Galosi S, Nardecchia F, Leuzzi V (2020) Treatable inherited movement disorders in children: spotlight on clinical and biochemical features. Mov Disorders Clin Pract 7(2):154–166
Article
Google Scholar
Singer H, Mink J (2015) Movement disorders in childhood. Academic Press
Google Scholar
Painous C, Os N, Delamarre A, Michailoviene I, Marti M, Warrenburg B et al (2020) Management of rare movement disorders in Europe: outcome of surveys of the European Reference Network for Rare Neurological Diseases. Eur J Neurol 27(8):1493–1500
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinnah H, Albanese A, Bhatia K, Cardoso F, Da Prat G, de Koning T et al (2017) Treatable inherited rare movement disorders. Mov Disord 33(1):21–35
Article
PubMed
PubMed Central
Google Scholar
Gatto E, Walker R, Gonzalez C, Cesarini M, Cossu G, Stephen C et al (2021) Worldwide barriers to genetic testing for movement disorders. Eur J Neurol 28(6):1901–1909
Article
PubMed
Google Scholar
Schlaggar B, Mink J (2003) Movement disorders in children. Pediatr Rev 24(2):39–51
Article
PubMed
Google Scholar
Sanger T, Chen D, Delgado M, Gaebler-Spira D, Hallett M, Mink J (2006) Definition and classification of negative motor signs in childhood. Pediatrics 118(5):2159–2167
Article
PubMed
Google Scholar
Méneret A, Roze E (2016) Paroxysmal movement disorders: an update. Rev Neurol 172(8–9):433–445
Article
PubMed
Google Scholar
Wassenberg T, Molero-Luis M, Jeltsch K, Hoffmann G, Assmann B, Blau N et al (2017) Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis 12(1):1–21
Article
Google Scholar
Ali A, Dhahouri N, Almesmari F, Fathalla W, Jasmi F (2021) Characterization of ETFDH and PHGDH mutations in a patient with mild glutaric aciduria type II and serine deficiency. Genes 12(5):703
Article
CAS
PubMed
PubMed Central
Google Scholar
Tadmouri G, Nair P, Obeid T, Al Ali M, Al Khaja N, Hamamy H (2009) Consanguinity and reproductive health among Arabs. Reprod Health 6(1):17
Article
PubMed
PubMed Central
Google Scholar
Liu X, Wu M, He N, Meng H, Wen L, Wang J et al (2012) NovelPRRT2mutations in paroxysmal dyskinesia patients with variant inheritance and phenotypes. Genes Brain Behav 12(2):234–240
Article
PubMed
Google Scholar
Heron S, Grinton B, Kivity S, Afawi Z, Zuberi S, Hughes J et al (2012) PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with Choreoathetosis syndrome. Am J Hum Genet 90(1):152–160
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardiner A, Bhatia K, Stamelou M, Dale R, Kurian M, Schneider S et al (2012) PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 79(21):2115–2121
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz N, Hahn A, Bast T, Müller S, Löffler H, Maljevic S et al (2015) Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol 263(2):334–343
Article
PubMed
Google Scholar
Choquet K, La Piana R, Brais B (2015) A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics 16(3):233–236
Article
CAS
PubMed
Google Scholar
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C (2015) The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 138(12):3476–3495
Article
PubMed
Google Scholar
Weber A, Kreth J, Müller U (2016) Intronic PRRT2 mutation generates novel splice acceptor site and causes paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) in a three generation family. BMC Med Genet 17(1):1–3
Article
Google Scholar
Delcourt M, Riant F, Mancini J, Milh M, Navarro V, Roze E et al (2015) Severe phenotypic spectrum of biallelic mutations inPRRT2gene. J Neurol Neurosurg Psychiatry 86(7):782–785
Article
PubMed
Google Scholar
De Giorgis V, Veggiotti P (2013) GLUT1 deficiency syndrome 2013: current state of the art. Seizure 22(10):803–811
Article
PubMed
Google Scholar
Klepper J, Scheffer H, Elsaid M, Kamsteeg E, Leferink M, Ben-Omran T (2009) Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics 40(05):207–210
Article
CAS
PubMed
Google Scholar
Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung W et al (2010) Glut1 deficiency: Inheritance pattern determined by haploinsufficiency. Ann Neurol 68(6):955–958
Article
PubMed
PubMed Central
Google Scholar
Vannucci S, Maher F, Simpson I (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21(1):2–21
Article
CAS
PubMed
Google Scholar
Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31(7):545–552
Article
PubMed
Google Scholar
Pearson T, Pons R, Engelstad K, Kane S, Goldberg M, De Vivo D (2017) Paroxysmal eye–head movements in Glut1 deficiency syndrome. Neurology 88(17):1666–1673
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao J, Kelly D, Su J, Pascual J (2017) Clinical aspects of glucose transporter type 1 deficiency. JAMA Neurol 74(6):727
Article
PubMed
PubMed Central
Google Scholar
Ng J, Papandreou A, Heales S, Kurian M (2015) Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat Rev Neurol 11(10):567–584
Article
CAS
PubMed
Google Scholar
Surtees R, Rodeck C, Clayton P (1992) Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42(10):1980–1980
Article
PubMed
Google Scholar
Brun L, Ngu L, Keng W, Ch’ng G, Choy Y, Hwu W et al (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75(1):64–71
Article
CAS
PubMed
Google Scholar
Leuzzi V, Mastrangelo M, Polizzi A, Artiola C, van Kuilenburg A, Carducci C et al (2014) Report of two never treated adult sisters with aromatic l-amino acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype? JIMD Rep 15:39–45
PubMed
PubMed Central
Google Scholar
Wen Y, Wang J, Zhang Q, Chen Y, Bao X (2020) The genetic and clinical characteristics of aromatic L-amino acid decarboxylase deficiency in mainland China. J Hum Genet 65(9):759–769
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee N, Chien Y, Hwu W (2019) A review of aromatic l-amino acid decarboxylase (AADC) deficiency in Taiwan. Am J Med Genet C Semin Med Genet 181(2):226–229
Article
CAS
PubMed
Google Scholar
Montioli R, Dindo M, Giorgetti A, Piccoli S, Cellini B, Voltattorni C (2014) A comprehensive picture of the mutations associated with aromatic amino acid decarboxylase deficiency: from molecular mechanisms to therapy implications. Hum Mol Genet 23(20):5429–5440
Article
CAS
PubMed
Google Scholar
Chien Y, Lee N, Tseng S, Tai C, Muramatsu S, Byrne B et al (2017) Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adolesc Health 1(4):265–273
Article
PubMed
Google Scholar
Kojima K, Nakajima T, Taga N, Miyauchi A, Kato M, Matsumoto A et al (2019) Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain 142(2):322–333
Article
PubMed
PubMed Central
Google Scholar
Xu X (2014) MICU1mutation: a genetic cause for a type of neuromuscular disease in children. Clin Genet 87(4):327–328
Article
PubMed
Google Scholar
Logan C, Szabadkai G, Sharpe J, Parry D, Torelli S, Childs A et al (2013) Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet 46(2):188–193
Article
PubMed
Google Scholar
Mojbafan M, Nojehdeh S, Rahiminejad F, Nilipour Y, Tonekaboni S, Zeinali S (2020) Reporting a rare form of myopathy, myopathy with extrapyramidal signs, in an Iranian family using next generation sequencing: a case report. BMC Med Genet 21(1):77
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis-Smith D, Kamer K, Griffin H, Childs A, Pysden K, Titov D et al (2016) Homozygous deletion inMICU1presenting with fatigue and lethargy in childhood. Neurol Genet 2(2):e59
Article
PubMed
PubMed Central
Google Scholar
Bhosale G, Sharpe J, Koh A, Kouli A, Szabadkai G, Duchen M (2017) Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics. Biochim Biophys Acta Mol Cell Res 1864(6):1009–1017
Article
CAS
PubMed
Google Scholar
Musa S, Eyaid W, Kamer K, Ali R, Al-Mureikhi M, Shahbeck N et al (2018) A Middle eastern founder mutation expands the genotypic and phenotypic spectrum of mitochondrial MICU1 deficiency: a report of 13 patients. JIMD Rep 43:79–83
Article
PubMed
PubMed Central
Google Scholar
Olpin S, Clark S, Andresen B, Bischoff C, Olsen R, Gregersen N et al (2005) Biochemical, clinical and molecular findings in LCHAD and general mitochondrial trifunctional protein deficiency. J Inherit Metab Dis 28(4):533–544
Article
CAS
PubMed
Google Scholar
Naiki M, Ochi N, Kato Y, Purevsuren J, Yamada K, Kimura R et al (2014) Mutations inHADHB, which encodes the β-subunit of mitochondrial trifunctional protein, cause infantile onset hypoparathyroidism and peripheral polyneuropathy. Am J Med Genet A 164(5):1180–1187
Article
CAS
Google Scholar
Fraser H, Geppert J, Johnson R, Johnson S, Connock M, Clarke A et al (2019) Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: a systematic review. Orphanet J Rare Dis 14(1):258
Article
PubMed
PubMed Central
Google Scholar
Park HD, Kim SR, Ki CS, Lee SY, Chang YS, Jin DK et al (2009) Two novel HADHB gene mutations in a Korean patient with mitochondrial trifunctional protein deficiency. Ann Clin Lab Sci 39(4):399–404
CAS
PubMed
Google Scholar
Ibdah J, Tein I, Dionisi-Vici C, Bennett M, Ijlst L, Gibson B et al (1998) Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Investig. 102(6):1193–1199
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanders R, Vreken P, den Boer M, Wijburg F, Van Gennip A, Ijlst L (1999) Disorders of mitochondrial fatty acyl-CoA β-oxidation. J Inherit Metab Dis 22(4):442–487
Article
CAS
PubMed
Google Scholar
Choi J, Yoon H, Kim G, Park S, Shin Y, Yoo H (2007) Identification of novel mutations of the HADHA and HADHB genes in patients with mitochondrial trifunctional protein deficiency. Int J Mol Med 20:22–27
Google Scholar
Spiekerkoetter U, Sun B, Khuchua Z, Bennett M, Strauss A (2003) Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to ?-subunit mutations. Hum Mutat 21(6):598–607
Article
CAS
PubMed
Google Scholar
Olpin S (2013) Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 36(4):645–658
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Crabben S, Verhoeven-Duif N, Brilstra E, Van Maldergem L, Coskun T, Rubio-Gozalbo E et al (2013) An update on serine deficiency disorders. J Inherit Metab Dis 36(4):613–619
Article
CAS
PubMed
Google Scholar
Abdelfattah F, Kariminejad A, Kahlert A, Morrison P, Gumus E, Mathews K et al (2020) Expanding the genotypic and phenotypic spectrum of severe serine biosynthesis disorders. Hum Mutat 41(9):1615–1628
Article
CAS
PubMed
Google Scholar
Tabatabaie L, Klomp L, Rubio-Gozalbo M, Spaapen L, Haagen A, Dorland L et al (2010) Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency. J Inherit Metab Dis 34(1):181–184
Article
PubMed
PubMed Central
Google Scholar
Tabatabaie L, de Koning T, Geboers A, van den Berg I, Berger R, Klomp L (2009) Novel mutations in 3-phosphoglycerate dehydrogenase (PHGDH) are distributed throughout the protein and result in altered enzyme kinetics. Hum Mutat 30(5):749–756
Article
CAS
PubMed
Google Scholar
Glinton K, Benke P, Lines M, Geraghty M, Chakraborty P, Al-Dirbashi O et al (2018) Disturbed phospholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling. Mol Genet Metab 123(3):309–316
Article
CAS
PubMed
Google Scholar
Byers H, Bennett R, Malouf E, Weiss M, Feng J, Scott C et al (2015) Novel report of phosphoserine phosphatase deficiency in an adult with myeloneuropathy and limb contractures. JIMD Rep 30:103–108
Article
PubMed
PubMed Central
Google Scholar
Angle B, Burton B (2008) Risk of sudden death and acute life-threatening events in patients with glutaric acidemia type II. Mol Genet Metab 93(1):36–39
Article
CAS
PubMed
Google Scholar
Schiff M, Froissart R, Olsen R, Acquaviva C, Vianey-Saban C (2006) Electron transfer flavoprotein deficiency: functional and molecular aspects. Mol Genet Metab 88(2):153–158
Article
CAS
PubMed
Google Scholar
Lehnert W, Wendel U, Lindenmaier S, Böhm N (1982) Multiple acyl-CoA dehydrogenation deficiency (glutaric aciduria type II), congenital polycystic kidneys, and symmetric warty dysplasia of the cerebral cortex in two brothers. Eur J Pediatr 139(1):56–59
Article
CAS
PubMed
Google Scholar
Sweetman L, Nyhan W, Trauner D, Merritt T, Singh M (1980) Glutaric aciduria type II. J Pediatr 96(6):1020–1026
Article
CAS
PubMed
Google Scholar
Yamada K, Kobayashi H, Bo R, Takahashi T, Purevsuren J, Hasegawa Y et al (2016) Clinical, biochemical and molecular investigation of adult-onset glutaric acidemia type II: characteristics in comparison with pediatric cases. Brain Dev 38(3):293–301
Article
PubMed
Google Scholar