhinolaryngol 262:921–924
Article
PubMed
Google Scholar
Martin P, Coleman SH, Casalotti SO, Forge AP, Evans WH (1999) Properties of connexin 26 gap junctional proteins derived from mutations associated with non-syndromal hereditary deafness. Hum Mol Genet 8:2369–2376
Article
CAS
PubMed
Google Scholar
Zia A, Moses M (2011) Ranking insertion, deletion and nonsense mutations based on their effect on genetic information. BMC Bioinformatics 12:299–312
Article
PubMed
PubMed Central
Google Scholar
Varilo T, Nicali K, Suomalainen A, Lönnqvist T, Peltonen L (1996) Tracing an ancestral mutation: genealogical and haplotype analysis of the infantile onset spinocerebellar ataxia locus. Genome Res 6:870–875
Article
CAS
PubMed
Google Scholar
Tateno Y, Komiyama T, Katoh T, Munkhbat B, Oka A, Haida Y, Kobayashi H et al (2014) Divergence of East Asians and Europeans estimated using male- and female-specific genetic markers. Genome Biol Evol 6:466–473
Article
PubMed
PubMed Central
Google Scholar